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Abstract Hollow carbon spheres have garnered great
interest owing to their high surface area, large surface-to-
volume ratio and reduced transmission lengths. Herein, we
overview hollow carbon sphere-based materials and their
noble metal-free hybrids in catalysis. Firstly, we summar-
ize the key fabrication techniques for various kinds of
hollow carbon spheres, with a particular emphasis on
controlling pore structure and surface morphology, and
then heterogeneous doping as well as their metal-free/
containing hybrids are presented; next, possible applica-
tions for non-noble metal/hollow carbon sphere hybrids in
the area of energy-related catalysis, including oxygen
reduction reaction, hydrogen evolution reaction, oxygen
evolution reaction, water splitting, rechargeable Zn-air
batteries and pollutant degradation are discussed; finally,
we introduce the various challenges and opportunities
offered by hollow carbon spheres from the perspective of
synthesis and catalysis.
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1 Introduction

Among carbon materials, hollow-structured carbon mate-
rials possess a unique architecture with various advanta-
geous features, including having a high surface area, a
spherical structure with interior cavity, low density, and a
shortened transmission distance. Consequently, hollow
carbon spheres (HCSs) have garnered great interest from
researchers for their potential application in energy storage,
catalysis support, adsorbents and so on [1–4].
In past decades, many attempts have been made to

achieve the controllable synthesis and functionalization of
HCSs with the aim to create advanced nanostructures.
Though preparation methods for HCSs have been studied
for a long time, they are yet to be perfected. Developments
in synthesis methods have enriched the nanostructure,
chemical properties and morphology of HCSs. Fabrication
of HCSs through templating, template-free and self-
template methods, mean plentiful variations in structural
complexity, such as diameters that range from nano- to
microscale, diverse morphologies, tunable porosities and
diverse shell constituents [5–7].
The functionalization of HCSs has been widely

investigated with the incorporation of heteroatoms and/or
metal/metal-free content. Their morphologies, surface
chemistry and composition can be flexibly regulated for
use as electrodes in supercapacitors, Li-S batteries, metal-
air batteries and photocatalysts [8–10]. Their porous shell
can serve as a carrier for the adsorption/transmission/
reaction of guest species [11–16]. Moreover, considering
their operating environment (acid or base), their high
chemical stability is particularly important. Several
recently published reviews have summarized the progress
of the on-going research into hollow-structured carbon
materials [17–20], which mainly focus on preparation
techniques, various nanostructures, and applications in the
energy storage field. The structure control, functionaliza-
tion and catalysis performances of HCSs on the other hand
were not included in these studies.
Based on this point, we herein give an overview of

HCSs-based materials and their non-noble metal-based
hybrids for catalysis. Firstly, we summarize the synthesis
strategies of various kinds of HCSs by means of hard-
templating, soft-templating, and template-free/self-tem-
plate methods; next, we present surface morphology and
pore structure control methods, heterogeneous doping, as
well as their metal-free/containing hybrids; in the third
part, we highlight the applications of non-precious metal/
HCSs hybrids in the area of energy-related catalysis; in the
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final part, we present a brief discussion and explore further
possible directions for HCSs-based materials.

2 Synthesis and functionalization

Tremendous endeavors have been undertaken to design
and construct the nanostructures of HCSs. In this paper, the
different synthesis approaches, including hard- and soft-
templating, self-templating and template-free methods, are
employed to control the morphologies and porous
structures present in the shells of HCSs. Furthermore, the
surface chemistry and incorporated guest species are
considered important factors governing the HCSs’ proper-
ties. The functionalization of HCSs is presented in terms of
heteroatom doping, HCSs/carbon hybrids and HCSs/
metal-based hybrids.

2.1 Preparation method

2.1.1 Hard-templating

Hard-templating is the most common approach for HCS
fabrication, and contains several steps. Firstly, monodis-
persed templates of a certain size are prepared; secondly, a
preselected carbon precursor is layer-coated onto the
spherical templates so as to construct a core-shell structure;
finally, HCSs are fabricated following high temperature
pyrolysis and template removal.
Monodispersed colloidal spheres, such as SiO2 spheres,

polymer spheres, and metallic powder, are employed as the
hard core due to their ease of fabrication [21,22]. The
carbon precursors, including resorcinol-formaldehyde
(RF) resin, dopamine, glucose, metal-organic framework,
and conducting polymers [23–25], can be adsorbed on the
colloidal templates surface through Van der Waals force or
electrostatic adsorption. Owing to the hard template’s
advantages of uniformity and monodispersity, the fabri-
cated HCSs from this method usually possess a narrow
particle size distribution and well-controlled morphology.
Benefiting from their low cost and controllable particle

size, ranging from nano- to micro-scale, SiO2 spheres are
the most widely-used templates for the synthesis of
spherical hollow structures. SiO2 cores can be etched
away through treatment with hydrofluoric acid or NaOH,
thereby finally leaving carbonaceous shell. An instance of
this was shown by Fan et al. [26], who derived HCSs from
core-shell structured SiO2@phenolic resin/SiO2 spheres
through a two sol-gel process. In order to enhance the
interaction of negatively charged RF resin and SiO2

spheres, surfactants, such as cetyltrimethylammonium
bromide [27] or polyvinylpyrrolidone [28], were used to
modify the SiO2 surface to a positive charge. Following
this, electrostatic interaction was used to promote the RF
resin coating process onto the SiO2 sphere. Repeating the
coating process can further control the HCS shell structure.

This was shown by Bu et al. [29], who fabricated double
shell HCSs through a multiple coating approach. As shown
in Fig. 1, SiO2 spheres were first covered by polydopamine
(PDA) (denoted as SiO2@PDA), subsequently another
SiO2 layer was coated on the SiO2@PDA surface with the
aid of polyvinylpyrrolidone, and finally SiO2@PDA@-
SiO2@PDA composites were obtained following another
coating of PDA (Fig. 1(a)). Transmission electron micro-
scope (TEM) images show that the HCSs can be controlled
either in single shell (SHCS) or double shell (DHCS). By
tuning the mass ratio of SiO2 to dopamine, the thicknesses
of the PDA layers can be modulated in the range of 45–100
nm (Figs. 1(b–e)).
Polymer-based templates, such as polystyrene spheres,

poly(methyl methacrylate) (PMMA) spheres, and mela-
mine-formaldehyde (MF) nanospheres, are also attracting
increased attention in their role as templates. When
compared with SiO2, removing polymer-based templates
is a milder process. They can be removed through
carbonization or dissolution [30,31]. Taking advantage of
PMMA’s ability to completely decompose in temperatures
over 400 °C, Yang et al. [32] used an in-situ polymeriza-
tion method to coat RF on its surface. Carbonization
realized the decomposition of PMMA and transformed the
RF resin to carbon shell. HCSs with a diameter of 400–
1000 nm were obtained. The key to polymer spheres
removal by dissolution is to select a carbon precursor that
is insoluble in the given organic solvent. He et al. [33]
designed N-doped HCSs (NHCSs) by preparing ZIF-8
shell on the surface of the polystyrene microspheres,
wherein polystyrene was selectively removed by N,N-
dimethylformamide.
As another kind of polymer, MF nanospheres are

superior to both polystyrene spheres and PMMA spheres,
owing to their N-containing characteristic. The released N-
containing gases during the carbonization process can
activate the carbon shell and introduce N into the carbon
skeleton. All these merits make it an ideal template for
NHCSs fabrication, with this method being named
“one-pot carbonization”. Our group further developed this
strategy by coating RF resin onto MF spheres (1.5 μm)
[34,35]. Notably, monodispersed NHCSs were fabricated
with a particle size of 720 nm and a N content as high as
7.2%.
In addition to the above mentioned hard cores, many

other hard templates have also been explored for HCS
synthesis, including calcarea carbonica [36,37], biomass
[38], as well as metal and metal oxide powder [39,40]. For
example, Zhao’s groups [36] utilized CaCO3 hollow
spheres, and Zhang’s group [37] employed spherical
CaCO3 as the template and PDA as the carbon source to
fabricate HCSs. The use of CaCO3 offers similar
advantages to MF spheres through a self-activation
mechanism. The released CO2 from the decomposition of
the CaCO3 can activate the carbon shell and introduce
abundant pores to achieve a high surface area.
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2.1.2 Soft templating

