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Abstract Sleep disturbances are common in patients with stroke, and sleep quality has a critical role in the onset
and outcome of stroke. Poor sleep exacerbates neurological injury, impedes nerve regeneration, and elicits serious
complications. Thus, exploring a therapy suitable for patients with stroke and sleep disturbances is imperative. As
a multi-targeted nonpharmacological intervention, remote ischemic conditioning can reduce the ischemic size of
the brain, improve the functional outcome of stroke, and increase sleep duration. Preclinical/clinical evidence
showed that this method can inhibit the inflammatory response, mediate the signal transductions of adenosine,
activate the efferents of the vagal nerve, and reset the circadian clocks, all of which are involved in sleep regulation.
In particular, cytokines tumor necrosis factor α (TNFα) and adenosine are sleep factors, and electrical vagal nerve
stimulation can improve insomnia. On the basis of the common mechanisms of remote ischemic conditioning and
sleep regulation, a causal relationship was proposed between remote ischemic conditioning and post-stroke sleep
quality.
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Introduction

Stroke is a common disease worldwide with prevalence and
1-year incidence rates of 1115/100 000 and 246.8/100 000
in China, respectively [1]. This condition has been the
leading cause of death and disability with over RMB 40
billion yuan related annual expenses. Thus, improving the
outcomes of stroke is of great importance. Sleep quality is
one of the most important prognostic factors related to
stroke (e.g., age, gender, and comorbidity).
Sleep is a naturally complicated phenomenon critical for

physiologic activity, recovery, life quality. Good sleep is
beneficial for plasticity, regeneration, and repairment, and
poor sleep exacerbates energy failure, excitotoxicity,
inflammation, and complications [2]. Stroke per se has
detrimental effects on sleep, and over 50% of patients with
ischemic stroke have complaints of insomnia [3]. Thus,
improvements on the sleep quality of patients with stroke
has drawn attention. Current strategies for insomnia in

post-stroke have their limitations. Hypnotic drugs promote
sleep quickly but tend to induce sleep-disordered breath-
ing, cognition impairment, and weakness [4]. Cognitive-
behavioral treatment is effective and safe but is hindered
by its slow effects and the lack of professional therapists
[5]. Other strategies, such as transcranial magnetic
stimulation, require specific equipment and particular
individuals. Therefore, exploring a therapy suitable for
patients with stroke and sleep disturbances is imperative.
Remote ischemic conditioning (RIC) may be a good

choice. This endogenous, multi-targeted nonpharmacolo-
gical intervention exerts protective effects on the brain and
heart by inducing brief, non-lethal ischemia/reperfusion
injury of extremities [6]. Given its non-invasiveness and
easy feasibility, RIC has been an attractive therapy for
cardiovascular and cerebrovascular patients. Its core
mechanisms are neuronal signal transfer (e.g., vagus
nerve), humoral factors (e.g., adenosine), and immunor-
egulation (e.g., cytokine interleukin-10) [7], all of which
are involved in sleep regulation. For example, vagus nerve
activation induces sleep, and adenosine and interleukin-10
(IL-10) are sleep factors.
Owing to its protective effects on the brain and its
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multiple mechanisms shared with sleep regulation, RIC
has the potential to be a novel therapy for patients with
stroke and sleep disturbances. In this review, the under-
lying interrelations among sleep, stroke, and RIC were first
explored. Preclinical/clinical evidence that link sleep to
RIC was also presented. Finally, several mechanisms of
RIC regulatory effects on sleep were discussed, such as
inflammatory response, adenosine signaling system, auto-
nomic nervous system, and circadian clocks.

