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1 Introduction

The sustainable treatment of industrial wastewater has
been of increasing importance due to the significant

presence of organic refractory and toxic contaminants.
However, traditional separation and conversion methods
are unable to effectively remove refractory and toxic
pollutants, thereby requiring the development of new,
effective technologies. In general, various highly loaded,
refractory, toxic wastewater undergo advanced oxidation
processes (AOP) for treatment, such as the Fenton
oxidation process, O3 oxidation, and photochemical
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H I G H L I G H T S

•The sustainable approaches related to Fenton
sludge reuse systems are summarized.

•Degradation mechanism of Fenton sludge hetero-
geneous catalyst is deeply discussed.

•The efficient utilization directions of Fenton
sludge are proposed.
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G R A P H I C A B S T R A C T

A B S T R A C T

The classical Fenton oxidation process (CFOP) is a versatile and effective application that is generally
applied for recalcitrant pollutant removal. However, excess iron sludge production largely restricts its
widespread application. Fenton sludge is a hazardous solid waste, which is a complex heterogeneous
mixture with Fe(OH)3, organic matter, heavy metals, microorganisms, sediment impurities, and
moisture. Although studies have aimed to utilize specific Fenton sludge resources based on their iron-
rich characteristics, few reports have fully reviewed the utilization of Fenton sludge. As such, this
review details current sustainable Fenton sludge reuse systems that are applied during wastewater
treatment. Specifically, coagulant preparation, the reuse of Fenton sludge as an iron source in the
Fenton process and as a synthetic heterogeneous catalyst/adsorbent, as well as the application of the
Fenton sludge reuse system as a heterogeneous catalyst for resource utilization. This is the first review
article to comprehensively summarize the utilization of Fenton sludge. In addition, this review
suggests future research ideas to enhance the cost-effectiveness, environmental sustainability, and
large-scale feasibility of Fenton sludge applications.

© Higher Education Press 2022



oxidation (Badawy and Ali, 2006; Deng and Englehardt,
2006; Umar et al., 2010; Guvenc and Varank, 2021). As
compared to other AOPs, the Fenton process is most
significantly applied due to its high performance (fast
degradation rate), simplicity (operating at room tempera-
ture and atmospheric pressure) and non-secondary pollu-
tion (H2O2 can be decomposed into environmentally safe
substances, such as H2O and O2) (Wang et al., 2016).
The British chemist H.J.H. Fenton developed the Fenton

oxidation process in 1984 based on the hypothesis of
Haber and Weiss. In general, the Fenton process includes
more than 20 chemical reactions (Barb et al., 1949;
Walling, 1975), of which its core reaction is presented in
Eq. (1). In the classical Fenton oxidation process (CFOP),
an appropriate transition metal (Fe) is first applied to
produce an active species, specifically •OH, which serves
as a catalyst in the decomposition of hydrogen peroxide
(H2O2) and ultimately in the effective mineralization of
organic matter in wastewater (Duan et al., 2018; Jain et al.,
2018; Sillanpää et al., 2018). In general, highly oxidative
hydroxyl radicals (•OH) are acknowledged as the most
effective oxidant due to their highly oxidative and non-
selective reactions against organic contaminants (Páramo-
Vargas et al., 2016; Tang et al., 2019; Mahtab et al.,
2021b). Figure 1 presents the oxidation mechanism of the
Fenton process. As such, the Fenton process is widely
applied in various organic wastewater treatments.

Fe2þ þ H2O2 þ Hþ
↕ ↓Fe3þ þ H2Oþ •OH (1)

CFOP, however, presents several drawbacks, such as the
requirement for pH adjustment, high cost of H2O2, and
excess sludge production, which significantly limits its
application (Bautista et al., 2008; Oturan and Aaron, 2014;
Jain et al., 2018; Bello et al., 2019; Zhang et al., 2019b;
Ghernaout et al., 2020). These shortcomings hinder the
widespread application of this method, particularly due to
emerging restrictive legislature on sludge disposal and
economic assessments on wastewater treatment processes
(Mahtab et al., 2021a). The Fenton sludge yield is largely
dependent upon the proportion and volume of the reagents.
In addition, the sludge produced by Fenton’s treatment of
refractory wastewater is usually regarded as hazardous
solid waste due to the excessive amount of residual
pollutants, which increases the cost of sludge disposal and
the risk of secondary pollutants. Although researchers have
begun to study the resource utilization and reduction of
Fenton sludge, achieving bulk Fenton sludge consumption
is still a huge challenge. This present review aims to
summarize the physicochemical properties of Fenton
sludge and detail the application of various Fenton sludge
utilize systems as sustainable solutions.