The hard-templating method requires a multiple step
synthetic procedure. In addition, due to their being exact
duplicates, the porous structures and morphologies of the
replicated HCSs rely on the original templates. The soft-
templating strategy, which on account of the co-assembly
of carbon precursors and colloidal systems, and can be
carried out with relative easy and convenience, is formed
in-situ by virtue of the “soft” templates. Additionally, it can
be easily removed by pyrolysis or extraction. The “soft”
core is usually generated from extensive organic additives
or surfactants, such as nanoemulsion droplets [41],
micelles [42,43], vesicles [44] or gas bubbles [45].
Soft-templating system containing triblock copolymers

(poly(ethylene glycol)-block-poly(propylene glycol)-
block-poly(ethylene glycol)) and anion surfactants
(sodium oleate) was coupled with a hydrothermal
carbonization of glucose to prepare HCSs. When adjusting
the hydrothermal carbonization time, the hollow carbon
bowls and capsules exhibited a tunable diameter of 550–
600 nm [46]. In addition, polyacrylic acid was employed as
an eco-friendly soft template so as to produce hollow
cores. This could be easily removed by water without the

need for any other chemical reagents [41]. In an interesting
study, Liu et al. [47] focused on the interior structure of the
HCSs. They used Pickering emulsions as spherical
templates to design mesoporous carbon microspheres,
within which phenolic resol was used as the carbon
precursor, silica as the emulsifier, and F127 as the
surfactant. Both outer and interior architectures were
independently formed during this process, the details of
which are illustrated in Fig. 2. The outer crusts were
obtained through spherical Pickering water droplets, while
the internal structures were created by assembling F127
and phenolic resol inside the Pickering emulsion. The
easily occurring heterogeneous nucleation at the oil/water
interfaces favored the polymerization of resol oligomers/
F127 composites, and formed a mesostructure around the
inner surfaces of the water droplets (Fig. 2(a)). Once the
concentration of resol oligomers/F127 composites reached
a certain level, homogeneous nucleation started to occur in
the inner space (Fig. 2(b)). By adjusting the synthesis
parameters, the interior structures were then constructed as
hollow, multi-chambered, bijel-structured, multi-cored
“solid”, or honeycombed. To produce nanoemulsion
droplets, Chen et al. [48] utilized volatile oils (e.g.,
toluene, cyclohexane, isooctane and heptane) as the oil

Fig. 1 (a) Schematic illustration of the DHCS and SHCS preparation procedures; (b, d) TEM and (c, e) high resolution TEM (HRTEM)
images of the SHCSs and DHCSs. Reprinted with permission from ref. [29], copyright 2021 Elsevier.
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phase. The usage of organosilane as the carbon source and
pore-forming agent was crucial to the formation of HCSs.
The hydrolyzation of organosilane could stabilize the oil-
in-water emulsion, and form a solidified polysilsesquiox-
ane shell around the oil droplet (Fig. 2(c)). The HCSs were
obtained following the oil evaporation, carbonization and
etching template in the shell.

2.1.3 Template-free/self-templating method

The template-free/self-templating process avoids the
template fabrication and removal processes, meaning that
it is more economic, time-saving and convenient than the
template procedures. Through this method, HCSs can be
obtained through direct carbonization. An example of this
was demonstrated by Sun et al. [44], who assembled poly
(amic acid) to uniform homopolymer vesicles with a
diameter of 200 nm. NHCSs could be easily obtained by
pyrolysis the crosslinked construction of poly(amic acid)
vesicles and melamine. Microporous hypercrosslinked
polymers were also utilized to create hollow microporous
carbon spheres with a well-controlled porous structure,
hollow voids, and shell thickness [49]. Another method to
fabricate HCSs, is through the direct carbonization of
ground soybean waste [50], hollow ZIF-8 nanospheres
[51] and natural hollow-structured puffball spores [52].
Chen’s group found a new method, whereby they took
advantage of the different polymerization rate and degree
of outer and inner RF resin, and prepared a heterogeneous
resin sphere. After using acetone to selectively remove the
inner low-molecular-weight RF oligomer, HCSs with
different inner structures (hollow and yolk-shell) were
created [53].

For a large scale synthesis of the millimeter-sized HCSs,
Zhou et al. [54] proposed fabricating hollow polyacryloni-
trile and carbon spheres through a phase-separation
approach. This method coupled a modified phase-inver-
sion process with a gas-foaming process. As shown in
Fig. 3, when a solution containing N-dimethylformamide,
polyacrylonitrile, and (NH4)2CO3 was injected into hot-
water, a phase separation quickly occurred, which then
formed a solid polymer crust. Meanwhile, the CO2 and
NH3 gas, which decomposed inside the (NH4)2CO3, was
not able to easily escape. This inner pressure allowed for
the formation of a hollow structure. The hollow poly-
acrylonitrile’s mechanical performance could then be
enhanced by the introduction of carbon nanotubes
(CNTs) as a strengthening agent.

2.2 Structure control

2.2.1 Surface morphology

Carbon surface configuration is of great importance for
various applications, and thus having a controllable HCSs
preparation with a tunable surface morphology is key. Two
methods for this are presented in Fig. 4. Walnut-shaped
PDAwith a hierarchical meso-macroporous structure were
designed through a cooperative assembly of dopamine,
dual-soft-template (P123 and F127) and 1,3,5-trimethyl-
benzene (Fig. 4(a)) [55]. The obtained nanoparticles
possessed ultra-large bicontinuous channels of 20–95
nm. By changing the surfactant packing parameter, the
mass ratio of P123 to F127 managed to precisely affect the
porous structure and morphology of the PDA nanoparti-
cles. By simply elevating the P123/F127 mass ratio, the

Fig. 2 Formation mechanism of mesoporous carbon microspheres with different interior-structures: (a) Interfacial polymerization of
phenolic resol and F127; (b) evolution illustration of the inner structures. Reprinted with permission from ref. [47], copyright 2018 Wiley-
VCH. (c) Schematic illustration of HCSs in the presence of organosilane. Reprinted with permission from ref. [48], copyright 2020
Elsevier.
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morphology of the PDA products can be transformed from
bowl-like to dendritic, and finally to walnut-shaped (Figs.
4(b–k)). Pore architecture was also transformed from
columnar to bicontinuous, and finally to a lamellar
structure. This highly interconnected porous structure
could shorten diffusion resistance and enlarge the effective
area, thereby leading the walnut-shaped carbon particles to
exhibit an advantageous electrochemical performance.
Our group employed the direct carbonization of

MF@resol resin/graphene oxide (GO) composites to
design HCSs with a wrinkled surface [34]. The use of
GO was indispensable to the formation of this highly
wrinkled morphology. The aromatic parts of GO auto-
matically wrinkled to reduce surface tension when the GO
sheet bonded to the resol resin through the Coulombic
forces between the O-containing groups and resol.
Figure 4(m) shows the SEM image of the crumpled

surface, which enlarges the accessible surface area and is
beneficial to rate capability.
In addition, solvents play an important role in HCSs size

and morphology regulation [56]. An example of this is the
strong affect that the ethanol/water volume ratio has on
HCS morphology [35]. As the ethanol amount increased,
the solubility parameter and coating thickness of the mixed
solution decreased. The surface of the prepared HCSs
changed from smooth to wrinkled and then to con-caved.

2.2.2 Porous structure within the shell

The porous architecture in the HCSs shell is another
significant factor to be considered due to this parameter
being directly associated with the accessible surface area.
Generally speaking, large amount of micropores can be
produced through the carbonization of the polymer-based

Fig. 3 (a) Schematic illustration for the synthesis of hollow-structured polyacrylonitrile spheres; photograph of (b) hollow
polyacrylonitrile spheres, and (c) CNT-enhanced hollow polyacrylonitrile spheres. Reprinted with permission from ref. [54], copyright
2016 Wiley-VCH.
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carbon precursor (such as resol resin, dopamine and so on).
Thus, the HCSs fabricated from these precursors usually
have a microporous shell.
HCSs with mesoporous shells have been receiving

increasing attention due to their interconnected mesopor-
ous channels providing large accessible interior space for
faster ion transportation [57]. Mesoporous HCSs with a
pore size of 2–20 nm can be prepared with the aid of