Sleep disturbances and stroke

The sleep–wake cycle is generated by the mutual
competition of sleep-promoting neurons and wake-pro-
moting neurons and is affected by various factors, such as
brain functions, genes, humoral/neural signals, behavior,
psychological beliefs, and ambient environment, most of
which are abnormal in post-stroke. According to a recent
systematic review [3], stroke is frequently accompanied by
sleep disturbances, such as insomnia, sleep-disordered
breathing, circadian rhythm dysfunctions, and sleep-
related movements disorders. Pace et al. [8] investigated
the features of sleep architecture in acute ischemic stroke
and found markedly decreased rapid eye movement (REM)
sleep in rodent animals and unfavorable outcomes
correlated to decreased REM sleep amounts and prolonged
REM latency in patients with stroke. However, different
studies reported variations in other characteristics of post-
stroke sleep, such as sleep depth, sleep efficiency or sleep
architecture. In general, lesion locations, brain edema,
severity, or comorbidities of stroke directly influence sleep
quality [8–10].
Sleep quality is also critical for the onset and recovery of

stroke. On the one hand, sleep disturbances are risk factors
for the onset of stroke. Sleep deprivation facilitates
atherogenesis and endothelial dysfunction [11], leading
to a high incidence and recurrence rate of stroke.
McAlpine’s study [12] showed that mice subjected to
sleep fragmentation produced many Ly-6Chi monocytes
and developed large atherosclerotic plaques, suggesting
that sufficient sleep protects the artery against athero-
sclerosis. On the other hand, sleep quality correlates to
outcomes of stroke. Sleep deprivation after ischemic stroke
results in extended infarct size and poor outcomes with
reduced axonal sprouting and increased damaged cells
[13–15]. Interventions aimed at improving sleep can
promote stroke recovery. In their clinical trials, Nguyen
et al. [16] found that cognitive-behavioral therapy
improved sleep quality in patients with stroke accompa-
nied by decreased neurologic deficits. In rodent experi-
ments, Hodor et al. [17] found that sleep-promoting drugs,
which increase non-rapid eye movement (NREM) sleep,
can improve the performance of stroke rats in single pellet

reaching test and the neurogenesis of the peri-infarct
region.
Therefore, stroke is a strong predisposing factor for

sleep disturbances, and sleep quality has dual-directional
effects on stroke prevention and recovery. For patients with
stroke, a method that possesses neuroprotection and sleep
improvement must be explored.

Remote ischemic conditioning and stroke

Preconditioning is a potentially detrimental stimulus that is
close to but below the irreversible injury threshold and
could increase organ resistance to subsequent harmful
stimuli [18]. This approach is regarded as a hormetic-like
biphasic dose response that protects cells from noxious
stimulations by inducing a subtoxic increase of oxidative
stress, inflammation, and other signals [19]. For example, a
subtoxic level of mitochondrial reactive oxygen species
(ROS) activates the adaptive stress response pathways of
ischemic preconditioning [20], which in turn reduces the
excessive production of mitochondrial ROS [21] by
affecting the expression of heat-shock proteins [22] or
nuclear factor erythroid 2-related factor [23]. Neurons,
which are exposed to low levels of oxidative stress, can be
resistant to a subsequent lethal oxidative stress [24].
RIC is a typical form of preconditioning: applying