2 Fenton sludge characterization

Fenton method applications generally produce excess
sludge, which is a significant disadvantage. According to
literature, approximately 40–180 mL/Ltreated wastewater of
Fenton sludge is produced (Guedes et al., 2003; Benatti
et al., 2006; Mahiroglu et al., 2009), which covers a sludge
treatment cost of approximately 1–2 Euro/m3

wastewater (Di
Iaconi et al., 2010). Sludge generation increases the
imminent risk of further pollution, which can be resolved
by sludge remediation and recycling. However, this sludge
remediation increases cost by up to 30%–35% of the total
working wastewater treatment cost (Neyens and Baeyens,
2003). Although some studies reported that the generated
sludge is easily settleable, can be dewatered due to its high
density, and has an efficient settling velocity that does not
require further conditioning (Bolobajev et al., 2014; Kattel
et al., 2016; Klein et al., 2016), still the physicochemical
characterization of Fenton sludge and related research is
limited.
Fenton sludge, a new type of complex heterogeneous

sludge, is a mixture of Fe(OH)3, organic matter, heavy
metals, microorganisms, sediment impurities, and moist-
ure. Fenton sludge properties are largely dependent on its
wastewater source as well as the volume and ratio of the
added reagents. Table 1 presents the characteristic of
Fenton sludge under different wastewater. Fenton sludge
contains 20%–30% organic matter, and the organic matter
mainly includes organic acids, phenols, and organic
substance flocculated and adsorbed during the Fenton
process. Fenton sludge organic content is largely com-
posed of 7.36% carbon, 12.52% oxygen, 2.25% hydrogen,Fig. 1 Reaction mechanism for the Fenton process.
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0.78% nitrogen, and 0.85% sulfur (Hua, 2017). Only a
small part of the Fenton sludge (after dewatering) is solid
matter, such that over 70% is water. The ash from Fenton
sludge contains mainly Fe(OH)3, which can be converted
to Fe2O3 at higher temperatures. Furthermore, some heavy
metals such as Mg, Cu, As, Ni, Cr, and Zn can also be
detected. Benatti et al. investigated the composition and
metals in Fenton sludge, to which their results found
metals in Fenton sludge that were mainly constituted of
amorphous materials (> 80%) (Benatti et al., 2006).
Meanwhile, the metals in Fenton sludge that originated
from distinct wastewater presented similar characteristics,
specifically exchangeability and the presence of amor-
phous iron oxide (Benatti et al., 2009). Therefore, Fenton
sludge can be categorized as an iron-contained hazardous
waste, such that utilization and recovery can be catered
around its iron-rich characteristics.

3 Fenton sludge reuse system: Application
and mechanisms

Many efforts are being made to find proper and suitable
uses for Fenton sludge to minimize the production Fenton
process solid waste. However, due to the high content of
heavy metals and other harmful organic substances in
Fenton sludge, the few studies on its utilization have
mainly focused on the aspects detailed below.

3.1 Preparation of coagulant

Ferric ions and polymeric ferric sulfate (PFS) are
commonly used flocculants in wastewater treatment
(Zhang et al., 2010; Ge et al., 2020). The composition of
Fenton sludge is mainly Fe(OH)3, and it can be dissolved
as Fe3+ in an acidic environment. Therefore, some

Table 1 Characteristic of Fenton sludge from different wastewaters

Elements
Dye wastewater (Zhang

et al., 2018)
Landfill leachate

(Dantas et al., 2020)
Papermaking wastewater

(Fan et al., 2016)
Bagasse wastewater

(Hua, 2017)
Papermaking wastewater

(Zhang, 2013)