Fig. 4 (a) Schematic illustration for the preparation of walnut-shaped PDA; (b–k) field emission scanning electron microscope (SEM,
top) and TEM (bottom) images of PDA prepared by P123 to F123 mass ratio tuning. Reprinted with permission from ref. [55], copyright
2018 Wiley-VC. (l) Schematic illustration for the synthesis of NHCSs. SEM and TEM images of (m, n) NHCSs and (o, p) NHCSs without
using GO. Reprinted with permission from ref. [34], copyright 2016 Royal Society of Chemistry.
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various block polymers working as the mesopore-forming
agent in the coating process. Resins or other polymers can
assembled with surfactants (e.g., cetyltrimethyl ammo-
nium bromide, P123, F127 and other high-molecular-
weight block copolymers) through hydrogen-bonding,
electrostatic interaction or adsorption [45]. The self-
assembly process in the coating layer is similar to the
synthesis process of ordered mesoporous carbons. Further-
more, it is well-known that the higher the molecular-
weight, the larger the mesopore size. For instance, hollow
mesoporous carbon spheres were prepared by assembling
polyaniline-co-polypyrrole and Triton X-100, and after
carbonization, nanopores with a maximum peak at 2.5 nm
were observed in its carbon shell [58]. NHCSs with large
mesopores of up to 16 nm could be fabricated by using
high-molecular-weight polystyrene-block-poly(ethylene
oxide) as the template [59]. To achieve larger mesopores,
nano-sized SiO2 particles with a diameter of about 50 nm
were used to create a tunable open-framework structure
with pore sizes ranging from 18 to 30 nm [60].
In order to enrich the shell’s porous structure, a “silica

assisted” sol-gel strategy was proposed. Using tetraethyl
orthosilicate (TEOS) or tetrapropyl orthosilicate (TPOS) is
crucial to the generation of hollow cavity and mesoporous
shell in this method. With the assistance of cationic
surfactant hexadecyl trimethylammonium chloride, Qiao
et al. polymerized RF resin and TEOS, gaining mesopores
of 4.7 nm in the carbon shell [61]. It was found that on the
basis of the polymerization kinetics, TPOS carried slower
hydrolysis and nucleation processes than TEOS, and
therefore the silica core and primary particle were better
controlled. By changing the ratios of TEOS/TPOS or
ethanol/water, the pore diameter of HCSs could be finely
manipulated from micropores to 13.9 nm [62].
The microstructures of hollow mesoporous carbon

spheres are more precisely regulated by controlling the
TPOS hydrolyzation and phenolic resin polymerization
process (Fig. 5) [63]. For example, the hollow void is
related to the diameter of silica core, which can be enlarged
by prolonging the hydrolysis time. The mesopores in the
carbon shell were associated with the size of the embedded
SiO2 nanoparticle. The volume ratio of water to ethanol
determined the SiO2 nanoparticle as a result of TPOS
hydrolyzed faster in water than in ethanol. Controllable
constructions, including hollow voids (89.3–204.5 nm),
mesopores (7.1–11.3 nm), and shell thickness (68.1–148.7
nm) could be fabricated.
In addition, activation methods that handle carbons with

specific chemicals (KOH, ZnCl2 and H3BO3) or gases
(steam, and CO2) are popular for the creation of a large
amount of mesopores. For the HCSs from the hard-
templating method, the released gases (CO2, N-containing
alkaline gas) from the decomposition of the templates
(CaCO3, MF spheres and PMMA spheres) can active the
carbon shell and benefit the generation of mesopores,
thereby yielding a highly mesoporous structure with a

large surface area. Unfortunately, it is usually impossible to
control the pore formation.
In electrochemical applications, large macropores can

act as a buffering reservoir to minimize the transmission
distances of the guest species into the inner surface. As
demonstrated in Fig. 6, co-assembly of MF resin and SiO2

nanospheres was used to configure a hierarchical micro-,
meso-, and macroporous structure into the shell of N, P co-
doped hierarchical porous carbon microspheres
(NPHCMs) (Fig. 6(a)) [64]. The NPHCMs had a particle
size of ~14 μm, as well as a number of macropores on the
shell (Figs. 6(b–f)). The open macropore windows (250
nm) originated from the etching of the SiO2 spheres.
Additionally, a mesoporous structure with pore sizes of 2.6
and 3.7 nm also appeared in the shell.

2.3 Functionalization of HCSs

2.3.1 Heteroatom doping

Heteroatom doping can strengthen conductivity and
improve the hydrophilicity of HCSs, and shows remark-
able influence on specific applications. There are two main
ways to incorporate heteroatoms into the carbon frame-
work: one is in-situ doping, where the heteroatom-
containing carbon precursor, catalysts and other assistants
is employed to build the carbon skeleton; the other is post-
incorporation, where heteroatoms containing gas or liquid
are used to activate the carbon framework and further
introduce foreign atoms. Of the two methods, in-situ
doping is the most convenient, and its content of
heteroatoms is always higher than from the post-treatment
approach.
N is the most popular heteroatom among the doped

materials. PDA [29,55], 3-aminophenol [65], glycine [66],
and melamine [34,35,44,64] have been served as N-
containing carbon sources to fabricate NHCSs. The N
content in the NHCSs is directly determined by the raw
materials and so in order to incorporate more N into the
carbon framework, a substance with a high N concentra-
tion is required. As presented by Fig. 7, graphitic carbon
nitride (g-C3N4) nanosheets, as an N-rich graphite (~57.1
at%), was used as the precursor to tune the N-doping
properties of NHCSs. For this process, Zn powder was
employed as both the template and catalyst (Fig. 7(a)). A
carbonization temperature above 700 °C was required for
the formation of roll-like N-doped carbon (NC) on the
melting Zn particles surface. The N-doping level was as
high as 12.76–27.82 at% and the doping types were easily
tuned by controlling the synthetic temperatures [39]. EDA
with a high N content of 46.6 wt% also contributed to the
N source by participating in the interfacial sol-gel coating
and producing a homogeneous N doping of 8.23 wt%
[67].
Some other heteroatoms, such as B, S and P, have also

proved to be of great interest. Coville’s group prepared
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boron-doped HCSs by using trimethyl borate or BCl3 as
the boron source via a high temperature chemical vapor
deposition [68,69]. S and P atoms have larger atom radii
than N, and their easily polarized lone pair electrons can
further boost the chemical properties and more effectively
increase defects. P-doped HCSs were prepared using
tetraphenylphosphonium bromide as the P source, and
glucose as the C source through a soft-templating method
[70]. Besides single atom doping, either P or S is always
doped into the carbon skeleton along with N. The
synergistic effect of these two heteroatom types can
enhance the electrochemical performance. Two or more

of the N, P, and S heteroatoms are co-doped into a carbon
framework and extensively investigated. Ni et al. [71] used
PDA as the nitrogen precursor and CaCO3 as the template
to synthesize the N-doped mesoporous HCSs. The S and N
co-doped HCSs were further realized by treating the N-
doped mesoporous HCSs under an Ar/H2S mixed atmo-
sphere.
In general, the interactions of the dopants with the

carbon sources affected the doping uniformity and doping
content in the carbons. By using heteroatom-containing
catalysts to polymerize MF, N, P co-doped and N, S co-
doped hierarchical porous carbon microspheres were

Fig. 5 The synthesized mechanism and controlled structure parameters of mesoporous HCSs, including hollow void size (group I),
integrate size (group II), carbon shell thickness (group III) and mesopores in carbon shell (group IV). Reprinted with permission from ref.
[63], copyright 2016 Elsevier.
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engineered by employing 1-hydroxy ethylidene-1,1-dipho-
sphonic acid (HEDP) as the phosphorus source and
methionine as the S source, respectively [64,72]. The
weak physical interaction between HEDP and MF resulted
in a low P doping of 0.16%. Further research used phytic
acid to crosslink polypyrrole, and the fabricated homo-
geneous crosslinked structure favored N, P co-doped HCSs
with a high N and P content of 11.4 and 3.5 wt%,
respectively [73]. Wang et al. [74] proposed a novel
approach by grafting a P-containing modifier hexachlor-
ocyclotriphosphazene (HCCP) onto the SiO2@PDA shell.
As the HCCP molecule had six P–Cl bonds, it could
chemically graft hydroxyl and amino groups onto PDA
(Fig. 7(b)). After calcination and SiO2 template removal,
NP-HPCS were obtained. Owing to the promoted chemical
interaction between HCCP and PDA, the NP-HPCS
processed a high-level N, P doping of 6.05 and
5.19 at% respectively, as well as excellent Na storage
performance. The recently reported examples of HCSs

being prepared via different methods, including templates,
precursors, heteroatom doping and the conditions for
carbonization, are all summarized in Table 1.