multiple, brief episodes of non-lethal ischemia/reperfusion
injury in limbs can protect remote organs (e.g., brain and
heart) from prolonged lethal ischemia and reperfusion.
This method was first reported by Przklenk, then
corroborated in multiple, diverse models [25], and is
currently widely applied in patients with cardiovascular
and cerebrovascular disease. RIC has two windows of
protection. The first window occurs immediately after
short durations of ischemia/reperfusion, and the second
window of protection re-appears at 12–24 h after the brief
episodes of ischemia/reperfusion and is maintained for 72–
96 h [21]. Cheng et al. [26] reported that in mice with
cerebral ischemia, RIC could attenuate hemispheric
swelling and brain atrophy and reduce motor deficits and
lesion size. Another study suggested [27] that RIC
augmented cerebral perfusion and decreased memory
impairment in chronic cerebral hypoperfusion model
mouse. In their clinical trials, Zhao et al. [28] showed
that RIC can reduce ischemic brain injury secondary to
carotid artery stenting. Meng et al. [29] reported that RIC
effectively increases cerebral perfusion and decreases the
recurrence risk of stroke in patients with intracranial
arterial stenosis. Furthermore, RIC improves depression in
patients after stroke and slows down cognition impairment
[30]. Therefore, this strategy exerts beneficial effects on
brain functions, mood, and memory.
Although the systematic protections of RIC have been
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described in preclinical and clinical observations, its
molecular mechanisms are unclear. RIC elicits a cascade
of downstream effects by activating the neuro-humoral-
immune response. The neural pathways include peripheral
sensory nerves, efferent vagal nerves, and spleen, which
are indispensable for the protective effects of RIC.
Ganglion blockers, cervical vagotomy, or femoral nerve
transection can abolish RIC neuroprotection, and vagus
nerve stimulation can be resistant to ischemia/reperfusion
injury in the brain [7]. Humoral factors consist of triggers
(e.g., adenosine, acetylcholine, and ROS), cytosolic
mediators (e.g., protein kinase C–endothelial nitric oxide
synthase–protein kinase G pathway, reperfusion injury
salvage kinase pathway, and survival activating factor
enhancement pathway), and intracellular effectors (e.g.,
nucleus and mitochondria) [21]. RIC neuroprotection can
be transferred to another animal by transporting blood
derivatives. The immune regulation includes the preactiva-
tion of the immune system and anti-inflammatory
response. Liu et al. [31] reported that RIC can reverse
the reduction in B cell population after stroke. These
mechanisms work together to protect multiple organs of
the body.
RIC exerts endogenous protections by neural pathways,

humoral factors, and immune regulations, all of which are
important components of sleep regulation. Hence, this
strategy is feasible for patients with stroke and sleep
disturbances.

Correlations between remote ischemic
conditioning and sleep regulation

Although the correlations among sleep, stroke, and RIC
have been described, the causal link between RIC and
sleep remains unknown. In this work, direct/indirect
evidences that RIC plays a role in sleep regulation were
discussed (Fig. 1).
An animal experiment showed that RIC can alter the

sleep phenotype. Brager and his colleagues [32] monitored
the sleep electroencephalogram of mice before and after
RIC (brief limb ischemia for 10 min in the hind legs of
mice followed by reperfusion for 10 min, 2 cycles) and
found that the mice’s sleep increased 2.4 h in one day. This
additional sleep was mainly composed of NREM sleep. In
a further experiment, they disturbed the excess sleep
induced by RIC and consequently abolished the RIC
neuroprotection against ischemia/reperfusion (I/R) injury.
This study indicates that RIC increases sleep duration and
additional sleep is essential to RIC protective effects.
Despite the limited clinical studies, patients with cere-
brovascular or cardiovascular diseases and healthy volun-
teers often report that RIC makes them sleep better and
provides them improved sleep satisfaction and less

fragmented sleep. Moreover, RIC even immediately
induces sleep after the treatment for some patients.
Melatonin is involved in sleep regulation and RIC

neuroprotection and is mainly secreted by the pineal gland
and is suppressed after stroke [33]. This substance can
shorten sleep-onset latency, improve sleep quality [34],
and protect the brain/heart from I/R injury [35]. Experi-
mental studies showed that melatonin administered before
lethal I/R injury exhibited protective effects for the brain,
which is similar to ischemic preconditioning. Feng et al.
[36] revealed that pre-ischemia melatonin treatment
reduced cerebral infarct size and brain edema and
generated good outcomes. Furthermore, melatonin is
required in RIC protective effects. In their rodent study
[37] that investigated whether melatonin mediates RIC
cardioprotection, researchers found that the administration
of melatonin could decrease the infarct size of the heart in
wild-type rats. This effect is similar to RIC. However, in
rats with pinealectomy, RIC decreased the infarct size
slightly, whereas RIC plus exogenous melatonin substan-
tially reduced the infarct size. These results indicate that
melatonin is indispensable for RIC. However, clinical trials
failed to confirm that exogenous melatonin supplements
can reduce myocardial infarction size. The results of
MARIA trial showed that melatonin even worsens adverse
remodeling after myocardial infarction [38]. Although we
cannot conclude its influence on the concentration or
effects of melatonin, RIC may be involved in the signal
transductions of melatonin.
As two classic patterns of preconditioning, RIC and