pH 11.3 – 7.2–7.4 7.46–7.66 7.2

TCOD (mg/L) 230 5500�1100

SCOD (mg/L) 81 –

Si (%) 0.32 0.41

Fe (%) 13.4 19.51

Ca (%) 0.35 0.47

Na (%) 12.57 12.81

Al (%) 0.091 0.07

Mg (%) 0.44 0.51

Cu (mg/kg) 12.71 13

Zn (mg/kg) 358 902

As (mg/kg) 0.22 –

Ni (mg/kg) 51 123

Cr (mg/kg) 0.07 0.05

H (%) 2.25 – –

O (%)a) 12.52 – –

N (%) 0.78 – –

S (%) 0.85 – –

Organic content (%) 24.51 28.5 16–18

HHV (MJ/kg) 3.54 – –

CaO (%) 1.17 5.46 3–3.5

Na2O (%) 0.33 0.68 < 1.7

MnO (%) 0.06 0.17 < 1.7

Fe2O3 (%) 56.06 53.2 50–60

K2O (%) 0.01 0.06 < 1.7

MgO (%) 0.11 0.06 1–1.6

Notes: a) O content = organic content in sludge-C-H-N-S (Fan et al., 2016).
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researchers try to convert solid waste-Fenton sludge into
flocculant to realize the reduction and resource utilization
of Fenton sludge. Figure 2 summarizes a literature survey
of various reuse systems/methods with respect to different
flocculants, which can be dived into two categories: One is
the sludge directly recycling system, another is synthetic
flocculant through acid dissolution-modification (reduc-
tion and oxidation) processes. In the sludge recycling
system, the solid waste from Fenton oxidation process is
generally directly introduced into a coagulation reactor
(Yoo et al., 2001). As compared to the sole addition of
coagulants, a mixture of Fenton sludge and coagulants as
well as coagulation recycling can significantly reduce
coagulant dose requirements and sludge production by up
to 50% (Yoo et al, 2001). In addition, sludge recycling
during coagulation lowers the overall sludge generation
during the Fenton oxidation process.
Several efforts have been made to convert Fenton sludge

into a low-cost potential synthesized flocculant. The
preparation process of flocculants from Fenton sludge
mainly includes acid dissolution, reduction, and oxidation.
The main oxidation methods include direct oxidation,
catalytic oxidation, and microbial oxidation. Among them,
the direct oxidation mainly uses strong oxidants such as
HNO3, H2O2, NaClO3, and KClO3. Zhang et al. produced
a low-cost PFS through sulfuric acid dissolution-iron
powder reduction-sodium chlorate oxidation, showing that
the coagulation performance of sludge-based PFS is better
than that of poly aluminum sulfate, but lower than that of
commercial PFS (Zhang, 2013). However, Fenton sludge
contains about 20%–30% organic matter, and these organic
substances will not only cause the appearance of synthetic
PFS to become dark black, but also likely affect the
flocculation performance of synthetic PFS. Hua et al.
comparatively studied the effect of organic matter on the
flocculation performance of synthetic PFS, and the results
showed that after calcination at 400°C to remove organics,
the flocculation effect of synthetic PFS was significantly
improved, and the removal efficiency was increased from
70% to 77% (Hua, 2017). In addition to the above method,
alkalization is also a common flocculant synthesis process
for Fenton sludge. Fan et al. synthesized a magnetic poly
ferric sulfate (MPFS) product through alkalization, of

which properties such as functional groups, polymer
crystal structure, and surface structure are able to meet
the requirements of commercial coagulants (Fan, 2016).
Therefore, optimizing the preparation of flocculants may
be a promising utilization solution of Fenton sludge.

3.2 Reused of Fenton sludge as an iron source

Previous studies have conducted the use of iron-rich
Fenton sludge as a recycled iron source in the Fenton
process (Bolobajev et al., 2014; Kattel et al., 2016; Klein
et al., 2016), which shows that sludge reused system can be
classified into two categories: sludge/H2O2 system and
Fe2+/sludge/H2O2 system. In sludge/H2O2 system, the
acidic environment generally leads to the dissolution of
iron on the surface of Fenton sludge and the dissolution
mechanism may be mainly attributed to the following three
types: protonation, complexation and reduction. The
protonation mechanism is likely that the H+ in the aqueous
solution reacts with the OH bond at the surface of sludge to
break the O-Fe bond and Fe3+ dissolves. The dissolution of
iron by complexation involves the attachment of a
complexing ligand onto the ferric oxyhydroxide surface,
thereby resulting in iron dissolution (Kattel et al., 2016).
Both humic and fulvic acids have been previously reported
to effectively conjugate iron ions and thus form ion-ligand
complexes (Voelker and Sulzberger, 1996; Paciolla et al.,
1999). As a result, the adsorbed complexing ligands offer
an electron to the ferric oxyhydroxide surface, thus
reducing Fe3+ to Fe2+ (Kattel et al., 2016). Then the
subsequent reaction mechanisms of activating H2O2 by
dissolved Fe3+ are as follows (De Laat and Gallard, 1999;
Kattel et al., 2016):

Fe3þ þ H2O2↕ ↓FeðHO2Þ2þ þ Hþ (2)

FeOH2þ þ H2O2↕ ↓FeðOHÞðHO2Þþ þ Hþ (3)

FeðHO2Þ2þ↕ ↓Fe2þ þ HO⋅
2 (4)

FeðOHÞðHO2Þþ↕ ↓Fe2þ þ OH – þ HO•
2 (5)

Fig. 2 Flowsheets of Fenton sludge utilization to produce flocculants
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According to Eqs. (2) and (3), the reaction of H2O2 with
Fe3+ produces ferric-hydroperoxyl complexes that decom-
pose to generate Fe2+ and HO2