2.3.2 Metal-free HCSs hybrids

Controlling HCS distribution within the reduced GO (rGO)
network is a vital step to obtain a homogeneous three-
dimensional (3D) interconnected architecture. As represent
in Fig. 8, Li et al. [78] and Zhang et al. [22] both developed
the same technology. They bridged thin rGO nanoflakes
and poly(vinyl alcohol)-assisted spherical MF resin to a
homogeneous 3D architecture (Fig. 8(a)) [22]. With the
help of poly(vinyl alcohol) acting as both the nucleating
agent and dispersant, accompanied by a careful freezing
treatment, the monodispersed MF spheres with a uniform
diameter of 450 nm were heterogeneously dispersed within
the rGO network (Figs. 8(b–e)). HCSs were also used as
additives to achieve a high specific surface aerogel. Dong

Fig. 6 (a) Illustration of the formation mechanism in NPHCMs; (b, c) SEM and (d, e, f) TEM images of NPHCMs. Reprinted with
permission from ref. [64], copyright 2017 Royal Society of Chemistry.
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et al. [79] assembled submicron-sized microporous HCSs
into graphene aerogels, then fabricating heterogeneously
structured bead-to-sheet aerogels. GO was employed as
both the dispersion agent to stabilize the submicron
spheres, and as a nano-crosslinking agent to crosslink the
conjugated polymer spheres through a strong π-π interac-
tion. The HCSs originating from conjugated polymeric
hollow spheres were ultra-lightweight with a microporous
shell. After a supercritical CO2 extraction and carboniza-
tion, polylithic aerogels were achieved with a low density
of 51–67 mg$cm–3 and a large surface area of 569–609
m2$g–1. The cylindrical rod-like polylithic aerogel could
unbendingly stand upon the stamens (Fig. 8(f)). SEM and
TEM images confirmed that the HCSs had a particle size of
110 nm and that they were wrapped in several graphene
layers (Figs. 8(g) and 8(h)).
CNT is another nanocarbon type with excellent

conductivity and large pore channels, but it is limited by
its relatively low specific surface area. HCSs were
anchored onto the surface of CNTs in order to obtain
hybrid materials with an enhanced surface area [80].
Subsequently, heteroatom-doping HCSs were encapsu-
lated into one CNT that templated from anodic aluminum
oxide, and a spheres-in-tube nanostructure with hierarch-
ical porosity was engineered. The synergistical hybrid

structure facilitated the transportation of ions and electrons
[81].

2.3.3 Metal-containing HCSs Hybrids

When applied to energy storage and catalysis functions,
metal and metal oxide are incorporated into hollow
carbons through impregnation, precipitation, or chemical
vapor deposition methods. The appealing architecture of
HCSs can serve as heterogeneous nucleation centers to
anchor metal and metal oxide/sulfide nanoparticles, while
simultaneously restraining nanoparticle aggregation.
Noble metal nanoparticles are widely applied in the area

of catalysis, and combining them with HCSs can reduce
the amount of noble metal, as well as maximize its active
surface area. Moreover, the HCSs’ large specific surface
area and hollow core enable a high dispersal of the
nanoparticles and will impede aggregation even at high
temperatures, thus enhancing catalytic stability. Noble
metal nanocrystals, such as Ru, Ir, Ag, Pd, and PdAg can
be encapsulated in the inner voids, or embedded into the
HCS shell through a SiO2 templated two-step coating
approach [82–86].
Metal-organic frameworks (MOFs), which contain

metal species and organic components, are considered

Fig. 7 Graphical illustration of the formation process for (a) NHCSs using g-C3N4 as the carbon precursor, and (b) for N, P co-doped
hollow porous carbon spheres (NP-HPCS). Reprinted with permission from ref. [39], copyright 2020 Elsevier.
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emerging candidates for the production of metal (oxide)/
hollow-structured carbons through direct pyrolysis
[87,88]. Zhang et al. [23] prepared Co-Fe alloy/NHCSs
through pyrolysis of dual-MOF (MIL-101/ZIF-67) archi-

tecture. As shown in Fig. 9, the MIL-101/ZIF-67
composite was first coated on the polystyrene spheres
template. During the annealing process, the core of the
polystyrene transformed into a hollow void, the organic

Table 1 Related information on carbon spheres prepared via different methods

Sample Template Precursor Heteroatom doping Gas/temperature Ref.

N-doped yolk-shell HCSs SiO2 PDA N, S N2/800 °C [21]

HCSs Poly(vinyl alcohol) Melamine resin spheres N, O Ar/700 °C [22]

NHCSs Polystyrene spheres ZIF-67/NIL-101 N N2/700 °C [23]

NHCSs Polystyrene spheres Polyaniline N N2/800 °C [24]

NHCSs Polystyrene spheres Polypyrrole-polyaniline N N2/500 °C [25]

HCSs SiO2 Phenolic resin – – [26]

HCSs SiO2 spheres RF – N2/800 °C [27]

NHCSs SiO2 spheres RF and PVP N N2/600 °C [28]

DHCS SiO2 spheres PDA N Ar/800 °C [29]

NHCSs Sulfonated polystyrene spheres Polyaniline N N2/600 °C [30]

HCSs Polystyrene spheres Glucose – N2/800 °C [31]

Hierarchical porous HCSs PMMA RF – N2/800 °C [32]

NHCSs Polystyrene spheres ZIF-8 N N2/800 °C [33]

NHCSs MF spheres Resorcinol and hexamethylenete-
tramine

N N2/800 °C [34,35]

NHCSs CaCO3 PDA N N2/800 °C [36,37]

NHCSs Yeast cells Yeast cells N N2/850 °C [38]

NHCSs Zn powder g-C3N4 N Ar/800 °C [39]

NHCSs Cu2O solid spheres 3-aminophenol and formaldehyde N N2/1000 °C [40]

Hollow carbon nanoparticles F127 α-cyclodextrin – Ar/900 °C [42]

N-doped mesoporous HCSs Pentane-1,5-bis(dimethylcetyl
ammonium bromide)

3-aminophenol-formaldehyde
resin

N N2/850 °C [43]

NHCSs – Poly(amic acid) and melamine N N2/800 °C [44]

Hollow mesoporous carbon
microparticles

SiO2 Poly(furfuryl alcohol) – N2/850 °C [45]

HCSs P123 and sodium oleate Glucose – N2/900 °C [46]

Mesoporous carbon microspheres SiO2 Phenolic resol – N2/600 °C [47]

HCSs Volatile oils Organosilane – N2/900 °C [48]

HCSs SiO2 spheres Polystyrene and divinylbenzene N N2/700 °C [49]

Sub-micron HCSs – Soybean waste – N2, H2O/850 °C [50]

N-doped hollow carbon
nanospheres

– ZIF-8 N Ar/800 °C [51]

N, S doped HCSs – Puffball spores N, S N2/800 °C [52]

HCSs Gas bubbles Polyacrylonitrile – N2/900 °C [54]

NHCSs with macro-
/mesoporous channels

P123, F127, 1,3,5-
trimethylbenzene

PDA N N2/800 °C [55]

NHCS with large mesoporous
shells

Polystyrene-block-poly
(ethylene oxide)

PDA N N2/800 °C [59]

NPHCMs SiO2 spheres MF resin and HEDP N, P N2/800 °C [64]

N-doped mesoporus HCSs CaCO3 spheres PDA N, S Ar and H2S/800 °C [71]

NP-HPCS SiO2 spheres PDA and HCCP N, P N2/900 °C [74]
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Fig. 8 (a) Schematic illustration for the preparation of HCSs/RGO composites. SEM and TEM images of (b, d) MF spheres/GO and
(c) HCSs/RGO-700. Reprinted with permission from ref. [22], copyright 2018 American Chemical Society. (f) Photo of resulting aerogel
monolith on a flower bud; (g) SEM image; (h) TEM image of polylithic aerogels. Reprinted with permission from ref. [79], copyright
2016 Elsevier.
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ligands in the MOF were converted into an NC skeleton,
and the Fe3+ and Co2+ in the shell turned into Co-Ni alloy
nanoparticles. Similarly, when using ZnFe-ZIFMOF as the
shell and PS as the core, Fe, N co-doped HCSs were
fabricated [87].
Impregnation of a metal source into the pores of the

carbon shell, followed by carbonization is the most used
approach for the production of metal oxides/sulfide
hybrids, such as Co2NiOx [89], Co3O4 nanosheets [90],
and Fe3O4 [91]. For instance, Hao et al. [92] reported on
the creation of FeOx@N, P-doped HCSs by coating PDA/
Fe3+ shell onto the MF spheres. Wang’s group [93] utilized
a similar melting-diffusion strategy to group the Fe3O4

nanoparticles into the inner wall of the NHCSs.