sleep deprivation preconditioning partially share mechan-
isms, such as the activation of Toll-like receptors,
temperature regulation, and antioxidant activity [39].
Using microarray analysis, Pace et al. [40] found that
sleep deprivation preconditioning reprograms signal
responses in ischemic brain tissues, thus inhibiting cell
division and inflammatory response. Konstantinov et al.
[41] also found that RIC downregulated the expression
levels of proinflammatory genes. RIC and sleep depriva-
tion both alleviate ischemic damage and improve neuro-
logical performances. Hsu et al. [42] found that sleep
deprivation prior to cerebral ischemia could attenuate brain
damage and glial reactions. Moldovan et al. [43] reported
that total sleep deprivation for 6 h limited the neurological
deficits induced by reversible middle cerebral artery
occlusion. Moreover, the neuroprotection of sleep depriva-
tion preconditioning depends on sleep-rebound (the
significantly increased quantity of slow wave activity and
paradoxical sleep in post-stroke), which contributes to
axonal sprouting, neuroplasticity, and neurogenesis [44].
RIC tolerance against I/R injury also relies on the extra
sleep induced by RIC in preischemic stroke [32]. There-
fore, its role in sleep regulation may be similar to sleep
deprivation preconditioning.
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Mechanisms of sleep regulation by remote
ischemic conditioning

Several common mechanisms were found between sleep
regulation and RIC, including neural feedback, humoral
signal transfer, and inflammation [7,45]. Therefore, RIC
might mediate sleep homeostasis via these mechanisms
(Fig. 2).

Inflammatory response

The inflammatory response has a causal role in sleep
quality and duration. Physiologically, cytokines such as
interleukin-1 (IL-1) and tumor necrosis factor α (TNF-α)
are sleep factors that accumulate gradually in wakefulness;
sleep occurs when their concentrations meet the threshold
value [46]. The concentrations of TNF-α and IL-1β
increase substantially before the initiation of sleep [47].
Pathologically, different concentrations of pro-inflamma-
tory cytokines have conflicting effects on sleep. The mild
inflammatory reaction triggered by low doses of endotoxin
would enhance NREM sleep [48], whereas the proin-
flammatory response induced by severe infection would
aggravate sleep fragmentation [49]. Anti-inflammatory
cytokines such as IL-4 and IL-10 can also promote sleep.
Thus, any intervention that can regulate the immune
response can directly or indirectly influence sleep quality
and duration.
Given that immunoregulation is a primary pathway of its

endogenous mechanisms, RIC may improve sleep quality
via modulating inflammatory response. At first, RIC can
induce the pre-activation of the immune system prior to the
stroke, which is supported by clinical studies. Castillo et al.
[50] found that transient ischemic attack, the natural
ischemic preconditioning in humans, predicts a good
functional outcome for subsequent acute stroke accom-
panied by mildly elevated concentrations of TNF-α in
serum. Gedik et al. [51] also reported that RIC applied
prior to ischemic injury increased the IL-1α concentration
in the arterial blood samples of patients with cardiopathy.
Given that the moderate elevation of TNF-α or IL-1
induces slow wave sleep, RIC may regulate sleep by
preactivating the immune system. Animal experiments
showed that RIC affects peripheral immune cell popula-
tions and inhibits the excessive proinflammation after
stroke. Liu et al. [31] found that RIC rescued the decline in
B cell population and ameliorated the reduction of
CD3+CD8+ T cells and CD3+/CD161a+ NKT cells after
stroke, thus further affecting the secretion of cytokines.
TNF-α, IL-6, interferon-γ (IFN-γ), and IL-2 rapidly exceed
the pathological threshold in post-stroke, thereby aggra-
vating the excitatory neural toxicity and further interrupt-
ing sleep continuity [52–54]. Most studies suggested that
RIC can alleviate the overwhelming inflammatory
response induced by I/R injury via decreasing the release
of IL-6, IL-1β, and TNF-α [52]. Finally, RIC increases the
concentrations of anti-inflammatory cytokines, which is
beneficial for sleep quality in post-stroke. Cai et al. [55]