• , as detailed in Eqs. (4) and
(5). However, the reaction rate of Eqs. (2)–(5) is extremely
low, 2.7�10–3 M–1/s, which is about 10–4 of the homo-
geneous Fenton reaction (Fe2+/H2O2) (Ensing et al., 2003).
Therefore, the Fenton-like reaction using Fenton sludge as
the iron source may be mainly based on heterogeneous
catalysis. Heterogeneous Fenton oxidation occur on the
ferric oxyhydroxide surface in the H2O2/sludge system
following a series of reactions (Lin and Gurol, 1998):

� Fe3þOHþ H2O2 ↔ ðH2O2Þs (6)

ðH2O2Þs↕ ↓� Fe2þ þ H2Oþ HO•
2 (7)

� Fe2þ þ H2O2↕ ↓� Fe3þOHþ H2Oþ HO• (8)

� Fe2þ þ O2↕ ↓� Fe3þOHþ HO•
2 (9)

HO•
2↕ ↓Hþ þ O• –

2 (10)

� Fe3þOHþ HO• –
2 =O• –

2 ↕ ↓

� Fe2þ þ H2O=OH
– þ O2 (11)

Decantation and centrifugation wastewater treatment
often result in the continuous loss of a ferric activator
(Kattel et al., 2016), thereby requiring the addition of Fe2+

as an iron replacement (Bolobajev et al., 2014). On the
contrary, due to the addition of Fe2+, the efficiency of
organic contaminants’ degradation was improved com-
pared with the sludge/H2O2 system. The complete
utilization of the oxidant H2O2 can also be achieved by
adding fresh activator (Fe2+) to the H2O2/sludge system.
Studies reporting Fenton sludge reuse as iron source
systems are listed in Table 2. According to research by Li
et al., the Fenton oxidation process using Fe2+ produced by
electrolysis of Fenton sludge as the iron source can
significantly reduce the COD and color of wastewater (Li
et al., 2007). A previous study applied 160 mL sludge/L of
petroleum refinery wastewater over 180 min, to which the
results exhibited 53% mineralization (Diya’uddeen et al.,
2015). Cao et al. investigated a sludge reuse system with
additional regeneration, to which the results indicated
effective wastewater treatment and enhanced biodegrad-
ability (Cao et al., 2009). Similarly, another study executed
pulping wastewater treatment, of which a ferric salt
recovery rate of 74.8% and total solid reduction of
87.3% were observed, which significantly lowered the
resulting second environmental pollution (Chen et al.,
2011). Previous studies have indicated similarities between
the efficiencies of Fenton sludge reuse systems and CFOP
within four reuse cycles (Bolobajev et al., 2014; Kattel

et al., 2016; Klein et al., 2016), but the actual reuse cycles
are significantly dependent on the applied wastewater and
reuse methods. Li et al. and Kishimoto et al. conducted an
electrolytic tank to reuse the Fenton sludge for Fenton
process, indicating that iron recovery rate could reach
100% with the separation batch mode with high treatment
efficiency (Li et al., 2007; Kishimoto et al., 2013). Kavitha
and Palanivelu reused iron sludge for Fenton oxidation
process after solid waste re-dissolution through chemical
regeneration with acid and hydroxylamine (reducing
agent), to which a contaminant removal of 97% was
observed during the iron-containing sludge recycled
(Kavitha and Palanivelu, 2004). The repeated use of
Fenton solid waste may result in increased rates of total
suspended solids (TSS) and turbidity as well as lowered
zeta potentials, thereby decreasing sludge dewatering. In
addition, high-temperature calcination in the sludge reuse
system may result in iron leaching. Therefore, the
development of new Fenton sludge reuse technology is
of great significance to the efficient utilization of Fenton
sludge.

3.3 Synthetic heterogeneous catalyst/adsorbent

Fenton reactions generally follow concise reaction condi-
tions and produce excess iron-containing sludge. As such,
many studies have developed catalysts such as iron oxide
(Garade et al., 2009; Demarchis et al., 2015; Hou et al.,
2017), high polymer material-supported iron-containing
catalysts (Fernandez et al., 1998; Sabhi and Kiwi, 2001;
Tao et al., 2003; Cheng et al., 2004), and inorganic
material-supported iron oxide catalysts (Liao et al., 2009;
Shukla et al., 2010) and different oxidants (H2O2 and
S2O8

2–) that can be applied in Fenton-like systems. With the
relatively high content organic matter and iron, Fenton
sludge was selected to synthesize heterogeneous catalyst/
biochar via pyrolysis or hydrothermal carbonization
(Zhang et al., 2017; Shen et al., 2020a; Shen et al.,
2020b; Belete et al., 2021). In general, Fenton-like
processes all follow adsorption and then catalytic oxida-
tion, thereby requiring optimization of the adsorption
performance and application of Fenton sludge-based
adsorbent to determine the activating different oxidants
in Fenton-like processes.