3 Noble metal-free catalysis

Noble-metal (Pt, Ru)-based catalysts are highly efficient
for many reactions, but are limited by their scarcity and
high cost. In recent years, the development of effective and

stable metal-free and non-precious metal catalysts has
become a hot topic in scientific fields. The HCSs’ a-typical
voids and high surface area provide more available space
to expose the abundant active sites. Furthermore, by
designing the electronic and structural properties, the
HCSs’ electrochemical performances can be further
enhanced, thereby making them advantageous for applica-
tions in energy conversion, storage and pollutant degrada-
tion.

3.1 Oxygen reduction reaction (ORR)

ORR constitutes a major cathode-reaction for metal-air
batteries and fuel cells, and occurs through a two-electron
or four-electron pathway. The two-electron pathway can
reduce oxygen to H2O2, while a four-electron process
usually achieves water. Both processes are related to the
interaction between the reactive intermediate *OOH and
the catalysts. The strong binding of *OOH favors H2O
production while the weak interaction facilitates the
formation of H2O2. Metal-free carbon materials

Fig. 9 (a) Schematic illustration of the fabrication process for Co-Fe alloy/NHCSs; (b, c) SEM images; (d, e, f) TEM images of Co-Fe/
NC-700 HCSs. Reprinted with permission from ref. [23], copyright 2019 Wiley-VCH.
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[25,55,70,94,95], transition-metal phosphate [96], and
transition metal nitrides/oxides/carbides/sulfides [5,89,97]
have all been intensively developed as catalysts for ORR.

3.1.1 Two-electron ORR

A two-electron pathway ORR is an on-site method that can
be operated at room temperature in a wide pH range to
directly generate H2O2. This two-electron process requires
fast oxygen adsorption and *OOH intermediate deso-
rption. For carbon-based catalysts to produce H2O2, many
important factors, including pore size, heteroatom-contain-
ing functional groups (e.g., O, N, S and F), defect sites and
surface charges, are required to affect the overall catalytic
performance [98,99]. Mesoporous carbon hollow spheres
obtained from a SiO2-templated sol-gel process were used
as metal-free ORR catalysts to effectively produce H2O2.
In comparison to micropores, the mesoporous structure
played an important role by enhancing mass transfer to
lower onset potential and boost catalytic activity. The
surface O-containing groups, especially the COOH groups,
were beneficial for the production of H2O2, which elevated
H2O2 selectivity. This catalyst exhibited an H2O2 selectiv-
ity of over 90% in a potential range of 0.35–0.62 V under
neutral conditions (0.1 mol$L–1 phosphate buffered saline)
and reached its maximum (99.9%) at 0.57 V [94].
Moreover, these foreign dopants can introduce more
activated π electrons and thus further increase the active
center density [100,101]. Inspired by the fact that the S
dopant can motivate carbon to adsorb O2 and further
reduce overpotential, single S crystals were confined into
the pores of the HCSs that had been obtained from the
SiO2-templated approach [102]. As a result of the channel
confinement effect, the formed S nanocrystals were in a
nanoscale of 2–5 nm. Compared with the S-free samples,
the composite had a boosted H2O2 selectivity of 70% and a
low overpotential of 0.01 V (in 0.1 mol$L–1 KCl). Through
density functional theory (DFT) calculations, it was
confirmed that the C–S edge sites were the active sites,
and that the S–S bond markedly enhanced selectivity.
Introducing two heteroatom types into the carbon

skeleton can further improve the catalytic production of
H2O2 due to the synergetic effect between the doped
foreign atoms. The synergetic effect has been observed in
N and F co-doped carbon nanocages fabricated by DA
polymerization (N source) on polyvinylidene fluoride
spheres (fluoride source) [103]. The doped N atoms
proved beneficial to O2 adsorption, which thus facilitated
the catalytic activity, while F doping favored the release of
*OOH, thereby creating high H2O2 selectivity. The N and
F co-doped carbon nanocages efficiently catalyzed H2O2

electroproduction with a high faradaic efficiency of 89.6%
in alkaline solution (pH = 13, 0.74 V), and 85%–88% in
acid electrolyte (pH = 0.35, 0.4–0.72 V).
Light-driven catalytic production of H2O2 through two-

electron reduction is another type of green chemistry

process. Benefiting from its large accessible surface area
for charge transfer and photo-absorption, hollow-struc-
tured P-doped g-C3N4 can effectively produce H2O2

through two-electron O2 reduction. The doped P was
regarded as an indispensable attribute that significantly
improved the catalytic performance by tuning the energy
band, promoting carrier mobility and enhancing H2O2

selectivity. The P-doped g-C3N4 hollow spheres had an
improved H2O2 production rate (174 μmol$h–1 in H2O,
1684 μmol$h–1$g–1 in isopropanol), with values almost 7.5
and 11.2 times higher than bulk g-C3N4 [104]. In addition,
the doped carbons can coordinate with non-nobel metal
and so endow them with high catalytic activity. In this way,
Cu-doped g-C3N4 produced 10.7 fold more H2O2 than neat
g-C3N4 [105]. The coordinative Cu(I)-N active sites acted
as both adsorption sites to motivate the O2 molecules, and
as an “electron transfer bridge” that accelerated the
electron transfer from Cu-doped g-C3N4 to the adsorbed
O2.

3.1.2 Four-electron ORR

The four-electron ORR pathway is considered energeti-
cally favorable in thermodynamics, meaning that it occurs
easily compared with the two-electron process. Highly
effective 4e– ORR electrocatalysts can be obtained through
an engineering of their electronic structure. One of the
most famous strategies to modulate electronic structure is
heteroatom-doping. It has been demonstrated that the NC
electrocatalysts, especially the pyridinic-/graphitic-N, play
an important role in promoting the four-electron process
[25,70,100]. Pyridinic-N offers a more positive onset
potential by moving down the energy barrier of O2

adsorption, and also facilitates the ORR kinetic. Graphitic-
N is favorable in limiting current density by improving
electrical conductivity and providing more valence
electrons. Pyridinic- and graphitic-N enriched hollow
mesoporous carbon nanospheres showed an onset potential
of 0.84 V and a lower Tafel slope of 65 mV$dec–1 in
0.1 mol$L–1 KOH [106].
Multi-heteroatom-doping can give rise to a favorable

electron-donor property, and the synergistic effect is
preferred in order to achieve a high electrocatalytic
performance. N, S co-doped HCSs with mesoporous shells
were synthesized by polymerization of PDA and sodium
1,5-naphthalenedisulfonate on mesoporous spherical SiO2

[95]. Owing to synergistic N and S co-doping, and the fast
reactant diffusion by hierarchical porous structure, a
considerable activity (onset potential = 0.945 V, limiting
current density = 5.36 mA$cm–2), long-term stability (92%
after operation of 20000 s), and a remarkable methanol
resistance were obtained in the alkaline solution. Addi-
tionally, O, N co-doping was shown to be an effective
strategy for the 4e– ORR process. 3D structured O and N
co-doped graphene hollow spheres (O,N-graphene) were
fabricated by carbonizing Zn-based MOF and subsequent
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high-temperature treatment in an NH3 atmosphere [107].
The large specific surface area (1801.4 m2$g–1), highly
conductive graphene framework, and pyridinic N defects
were favorable to accelerate O2 diffusion and increase the
number of active sites. The O,N-graphene presented an
onset potential of 1.01 V, a half-wave potential (E1/2) of
0.842 V (vs. RHE, reversible hydrogen electrode), and
high stability (95.8% retention after 10 h) in 0.1 mol$L–1

KOH.
Hybridizing the metal-contained component with HCSs

is advantageous for the optimization of four-electron ORR
activity. The synergistic effect of the metal species and
carbon materials can effectively optimize the intermediate
adsorption capacity, and lead to a much higher ORR
activity. For example, the transition metal modified NCs,
especially transition metal-nitrogen-carbon (M-N-C), are
considered to have great potentials for replacing Pt-based
catalysts through a four-electron pathway [108]. The
coexistence of Fe/Fe3C and Fe-Nx in N-doped carbonac-
eous frameworks has been identified as a highly effective
ORR catalyst in alkaline or acidic conditions over a wide
pH range [109]. As Fig. 10 depicts, Tan et al. fabricated Fe-
N-doped HCSs with a diameter of less than 50 nm, after
which Fe3C nanoparticles were encapsulated into the shell
of HCSs [110]. In this process, poly(styrene-b-2-vinylpyr-
idine-b-ethylene oxide) was used as the surfactant to
enable the formation of a hollow core, while MF resin
introduced N (Fig. 10(a)). The Fe3C-Fe,N/C-900 had a
hollow core of 16 nm and a thin shell of ~10 nm (Fig. 10
(b)). Ultra-small Fe3N nanoparticles were dispersed in the
shell (less than 4 nm), which was surrounded by graphitic
layers (Figs. 10(b–d)). This catalyst showed satisfactory
catalytic activity in terms of E1/2 = 0.881 V in 0.1 mol$L–1

KOH and 0.714 V in 0.1 mol$L–1 HClO4. In the acidic
medium in particular, Fe3C-Fe,N/C-900 showed a limited
current density of 5.35 mA$cm–2 at 0.3 V.