Fig. 1 Evidence that links stroke, remote ischemic conditioning (RIC) and sleep. Stroke and sleep disturbances have mutually adverse
effects. Stress, brain edema, severity, comorbidities, and lesion location that are resulted from stroke induce sleep disturbances, while poor
sleep facilitates atherogenesis, endothelial dysfunction, extended edema, and infarct region. RIC and good sleep have similarly
neuroprotective effects, such as reducing ischemia/reperfusion (I/R) injury, increasing neurogenesis, axonal sprouting, and cerebral
perfusion. Furthermore, RIC involves in sleep regulation, by impacting melatonin, sleep homeostasis, and circadian system, as well as by
the shared mechanisms of sleep deprivation (SD) preconditioning.
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reported that RIC induces late protection against
myocardial I/R injury by increasing IL-10 expression in
the remote muscle, followed by the release of IL-10 into
the circulation. Therefore, RIC could improve sleep
continuity by suppressing the hyperactivation of the
inflammatory response after ischemic stroke.
RIC may facilitate the normalization of sleep patterns by

balancing pro-inflammation and anti-inflammation.

Adenosine and adenosine receptor

Adenosine is an autacoid associated with energy demand
and supply [56] and involved in sleep regulation. The
concentration of extracellular adenosine regulates the
waxing and waning of sleep propensity. In the subar-
achnoid space, extracellular adenosine activates A1
receptor (A1R) in the basal forebrain and tuberomammil-
lary nucleus to inhibit arousal and activates neurons in the
ventrolateral preoptic nucleus via coupling to A2a receptor
to promote sleep. Therefore, adenosine and its receptors
are critical in sleep regulation [57].
Animal experiments revealed that adenosine is an

indispensable feed-back mediator for ischemic condition-
ing. First, adenosine infusion in dogs mimics the
neuroprotection of ischemic preconditioning [58], and
adenosine preconditioning exhibits the same metabolic
features as RIC [59]. Second, adenosine deaminase can
abolish the protective effects of ischemic preconditioning
[60]. Finally, preconditioned parenchyma can release more
adenosine compared with that in the control group [61],
though this strategy was considered controversial in
another experiment. All these observations indicate that
adenosine is required in the endogenous mechanisms of
RIC, which may promote sleep via the signal transductions
of adenosine.
Adenosine A1R is downstream of adenosine signaling

and a key component of preconditioning. As a classic form
of preconditioning, sleep deprivation preconditioning
protects the brain from ischemia/reperfusion (I/R) injury
by increasing recovery sleep, which is correlated to the
availability of A1R [62]. Bjorness et al. [63] reported that
in A1R knocknout (KO) mice, slow wave sleep (SWS)
could normally occur in the natural sleep pattern, but no
compensatory SWS of recovery sleep occurs after sleep
deprivation. A1R plays a key role in RIC effects. The
infusion of adenosine A1R selective agonists can delay the
brain’s tolerance to I/R injury [64] and can even substitute
for ischemic preconditioning [65]. Meanwhile, the block-
ade of adenosine receptors can attenuate the protective
effects of ischemic preconditioning [66]. On the basis of
A1R functions, RIC may be involved in sleep regulation.
Endogenous adenosine signaling is one of the under-

lying mechanisms of RIC. This approach can regulate
sleep propensity by affecting the signal cascade of
adenosine and the subsequent activation of A1R.