3.3.1 Adsorption

Organic pollutant and heavy metal removal is generally
achieved via adsorption due to its simple operation, good
selectivity, and given the vast availability of renewable
adsorbents such as carbonaceous materials, mineral
materials, and metallic materials (Ighalo and Adeniyi,
2020; Zhu et al., 2020). According to previous studies, the
good pore structure, high special surface area, and rich
functional groups of biochar suggest their applicability as
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adsorbents for contaminant removal (Yi et al., 2020).
Based on the remarkable effects of traditional sludge (such
as municipal sewage sludge, paper mill sludge) in
wastewater treatment for organic pollutants and heavy
metals removal by adsorption (Fan et al., 2016; Yoon et al.,
2017), researchers have since began to convert Fenton
sludge into adsorbents, particularly by applying thermal
treatments to transform Fe(OH)3 and organic substances
into iron oxide and carbon material for pollutant removal
(Tong et al., 2021). Figure 3 presents the Fenton sludge
adsorption mechanisms. Similarly, Chu et al applied
magnetic biochar (MC) derived from food waste and
Fenton sludge via pre-pyrolysis to adsorb organic dyes
from aqueous solution. The result indicated MC exhibited

a significant removal efficiency for methylene blue (84%)
and methyl orange (95%) (Chu et al., 2020). Tong et al.
used Fenton sludge to produce aminated hydro-char with a
superior adsorption capacity toward Pb2+ (359.83 mg/g),
which was significantly dependent on the surface com-
plexation, cation-exchange, and electrostatic attraction of
the produced hydro-char (Tong et al., 2021).
In general, Fenton sludge is employed to utilize

hazardous solid waste via their conversion to adsorbents.
However, high adsorbent saturation limits widespread
practical applications due to the difficulty and cost of
recovery and/or regeneration. High pollutant concentra-
tions and complex wastewater compositions negatively
affect the adsorption performance. As such, adsorption

Table 2 Previous literature on Fenton sludge reuse as iron source systems

Type Characteristics References

Dye wastewater; iron-containing sludge
electrolytically generates Fe2+ via the
Fenton process

1. Enhanced COD and color removal;
2. Significantly higher conductivity;

3. Organic material accumulation can be observed;
4. Negative zeta potential

Li et al., 2007

Synthetic olive wastewater, Fenton process
with iron source from baked Fenton
sludge

1. High calcination temperature shows better organic depletion, higher levels of
iron leaching;

2. Biological oxygen demand in five days was increased;

Rossi et al., 2013

Three different wastewaters; ferric sludge
acts as an iron source during the
Fenton-based process

1. Behaved similar to the CFOP during four reuse cycles;
2. High iron-containing sludge produced during Fenton-based treatment;
3. Lowered hazardous ferric waste production and overall treatment cost

Bolobajev et al., 2014

Palm Oil Mill Secondary Effluent; solar
Fenton oxidation resulted in reusable
iron sludge

1. Enhanced COD and color removal after five cycles due to excess iron.
2. Lowered COD and color removal observed between recycles 1 and 5;

Shahrifun et al., 2015

Phenolic contained wastewater, Fenton-
based treatment with iron source from
ferric sludge

1. Enhanced formation of highly reactive species;
2. A substantial organic contaminant degradation increase

Bolobajev et al., 2016a

Chlorophenols-contained water, ferric sludge
with tannic acid served as iron source in
the Fenton-based process

1. Tannic acid reduced ferric acid to Fe2+;
2. Higher reactivity and lowered Fe2+ addition costs, which resulted in decreased

sludge production.

Bolobajev et al., 2016b

Palm oil mill secondary effluent, which
underwent solar Fenton oxidation with
wet and dried Fenton sludge iron source

1. Recycled wet Fenton sludge treatment demonstrated higher removal of
contaminant compared to the recycled dried Fenton sludge treatment;
2. Repeated use of recycle sludge resulted in higher SS and turbidity;

3. high-temperature calcination in the sludge reuse system may result in iron
leaching

Shahrifun et al., 2016

Landfill leachate, reused ferric oxyhydroxide
sludge-activated hydrogen peroxide

1. Lowered applied Fe2+ dosage and solid residue;
2. Optimized addition of Fe2+ activator can improve the overall efficacy of reuse

cycles;

Kattel et al., 2016

Landfill leachate, a pilot study continuous
ferric sludge reuse in Fenton-like process

1. Ferric sludge as a catalyst in Fenton-like oxidation resulted in a lower COD
removal efficiency of 32% as compared to CFOP;

2. Consistent Fenton-like process efficiencies were observed throughout the 12
sludge reuse cycles.

Klein et al., 2016

Bisphenol A, CaO2 oxidation catalyzed by
reuse of ferric sludge in the presence of
chelating agents

1. Presence of oxalic acid resulted in BPA removal of 95.1%;
2. Lowered ferric sludge production and sludge disposal cost.