3.2 Hydrogen evolution reaction (HER)

Hydrogen is regarded as one of the cleanest energies and as
a consequence, has attracted increased attention over the
past decade. HER is an essential half-reaction of electro-
chemical water splitting. The most efficient HER catalyst is
considered to be the Pt-based catalyst, but unfortunately
due to its high cost, it is limited. Currently, transition-metal
(Fe, Co, Ni, and Mo)-based electrocatalysts, such as the
phosphides/carbides/sulfides [111–114], and metal-free
carbons [100,115] are being reported as excellent candi-
dates over HER. Theoretical investigations have found that
HER activity is directly related to the H2 adsorption free
energy, and therefore, a balance between the protons
transfer and the adsorbed H2 desorption is needed to
achieve high HER activity. When introducing heteroatoms
to engineer the electron structure [115], the N-, O- and P-
doped HCSs, which had been fabricated by the pyrolysis of
Co2P-containing polypyrrole, exhibited a high electro-

catalytic HER activity. A low overpotential (290 mVat 10
mA$cm–2), low Tafel slope (102 mV$dec–1), as well as
high stability were achieved. The multi-heteroatom-doping
induced a synergistic effect and the abundant active sites
were indispensable to the outstanding electrocatalytic
performance.
Transition-metal phosphides are receiving considerable

attention as a widely studied and highly efficient catalyst.
As described in Fig. 11, encapsulating transition-metal
phosphides into NHCSs can elevate catalytic stability and
inhibit nanoparticles agglomeration. In this study, MoP
nanoparticles were incorporated into the shell of the
spherical structured NC (denoted as MoP@NCHSs)
through the oxidation of pyrrole monomers by
H3PMo12O40$nH2O on the polystyrene spheres
(Figs. 11(a–c)) [116]. The 900 °C-carbonized sample
(MoP@NCHSs-900) exhibited remarkable activity and
stability, affording an overpotential as low as 92 mV at
10 mA$cm–2 with a Tafel slope of 62 mV$dec–1 (Figs. 11(f)
and 11(g)) in alkaline media. In-depth insights indicated
that pyridinic-N was the predominantly contributing factor
to the excellent catalytic activity. The interaction between
MoP and pyridinic-N led to elevated electron density on
the N-atoms and reduced the d band center of Mo. The
weakened Mo–H bond reduced the H2 adsorption free
energy and thereby favored H2 evolution. Hybrid molyb-
denum disulfide/selenide (MoS2, MoSe2, CoSe2-MoSe2)
has also been demonstrated to perform robust activities for
electrocatalytic HER [117,118]. Core-shell structured
NHCSs/P-doped MoS2 (N-C@P-MoS2) possesses advan-
tageous features, such as having a modified electronic
structure, enhanced conductivity, and abundant active sites
derived from N and P doping, which are favorable in HER
activities [119]. In comparison to single-metal transition-
metal phosphides, double-metal phosphides possess a
higher electron transfer efficiency. Hollow-structured
hybrids composed of NiCoP and N, P-doped carbon
exhibit a low overpotential for HER in a wide pH range
(108, 128 and 106 mV at 10 mA$cm–2 in acidic, alkaline
and neutral solution, respectively) [120].
Recently, photocatalytic water splitting has also been

described as an environmentally friendly method for H2

production. Compared with commonly used semiconduc-
tor materials, two-dimensional nanostructures (transition
metal dichalcogenide, MXene, g-C3N4) are considered
emerging photocatalysts benefiting from their favorable
electronic structures and large surface area for active site
exposure [121]. For example, Li et al. prepared g-C3N4

hollow spheres (CCNHS) by treating a cyanuric acid-
melamine complex using molten salt. The highly crystal-
line CCNHS had a high surface area of 185.6 m2$g–1 and a
nanorod morphology with a lattice distance of 0.33 nm.
These features offered an enhanced migration from the
charge carriers, and an increased number of accessible
active surface sites. The CCNHS realized a photocatalytic
hydrogen generation of 151.2 μmol$h–1$g–1 [122]. In order
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to further elevate light absorption and reduce the charge
carrier recombination in g-C3N4, the g-C3N4/Ti3C2Tx

hollow architecture was designed. This was achieved by
assembling Ti3C2Tx and g-C3N4 onto polystyrene spheres
through an electrostatic interaction-induced layer-by-layer
approach. The g-C3N4/Ti3C2Tx hollow hybrids exhibited
an improved light absorption efficiency and charge

separation. A much higher H2 production rate of 982.8
μmol$g–1$h–1 was achieved [123].

3.3 Oxygen evolution reaction (OER)

OER is a critical element in the water splitting process,
metal-air batteries and CO2RR flow cells, which always

Fig. 10 (a) Illustration of the synthesis process and (b, c) electron microscope images of Fe3C-Fe,N/C-900 hollow spheres; (d) HRTEM
image of a typical Fe3C nanoparticle; (e, f) linear sweep voltammetry curves of N/C-900, Fe3C-Fe,N/C-900, and Pt/C at 1600 r$min–1.
Reprinted with permission from ref. [110], copyright 2018 Wiley-VCH.
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suffers from intrinsically sluggish kinetics and requires
high overpotential. Earth-abundant transition metal-based
electrocatalysts (e.g., Fe, Co, and Ni,), and especially their
hybrids with heteroatom-doped carbonaceous materials
(graphene, CNTs, amorphous carbon, etc.), are powerful
candidates with comparable OER activity and stability to

noble metal oxides (RuO2 and IrO2) [124]. Hybrids
composed of hollow cobalt phosphate and N, P co-doped
carbons have been shown to be effective OER catalysts,
and they exhibited high activity in alkaline solution [125].
In most cases, carbon materials are used as support to
prohibit active component aggregation, as well as to

Fig. 11 (a) Schematic presentation of MoP@NCHSs-900 synthesis; (b, c, d) TEM and HRTEM images of MoP@NCHSs-900;
(e) structural model of (d); (f) LSV curves; (g) Tafel plots of different electrocatalysts in 1.0 mol$L–1 KOH (I: MoP@NCHSs-900; II:
MoP@NCHSs-750; III: MoP@NCHSs-800; IV: MoP@NCHSs-960; V: MoP; VI: Pt/C). Reprinted with permission from ref. [116],
copyright 2019 Royal Society of Chemistry.
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synergistically catalyze the OER reaction. In addition,
carbon layers can prevent transition metal corrosion and
further promote catalytic stability.
Amorphous metallic/bimetallic oxide possessing abun-

dant active catalytic sites have been considered to be active
OER catalysts. As Fig. 12 reveals, N, P co-doped
mesoporous carbon hollow sphere (meso-NPC)/Co2NiOx

hybrids were replicated from mesoporous SiO2 and
worked as an effective OER electrocatalyst (Fig. 12(a))
[89]. The N, P doping brought abundant hydroxyl groups
onto the meso-NPC surface, thereby leading to a uniform
anchoring of the ultrasmall Co2NiOx particles (1.78 nm)
through strong interfacial interaction (Figs. 12(c) and
12(d)). X-ray photoelectron spectroscopy proved that the
promoted electron transfer from metal (Co2NiOx) to carbon
(meso-NPC) gave rise to an increased oxidation state of
transition metals. In addition, the metal-to-carbon charge
transfer could be further boosted by increasing the P
dopant in meso-NPC. In comparison to meso-NPC,
Co2NiOx and commercial RuO2 (Figs. 12(e) and 12(f)),
the meso-NPC/Co2NiOx hybrid showed enhanced OER
activity with the lowest overpotential (330 mVat a current
density of 10 mA$cm–2) and the smallest Tafel slope
(54.0 mV$dec–1). In another attempt, Dong et al. used a
template-free approach to fabricate hollow-structured Co,
Fe bimetal-glycerate [126]. This Co, Fe bimetal-glycerate
catalyst showed a low overpotential of 242 mV at
10 mA$cm–2 and enhanced OER kinetics with a Tafel slope
of 49.4 mV$dec–1. It was shown that the appearance of
oxyhydroxide-containing groups on the surface of Co, Fe
bimetal-glycerate was favorable to robust OER activity. In
addition, the specific hollow structure, along with the
interaction between Co2+ and Fe3+, also contributed to the
OER catalytic performance.
It is well-known that active sites exposure is of great