Autonomic nervous system

The autonomic nervous system has featured activations in
different sleep stages. Sympathetic neural activity
increases during REM sleep or wakefulness and decreases
during NREM sleep, and vagal activity exhibits the
opposite. For RIC protective effects, the autonomic neural
activity is also indispensable. For example, bilateral
cervical vagotomy can abrogate RIC neuroprotection,
and electrical vagal nerve stimulation attenuates I/R injury
[67]. Therefore, sympathetic–vagal balance is critical for
sleep homeostasis and RIC protective effects.
RIC may attenuate sleep disorders by suppressing

sympathetic activity. Sleep deprivation or insomnia
induces the continuous activation of the sympathetic
nerve system (SNS) and increases the levels of noradrena-
line and adrenaline [68,69]. As a result, the percentage of
wakefulness and REM sleep increases during the night,
accompanied by sleep fragmentation and impaired recov-
ery sleep [70,71]. Hence, reducing SNS activity could
improve sleep quality. Ischemic stroke triggers SNS
activation. In the acute phase, increased sympathetic
outflows intensify inflammatory responses in ischemic
tissues [72]. In the subacute or chronic phase, the persistent
activation of SNS promotes chronic atherosclerosis by
facilitating monocyte recruitment [73]. RIC can alleviate
inflammation and atherosclerosis and may suppress SNS
activity by stimulating nitric oxide production or activating
KATP channels [74,75]. Tsutsui’s study [76] showed that
sympathetic activation, which is triggered by ischemia,
could be attenuated by RIC. All these results suggest that
RIC can improve sleep fragmentation by decreasing SNS
activation.
RIC may improve sleep quality by activating efferent

vagal nerves. Different from SNS, vagal activity has a
dynamic role in NREM sleep. Reduced vagal activity prior
to sleep initiation leads to SWS-loss, daytime sleepiness,
and fatigue [77]. In a clinical pilot study, increased vagal
nerve efferents induced by electrical stimulation could
mitigate the insomnia symptoms of patients with stroke
who show a decreased connectivity in the default mode
network [78]. Thus, increasing the vagal activity can
improve sleep quality. In rodent experiments, vagal nerve
stimulation (VNS) in preischemia can mimic ischemic
preconditioning’s cardioprotection by activating muscari-
nic acetylcholine receptors and the intracellular phospha-
tidylinositol 3-kinase/serine-threonine kinase protein
kinase pathway; meanwhile, VNS in reperfusion would
simulate ischemic postconditioning by activating α7
nicotinic acetylcholine receptors and the Janus kinase 2
intracellular pathway [79]. Vagal nerve activities can
attenuate reactive oxygen species formation, apoptosis,
and inflammatory responses [80]. The vagal nerve is
required for RIC effects, and cervical vagotomy, selective
genetic targeting, or splenic denervation can abolish RIC
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protections for the brain or heart [81].
In summary, RIC can modulate the activity of the

autonomic nervous system by inhibiting the sympathetic
activity and the activation of vagal activity. This approach
can improve sleep continuity and depth by maintaining the
sympathetic–vagal balance.

Circadian rhythm and circadian clocks

The circadian rhythm is driven by circadian clocks and is a
multioscillatory network [82]. The molecular clock
machinery contains coupled transcription–translation feed-
back loops with positive components (Bmal1 and Clock)
and negative regulators (Per, Cry, and Rev-erbα) [83]. The
master clock synchronizes internal rhythms with the
environment and controls rhythms, timing, duration, and
functions of the sleep–wake cycle. Peripheral clocks
modulate the circadian rhythm and functions of
organs/tissues and are involved in the sleep phenotype.
Ehlen et al. [84] found that the mice with global knockout
of Bmal1 and those with Bmal1 only expressed in the brain
exhibited similar sleep disturbance, whereas Bmal1 only
expressed in the skeletal muscle could rescue the sleep
phenotype. In another experiment, the mice with local
deletion of Bmal1 in the skeletal muscle had abnormal
sleep patterns, and those with overexpression of Bmal1
only in the skeletal muscle were highly resistant to sleep