Zhou et al., 2017

Crepe rubber wastewater and palm oil mill
effluent, Fenton oxidation sludge reuse

1. Complete usage of generated sludge resulted in TOC reduction in sludge
systems;

2. Ferrous ions and H2O2 enhanced the efficiency of the reused sludge system.

Gamaralalage et al., 2017

Agro-food industrial wastewater; ferrous
ions reused as catalysts in Fenton-like
reactions

Sludge reuse system exhibited lowered residual sludge production and metal
content in the final effluent.

Leifeld et al., 2018
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alone can not completely remove pollutants from water
given the steep stability and reusability requirements of
Fenton-based adsorbents. In addition, the adsorption
process just transfers pollutants from liquid to solid
without reducing its toxicity. As such, further treatment
that converts contaminants into harmless matter is
necessary for complete contaminant removal from water.

3.3.2 Activation of oxidants

(1) H2O2

In general, natural metallic and clay-like matters are
widely applied as heterogeneous catalysts during Fenton
oxidation. However, these natural metallic substances
exhibit instability due to lowered catalytic activity
following metal ions release into solution. Similarly,
clay-like catalysts have limited active sites and can not

completely activate H2O2, thus limiting their commercial
application. Based on the high iron content in Fenton
sludge and efficient catalysis of carbon material on H2O2

activation (Ince and Apikyan, 2000; Fang et al., 2014),
numerous researchers started to use Fenton sludge as
feedstock to convert to heterogeneous catalysts for Fenton
oxidation process. Guo et al. amended iron sludge with 0–2
wt% graphene to produce a heterogeneous catalyst. The
results indicated that the iron sludge-graphene catalyst
exhibited decomposition rates of 99.0%, 98.5%, and
91.8% for rhodamine B, acid red G, and metronidazole,
respectively, within 120 min (Guo et al., 2017). Similarly,
Zhang et al. developed a heterogeneous, magnetic catalyst
(NiFe2O4) from the co-precipitation of Fenton sludge and
Ni(NO3)2, followed by sintering at 800°C. In addition, the
results indicated that an H2O2 activated-catalyst with a
concentration of 120 mmol/L most effectively produced
the highest amount of •OH as well as the highest phenol
removal rate of 95% (Zhang et al., 2017). In addition, the
catalysts had good reusability and could be regenerated
five times. Zhang et al. applied hydrothermal carbonization
to mix Fenton sludge and biological sludge, thereby
generating a magnetic catalyst with a surface containing
Fe3O4 particles that were chemically bonded to the carbon
structure. Afterward, the magnetic catalyst was applied for
methylene blue treatment via Fenton oxidation, to which
the results indicated chemical oxygen demand (COD) and
total organic carbon (TOC) removal rates of 47% and 49%,
respectively (Zhang et al., 2018). Table 3 shows the
application of Fenton sludge-based catalysts for H2O2

activation.
(2) Activation of persulfate (PS) and peroxymonosulfate

(PMS)
In general, SO4

– • exhibits a higher redox potential (E0 =
2.5–3.1 V) and longer half-life (t1/2 = 40 μs) as compared
to •OH, which results in effective and sustainable pollutant
decomposition (Xiao et al., 2020). Table 4 details the PS
and PMS activation methods and radical generation
pathways (Wang and Wang, 2018).
In general, PS/PMS activation is achieved via metal

activation. However, aqueous solution separation and

Fig. 3 Adsorption mechanism of Fenton sludge-based adsorbent
for pollutants (Ahmad et al. 2014; Leng et al. 2015; Tan et al. 2016;
Pan et al. 2021).

Table 3 Application of Fenton sludge-based catalysts for H2O2 activation

Feedstock
Synthesis
condition

Contaminant Optimal condition
Optimal removal

efficiency
Main ROS Reusability Reference

Fenton sludge,
graphene

Iron sludge with
low amount (0–2
wt%) of graphene

Rhodamine B,
acid red G,

metronidazole

[H2O2] = 10 mmol/L, [Catalyst]
= 1 g/L, [pH] = 3.03–9.44

99.0%, 98.5%,
91.8%

•OH 75.8% in the
5th run

Guo et al., 2017

Fenton sludge,
Ni(NO3)2

Co-precipitation,
sintering at 800°C

Phenol [H2O2] = 120 mmol/L,
[Catalyst] = 2 g/L, [pH] = 3.0,

[Phenol] = 250 mg/L

95%�3.4% •OH – Zhang et al., 2017

Fenton sludge,
biological
sludge

Hydrothermal
carbonization

Methylene
blue

[H2O2] = 1 mL/L, [Catalyst] = 1
g/L, [pH] = 3.0

98% •OH 85% in the
5th run

Zhang et al., 2018

Fenton sludge,
biosolid

Hydrothermal
carbonization

Aniline [H2O2] = 60 mmol/L, [Catalyst]
= 1 g/L, [pH] = 3.0

77.9% •OH, •O2
– – Zhang et al., 2019a

Lihui Gao et al. Review on sustainable reuse applications of Fenton sludge during wastewater treatment 7