importance to catalyst performance. Excepting the well-
dispersed nanoparticles, single-atom catalysts with atom-
ically distributed metal on supports have attracted
tremendous interest for their role as new frontiers in
electrocatalysis due to the maximum atom-utilization
efficiency [127,128]. Up until now, NC materials have
been the most popular support for single-atom catalysts
dispersal, as the N groups are favorable to the anchoring of
metal species. As a typical example, Zhang et al. explored
the role of isolated atomically dispersed Ni sites supported
on NHCSs (HCM@Ni-N) as robust OER electrocatalysts
in alkaline condition. The HCM@Ni-N hybrid were
prepared by coating a layer of methylimidazole-Ni on the
core-shell structured SiO2@resorcinol formaldehyde
[129]. X-ray absorption spectroscopy revealed that the
unsaturated coordination geometry formed by the isolated
Ni atoms and N atoms was the effective electronic
coupling for OER. DFT results proved that Ni-N
coordination could reduce the Fermi level and decrease
the intermediates adsorption energy, thus significantly
boosting OER kinetics. Therefore, the HCM@Ni-N has

high OER activity (overpotential of 304 mV in 1.0 mol$L–1

KOH, 403 mV in 0.5 mol$L–1 H2SO4 to achieve
10 mA$cm–2) and excellent stability.

3.4 Water splitting

Electrochemical water splitting is recognized as a promis-
ing renewable energy conversion system. It consists of two
half-cell reactions: cathodic HER and anodic OER. In
theory, a cell voltage of 1.23 V is required for water
electrolysis reaction, but in practice, the kinetic barriers
occurring in both OER and HER processes cause a much
higher operating voltage. Thus, significant efforts have
been made to explore inexpensive, energy-saving, and
durable bifunctional electrocatalysts.
Carbon materials that count with heteroatom doping

have been shown to be efficient catalysts for both HER and
OER [25,55,100]. N-doped hollow carbons with abundant
pyridinic-N have been used as catalysts to effectively
catalyze both HER and OER with low overpotential. To
reach 10 mA$cm–2 in 1.0 mol$L–1 KOH, the required
device voltage is 1.61 V [130]. Integrated transition metals
and heteroatom-doped carbons have been reported as
promising bifunctional catalysts for water splitting
[131,132]. Pu et al. encapsulated a series of transition-
metal phosphide (Fe2P, FeP, Co2P, CoP, etc.) nanoparticles
into an NC matrix by the direct carbonization of a metal
salt, NH4H2PO4 and melamine mixture. Among these
transition-metal phosphides, Ni2P@NC required the
lowest overpotential: ~138 mV to motivate HER in
0.5 mol$L–1 H2SO4, and ~320 mV for OER in
1.0 mol$L–1 KOH to afford 10 mA$cm–2. When Ni2P@NC
was used as both the cathode and anode for water
splitting (1.0 mol$L–1 KOH), the current densities of
10 and 20 mA$cm–2 were achieved at cell voltages of
1.67 and 1.77 V, respectively. In addition, Ni2P@NC
displayed high durability for a period of 10 h in both acid
and alkaline media [133].
Increased effective active sites and decreased charge

transport resistance are expected to achieve enhanced
electrocatalytic activity. NC nanofibers (NCF) were
introduced to CoP/NHCSs (CoP/NC) as channels for a
rapid charge transfer [134]. Compared with single NCF
and CoP/NC, the CoP/NC/NCF hybrid catalysts exhibited
promoted HER activities with low overpotential (86 mV
at 10 mA$cm–2) and Tafel slope (55 mV$dec–1) in
0.5 mol$L–1 H2SO4, as well as superior catalytic behavior
for OER with a low overpotential of 288 mV and Tafel
slope of 60 mV$dec–1 in 1.0 mol$L–1 KOH. When
employed in a two-electrode system (1.0 mol$L–1 KOH),
a cell voltage of 1.64 V was needed in order to afford
10 mA$cm–2.

3.5 Rechargeable metal-air batteries

Metal-air batteries relying on ORR and OER, have the
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Fig. 12 (a) Schematic illustration of the Meso-NPC/Co2NiOx hybrid; (b) SEM images of meso-NPC; (c, d) TEM images; (e) linear
sweep voltammetry curves; (f) Tafel plots of different samples in 1.0 mol$L–1 KOH solution. Reprinted with permission from ref. [89],
copyright 2020 American Chemical Society.
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advantages of being more environmentally friendly than
many alternatives, and low cost, all of which make them an
ideal substitute for Li batteries. Currently, Pt and Ru are the
most popular advanced catalysts for ORR and OER,
respectively. Both have an active catalytic effect, but are
seriously limited by their high cost, low selectivity and
poor cycle stability. For this reason, more promising
catalytic materials, such as single, binary or ternary
nonmetallic/metallic heteroatom-doped carbon [135], tran-
sition metals and transition metals-based hybrids [131,136]
are being extensively developed.
Isolated single atomic sites coordinated with nitrogen on

a carbon matrix (M-N-C, M = Fe, Co, Ni, Cu, etc.) have
captured increasing attention due to their outstanding
enhancement in catalytic activity and their stability as
bifunctional ORR/OER electrocatalysts in acidic and
alkaline medias [100,109,137]. The performance of M-
N-C-based electrocatalysts could be promoted by introdu-
cing dual heteroatom coordinated metal centers. To test
this, N and P co-coordinated Fe atoms were dispersed on
the shell of the HCSs (named as FeNPC). The FeNPC
exhibited enhanced activity by catalyzing ORR with an
onset potential of 1.03 V and E1/2 of 0.88 V in alkaline
solution. Furthermore, the results from an in-depth
simulation indicated that the quasi-octahedral O2-FeNxPy
species acted as active sites. They could modify the Fe
electronic configuration and promote both ORR and OER
processes. The FeNPC-based rechargeable Zn-air battery
exhibited a high power density of 233.2 mW$cm–2 at
313.1 mA$cm–2 without any remarkable deterioration for a
period of 15 h [138].
Monometallic Fe-N-C show considerable ORR and

OER activity, and their catalytic performances can be
further boosted by alloying with other transition metals
(Ni, Cu, Pd, and Pt) [139]. In comparison to their parent
metals, bimetallic alloys display some unique electronic
properties by modifying the electron density around the
Fermi level, which is critical for the improvement of
catalytic activity. Recently, Jose et al. entrapped single
atomic Fe-Co alloying in NHCSs [140]. The hollow
carbon shell composed of a large amount of pores favored
the transmission of mass and ion. The Fe single-atom sites
adjacent to the Co site can promote O2 adsorption on the
active site of Co, meaning that it delivered a low onset/
half-wave potential of 0.96/0.86 V for ORR, and a small
overpotential of 360 mV at 10 mA$cm–2 for OER. When
used as air cathodes for Zn-air batteries, the specific
capacity and power density were 819.6 mAh$g–1 and
86.65 mW$cm–2, respectively, which is much higher than
those shown by the Pt/C/RuO2 cathode (779.7 mAh$g–1

and 110.3 mW$cm–2).
In addition to metallic and nonmetallic heteroatom co-

doped carbon, the catalytic active metal oxides supported
on the shells of HCSs were also demonstrated to be
effective and stable bifunctional electrocatalysts for ORR

and OER [100]. For this catalytic system, the hybrids take
advantage of unique hollow structure and high conductiv-
ity of NHCSs, as well as high activity of metal oxides. For
example, the Co3O4@NHCS composite catalyst exhibited
reasonable bifunctional electrocatalytic activity and could
therefore be adopted as an oxygen electrode for Li-O2

batteries [141]. Fe3O4 is another widely investigated high-
efficiency bifunctional ORR/OER electrocatalyst [91].
Fe3O4 nanoparticles were grown on the inner wall of
NHCSs through the use of the capillary force induced
melting-diffusion strategy and working as the bifunctional
catalyst for ORR and OER [93]. The yolk-shell structured
Fe20@NHCSs catalyst exhibited excellent ORR (E1/2 =
0.850 V) and OER (289 mVat 10 mA$cm–2) activities. The
Zn-air battery equipped with Fe20@N/HCSs owned a high
power density of 140.8 mW$cm–2 and displayed excellent
long-term stability over a 300 h period.
Transition-metal spinel oxide is another bifunctional

ORR/OER electrocatalyst. Considering the relatively low
electrical conductivity of transition-metal spinel oxide, it is
always compounded with high-conductivity materials. Wu
et al. encapsulated MnFe2O4/Fe in mesostructured NHCSs
by a direct carbonization of the Fe/Mn-incorporated PDA
nanosphere, and then used it as a bifunctional electro-
catalyst for ORR and OER in alkaline condition [142].
These hybrids displayed synergistically improved ORR/
OER activity. When used as a Zn-air battery electrode, the
maximum power density was 37 mW$cm–2, much higher
than that of a Pt/C-based battery (28 mW$cm–2).