loss. Thus, both clocks could change the sleep–wake
pattern.
Circadian clocks are critical to 24 h variations of

physiologic/pathological processes. For example, blood
pressure, heart rate, and severity of ischemic events vary
with time-of-day [85,86]. Conversely, circadian clocks are
entrained by multiple factors. The master clock is
genetically controlled and entrained by photic cues.
Peripheral clocks are orchestrated by the master clock,
temperature, hormones, and other non-photic cues (e.g.,
food intake, exercise, neural activity, and metabolites)
[87,88]. RIC’s endogenous mechanisms are involved in
neural feedback, humoral transmitters, and immunoregula-
tion; thus, this process might interact with circadian clocks.
First, RIC may reset circadian clocks by inducing HIF1α.
The heterozygous deficiency for HIF1α can abrogate the
protection of ischemic preconditioning [89], which in turn
can promote HIF1α expression in the brain, heart, and
skeletal muscles [90,91]. Therefore, HIF1α has an
ambivalent role in ischemic preconditioning, which
indicates a threshold phenomenon. HIF1α attenuates
mitochondrial ROS formation during hypoxia and is also
a pre-requisite for mitochondrial ROS formation to initiate
the protection by ischemic preconditioning [92]. HIF1α is
also a regulatory component of BMAL1 and CLOCK
[93,94]. Adamovich et al. [95] revealed that physiologic
oxygen rhythms reset circadian clocks in a HIF1α-

Fig. 2 Putative pathways linking remote ischemic conditioning to sleep regulation (sleep homeostasis and circadian system). RIC
increases sleep propensity by the pre-activating immune system, mimicking/strengthening the effects of the adenosine system and vagal
activity. It reduces sleep fragmentation by inhibiting the hyperactivation of inflammatory response and sympathetic activity. In addition,
RIC plays a regulatory role in the circadian system, through increasing HIF1α, balancing neural activities, and decreasing ischemia/
reperfusion (I/R) injury.
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dependent manner, and HIF1α knockdown would dis-
tinctly blunt the expression of Cry1/2, Rorα, and Per2. RIC
could also regulate the activities of the vagus, sympathetic,
and somatic nerves [96], and peripheral clocks are
entrained by multiple neural signals [97]. On the basis of
these observations, RIC could entrain circadian clocks.
RIC may also reverse the altered circadian clocks in
ischemic tissues. Ischemic damage can rapidly alter the
expression levels of core clock genes and attenuate their
circadian oscillations of ischemic tissues [98]. Moreover,
I/R injury at zeitgeber time 18 increases the levels of
circadian clock proteins (i.e., Per1, Clock, and Bmal1),
with the smallest infarct size observed within 24 h [99].
Given that RIC can decrease ischemic lesions and increase
neuronal survivals and blood supply [100,101], its
ischemic protection may reverse circadian clocks’ expres-
sion. Therefore, RIC could reset circadian clocks.
In summary, RIC shows the potential to reset circadian

clocks and thereby regulates the sleep–wake cycle.

Conclusions

This work proposes a causal relationship between RIC and
sleep, that is, RIC has the potential to regulate sleep. The
underlying mechanisms of these sleep-promoting effects
refer to immune response, humoral transmitters, neural
activity, and circadian clocks. However, corroborative
evidence is scarce, and research on post-stroke sleep
disturbances is in its infancy. Sleep disorders, especially
insomnia, are common in post-stroke and have detrimental
influences on functional outcomes, but only a few
interventions for sleep disturbances are tailored for patients
with stroke. On the basis of its neuroprotection and sleep-
improving effects, RIC may be a promising method for
mitigating post-stroke sleep disturbances. In the future, a
well-designed clinical research will be conducted to
validate RIC’s role in post-stroke sleep regulation.
Additional experimental studies are also needed to explore
the underlying mechanisms of RIC involvement in sleep
regulation.
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