recovery as well as the potential risk of generating a
secondary pollution limit metal application in homoge-
neous activation. Heterogeneous Fenton-like processes
have been more recently reported, particularly Fenton
sludge-based catalysts generated via continuous thermal
treatment and/or modification, which have shown effec-
tiveness in activating PS/PMS (Zhou and Zhang, 2017;
Shen et al., 2020b; Shen et al., 2020a). Following thermal
treatment, Fenton sludge can transform into Fe2O3/γ-
Fe2O3-containing carbon material/biochar with defective
sites, persistent radicals, and highly graphitized carbon
structures (Shen et al., 2020b). As such, synthesized
Fenton sludge-based heterogeneous catalysts have shown
the ability to effectively activate PS/PMS activation due to
their high transition metal iron content and abundance of
O- and N-containing functional groups (Zhu et al., 2018).
Previous studies have reported the ability of Fenton

sludge-based catalyst to adsorb organic pollutants via
hydrogen bonding and π-π electron pairing (Guo et al.,
2017; Shen et al., 2020a). As a result, free radicals are
produced due to oxidant activation, which allows Fenton
sludge-based catalyst activation to proceed for simulta-
neous contaminant adsorption and decomposition. Shen
et al. developed a technique to produce Cu-containing
Fenton sludge as efficient catalysts for PS activation and
the subsequent degradation of tetracycline (TC). The
results indicated a TC degradation efficiency of 97.74%
after 120 min with 0.2 g/L catalyst and 100 mg/L PS.
When using catalyst alone, the TC removal efficiency was
62.89%, indicating the synergistic effect of adsorption and
degradation from catalyst plays a dominant role in the PS
activation process (Shen et al., 2020a). Shen et al.
produced a Fenton-like catalyst from Ni-containing Fe
sludge via one-step calcination, to which the catalyst was
tested regarding its TC removal efficiency. Low TC
removal (maximum removal ≈ 15%) was observed with
both the Fenton sludge-based catalyst and PMS. However,
the application of the catalyst-activated PMS process
resulted in higher removal rates above 70% with 20 mg/L

of PMS and 0.2 g/L of catalyst.
The reaction mechanism of the Fenton-based catalyst/

oxidants process could be summarized as follows (Fig. 4):
1) pollutants and oxidants are adsorbed on the surface of
Fenton-based catalyst; 2) electrons are provided to fracture
the relative “weak bond” of oxidant to generate ROS such
as SO4

– •, •OH; and 3) pollutants are decomposed by
radicals in situ. In addition, other ROS such as O2

– and 1O2

were continuously generated in the solution matrix, all of
which aided in contaminant degradation (Meng et al.,
2020). Previous studies have categorized the catalysts into
three types of catalyst reaction sites for oxidant activation:
1) transition metals were the main active centers on
Fenton-based catalyst; 2) graphitized structure and unsa-
turated C on the internal and edge of catalyst; 3) the
oxygen vacancies of the Fenton-based catalyst. Shen et al.
indicated that the Fenton-based catalyst efficiency was
highly dependent on the catalyst transition metals (Fe, Cu)
and oxygen vacancies, which enhanced the electron
transfer (Shen et al., 2020a). Shen et al. evaluated the
removal of tetracycline by a Fenton sludge-based catalyst/
PMS process, and reported that carbon structure also
played a significant role in the activation (Shen et al.,
2020b).