3.6 Pollutant degradation

Over the past few decades, the presence of toxic pollutants
(e.g., phenol, bisphenol A, antibiotics, heavy metal ion) in
aquatic environments have led to serious environmental
pollution and possible negative influences on human
health. The removal of pollutants from contaminated
water is therefore an urgent issue. Photocatalysis is
regarded as a type of ecofriendly technology for the
effective removal of both organic and inorganic pollutants
[143,144].
For photocatalysts, it is well-known that absorption of

visible-light, efficiency of electron-hole separation and
charge migration rate are all crucial factors for the
improvement of photocatalysis efficiency [144]. N-doped
hollow mesoporous carbon spheres (N-HMCs) and g-
C3N4/Bi2O3 were combined together to achieve an
effective photocatalytic system for the photodegradation
of antibiotics under visible-light. The synergistic actions of
g-C3N4/Bi2O3 and N-HMCs, and especially the presence
of N-HMCs, were indispensable for the improvement of
photocatalytic efficiency. To be specific, N-HMCs could
serve as photosensitizers to enhance visible-light absorp-
tion, and also as conductive materials for the transforma-
tion of photoexcited electrons [145]. g-C3N4/CdS-NHCs
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hybrids are also regarded as a good photocatalytic catalyst,
showing high efficiency and stability for cloxacillin
degradation [146].
Cr(VI) and phenols (phenol and bisphenol A) have also

gained increased attention recently because of their acute
toxicity and potential carcinogenicity [147]. Current
research has combined adsorption and degradation pro-
cesses to realize a maximum removal of these pollutants.
For instance, sheet-like ZnIn2S4 grown on NHCSs has
been shown to be an effective photocatalyst for the
reduction of Cr(VI). The favorable band gap and excellent
electrical conductivity of ZnIn2S4 leads to the hybrids
having a superior light-driven photocatalytic efficiency and
an excellent degradation rate for aqueous Cr(VI) [148].
Meanwhile, MnO2 was incorporated into NHCSs
(MnO2@NHCSs) and used for the adsorption and
degradation of bisphenol A. Owing to the oxidation
properties of MnO2 and its unique hollow structure,
MnO2@NHCSs was able to completely degrade bisphenol
A to H2O and CO2 (99.6%) within 30 min [149]. Some
other heterojunctions, such as Fe3O4-CuO@HCSs, illu-
strated a superb photocatalytic performance for the
degradation of bisphenol A under visible light [88].
Excepting photocatalysis, advanced oxidation processes

are another excellent solution for the removal of organic
compounds from water. Cu-Co/NHCSs synthesized
through pyrolysis polystyrene spheres@ZIF-67, showed
high activity for 4-nitrophenol decomposition. Moreover,
this catalyst was convenient for magnetic recovery, and
after being reused five times, it still maintained a good
catalytic performance [150].

4 Conclusions and outlook

In summary, significant progress has been made toward
achieving an adjustable surface chemistry, porous structure
and hybrid architecture in HCSs. This review article has
demonstrated the development in the synthesis and
functionalization of HCSs, and their noble-metal free
hybrids in catalysis. The porous structure in the carbon
shell and its morphology are two of the most important
textual properties of HCSs. Their synthesis can be
controlled by selecting/adjusting specific hard/soft tem-
plates or solvents. Functionalization of HCSs is mainly
operated in two ways: one introduces one or more
heteroatoms (N, S, P, B) into the carbon skeleton through
heteroatom-containing carbon precursors, catalysts and
templates; and the other way is to construct hybrid
architectures by assembling HCSs with metal-free/contain-
ing species, such as graphene, CNTs, metal oxide, and
metal sulfide. The large surface area and hollow cores
enable a homogeneous distribution of the active species,
and short transport pathways. In addition, the high
conductivity, as well as the chemical stability of HCSs
favor long-time catalytic stability. All these merits guide an

improved catalytic performance for ORR, HER and
pollution degradation.
Although great progress has been made, work remains to

be done on the synthesis of HCSs with controllable
structures and certain compositions in a controlled manner,
as well as on their application possibilities. Currently, most
reported hollow-structured carbon spheres appear with a
diameter of several hundred nanometers. Considering the
reaction kinetics of guest molecule releasing, monodis-
persed HCSs with a particle size of less than 100 nm are
attractive. Finding a way to easily fabricate nano-sized
HCSs with high dispersity remains a great challenge.
Another issues is that the employed hard templates are
mainly formed of silica, polystyrene and PMMA spheres.
Therefore, finding new types of polymeric template,
especially one with abundant heteroatoms and that can
easily be removed through carbonization, is of interest to
the area of carbon synthesis. Another issue is posed by the
incorporation of guest substances into the inner wall of
HCSs. Although this is always carried out through a
capillary effect, the loading amount remains far from
satisfactory. To solve this, active materials can be
deposited onto the surface of HCSs shell to realize higher
loading, and in addition, this might be further promoted
through the development of multi-shell structures.
Hollow-structured carbon-based electro/photocatalysts

have gained significant attention. This is due to their
hollow interiors and porous shells providing more
available space for the exposure of abundant active sites
and promotion of mass transport. They show great
potential for ORR, HER and OER in various electro-
chemical processes, such as in water splitting and
rechargeable metal-air batteries. For metal-free HCSs,
heteroatom-doping can modulate the electronic structures
and provide active sites to catalyze the ORR, HER and
OER processes. Encapsulating or supporting the catalytic
active species from the nanoparticles to single-site atoms
into the HCSs configurations has proven to be an effective
way to design advanced catalysts. In addition, hybridizing
HCSs with transition metal-based catalysts is expected to
create more active sites, as well as generate high adsorption
abilities for the reactive intermediates. Although great
progress has been made, the catalytic performance of
HCSs-based electrocatalysts is still incompatible with
nobel-metal based catalysts. An engineering of electro-
catalysts for improved ORR/HER/OER catalytic activity is
thus highly required.
Rational design of bifunctional ORR/OER and HER/

OER catalysts is conducive to the promotion of energy
conversion and storage devices (i.e., water splitting,
rechargeable metal-air batteries). However, it is still not
easy for catalysts to possess ORR/OER or HER/OER
activity simultaneously. As far as we know, Fe-based
catalysts (Fe-C-N, Fe3O4) and transition-metal phosphides
account for a large proportion of the active materials
anchoring on HCSs in metal-air batteries and water

1400 Front. Chem. Sci. Eng. 2021, 15(6): 1380–1407



splitting, respectively. Considering the controllable struc-
ture/morphology of those HCSs equipped with abundant
exposed active sites, some other transition metal-based
catalysts should be concerned with constructing a highly
active hybrid structure. Moreover, in order to make full use
of the HCSs’ voids, a deposition/impregnation of active
nanomaterials onto both the inner and outer sides of the
carbon shell is highly effective. Efficient and controllable
encapsulating methods are highly desired. The fabrication
of multishell-structured HCSs and regulation of its porous
structure and surface properties is expected to increase the
interaction between active materials and HCSs.
As a half-reaction for both water splitting and metal-air

batteries, the activity of OER is of great importance.
However, OER electrocatalysts are limited to basic
solutions, and in addition, their long-term stability is less
than satisfactory. Effective and stable bifunctional electro-
catalysts in a wide pH range would be beneficial for the
catalysts during practical application. Therefore, future
research should be devoted to designing HCS-based
electrocatalysts to catalyze ORR/HER/OER at a low
overpotential and a wide pH range.
Modeling and/or simulation methods have been used to

understand the catalytic activity and mechanisms, and
further guide the construction of the desired electronic
structure. The scaling relationships of the synergistic effect
between metals, or metal and carbons, to the electro-
chemical performances have not yet been realized. More-
over, although carbon support can improve the stability of
HCSs-based electrocatalysts, their degradation mechanism
still lacks understanding. In conclusion, research on HCS-
derived electro/photocatalysts is only just beginning. In
order to achieve an in-depth understanding of the active
sites, corresponding catalytic mechanisms, and the struc-
ture-activity relationships, on-going and further investiga-
tions are still required. It is also necessary to provide
opportunities for their applications in other reaction
systems.
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