Table 4 PS and PMS activation methods

Activation method PS PMS

Thermal activation S2O
2 –
8 ↕ ↓2SO – •

4

SO – •
4 þ H2O↕ ↓SO2 –

4 þ HO•þ Hþ
HSO –

5 ↕ ↓SO – •
4 þ HO•

Base activation S2O
2 –
8 þ H2O↕ ↓2SO2 –

4 þ HO –
2 þ Hþ

S2O
2 –
8 þ HO –

2 ↕ ↓SO2 –
4 þ SO – •

4 þ O – •
2 þ Hþ

SO – •
4 þ H2O↕ ↓SO2 –

4 þ HO•þ Hþ

HSO –
5 þ H2O↕ ↓HSO –

4 þ H2O2

H2O2 þ HO –
↕ ↓H2Oþ HO –

2

H2O2↕ ↓2HO•
HO –

2 þ H2O2↕ ↓HO•þ Hþ þ O – •
2

HSO –
5 þ HO –

2 ↕ ↓H2Oþ SO – •
4 þ1O2

UV activation S2O
2 –
8 ↕ ↓2SO – •

4

H2O↕ ↓HO•þ H•

S2O
2 –
8 þ H•↕ ↓SO – •

4 þ SO2 –
4 þ Hþ

HSO –
5 ↕ ↓SO – •

4 þ HO•
H2O↕ ↓HO•þ H•

HSO –
5 þ H•↕ ↓SO – •

4 þ H2O

Metal activation S2O
2 –
8 þMn

↕ ↓Mnþ1 þ SO – •
4 þ SO2 –

4 HSO –
5 þMn

↕ ↓Mnþ1 þ SO – •
4 þ OH –

Carbon activation S2O
2 –
8 þ e – ↕ ↓SO – •

4 þ SO2 –
4 HSO –

5 þ e – ↕ ↓SO – •
4 þ OH –

Fig. 4 Illustration of PS/PMS activation.
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3.4 Other applications

In addition to participate in Fenton reaction and synthetic
heterogeneous catalyst, some researchers found the ferric
sludge could also be used as a sludge conditioning agent,
electron acceptor during anaerobic digestion, skeleton
material for dewatering, and potential phosphorus fertili-
zer. Xu et al. combined Fenton iron sludge and NH3•H2O
to produce a skeleton material, which enhanced sewage
sludge dewatering via hydrothermal treatment (Xu et al.,
2019). Fe(III) oxides, as an ideal potential for improving
the anaerobic digestion performance. Wang et al. intro-
duced the iron-containing sludge in an anaerobic digestion
(AD) process to enhance digestion efficiency as well as to
reduce organic pollutant in the Fenton sludge (Wang et al.,
2018; Wang et al., 2019). Results suggested that the AD
performance was significantly enhanced, and more than
70% organic matter was removed from the Fenton sludge.
Meanwhile, nearly half of iron ion was reduced to Fe2+

through the digestion process, which suggests an Fe
recycling between AD and Fenton oxidation process.
Wang et al. used iron-rich biochar pyrolyzed from Fenton
sludge to adsorb P from the liquid phase of the AD process,
then the recovered P with biochar was re-utilized as a P-
fertilizer in garden soil (Wang et al., 2020).

4 Recommendation and summary

The present review summarized current Fenton sludge
reuse systems that have overcome classical Fenton process
restrictions while simultaneously reducing the overall
process cost and secondary pollution generation. Previous
studies have reported Fenton sludge reuse systems-based
studies, though most have been limited to the laboratory
stage. This may be because 1) the high water contained in
Fenton sludge is a big obstacle to utilization; 2) Fenton
sludge has complex composition and small size; 3)
preparation of coagulant might be a big step to consume
quantities of Fenton sludge, but the presence of heavy
metals and radioactivity in Fenton sludge would limit its
commercial application; 4) due to the environmental and
safety concerns, customers may not want to accept
synthetic products from waste material.
Fenton sludge processes benefitted most from a

synergistic and synthetic heterogeneous catalyst given
that oxidant activation (H2O2, PS, and PMS) by the
catalyst enhanced the multiple ROS formation through
various activation mechanisms. However, the heavy metals
in Fenton sludge greatly affect the stability and biotoxicity
of the composites. As such, future studies can explore the
interaction of synthetic catalysts with the environment as
well as its potential ecotoxicity. In addition, current studies
have been limited to Fenton sludge-based catalyst
applications toward simulated (i.e., artificial) wastewater.
Selective contaminant removal by the produced synthetic

catalyst must be further examined to address the complex-
ities of pollutants in actual wastewater. In addition,
additional processes as pre/post-treatment options may be
applied with the heterogeneous catalysis system, such as
the combined treatment of a biological (aerobic and
anaerobic) treatment system and adsorption process, to
produce a real zero liquid discharge.

5 Conclusions

This review presented the Fenton sludge properties and
various resource utilization methods, particularly with
regards to Fenton sludge applications in heterogeneous
catalyst synthesis. Fenton sludge-based catalysts show
great promise for the removal of contaminants from
aqueous solution. However, the impact of synthetic
catalysts on the surrounding environment and practical
application for actual wastewater treatment should be
further investigated due to the presence of heavy metals in
Fenton sludge. This review may be helpful to researchers
engaged in Fenton oxidation treatment of refractory
wastewater, particularly in the field of Fenton sludge
reuse systems.
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