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ABSTRACT The problem related to bearing capacity of footing either on pure soil or on pure rock mass has been
investigated over the years. Currently, no study deals with the bearing capacity of strip footing on a cohesive soil layer
overlying rock mass. Therefore, by implementing the lower bound finite element limit analysis in conjunction with the
second-order cone programming and the power cone programming, the ultimate bearing capacity of a strip footing
located on a cohesive soil overlying rock mass is determined in this study. By considering the different values of
interface adhesion factor () between the cohesive soil and rock mass, the ultimate bearing capacity of strip footing is
expressed in terms of influence factor (/;) for different values of cohesive soil layer cover ratio (7,/B). The failure of
cohesive soil is modeled by using Mohr—Coulomb yield criterion, whereas Generalized Hoek—Brown yield criterion is
utilized to model the rock mass at failure. The variations of /; with different magnitudes of «,, are studied by considering
the influence of the rock mass strength parameters of beneath rock mass layer. To examine stress distribution at different

depths, failure patterns are also plotted.
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1 Introduction

Soil layer generally deposits over the bedrock layer. It
was found in several cases that topsoil layers are cohesive
in nature. Most researches related to bearing capacity
determination were accomplished by considering the
foundation on cohesive soil [1-4] or pure rock deposits
[5-8]. In addition, the effect of layer soil in the bearing
capacity determination of strip footing was also examined
by researchers [9-12]. Recently, Ouahab et al. [13]
investigated the bearing capacity of strip footing on a
cohesive soil layer overlying a rigid base. However, to
the knowledge of these authors, there is no study dealing
with the bearing capacity of strip footing on a cohesive
soil layer overlying rock mass. Thus, the bearing capacity
of strip footing placed on cohesive soil overlying rock
mass is determined in this study. Failure in cohesive soil
is generally modeled by using Mohr—Coulomb (MC)
yield criterion [14], whereas Generalized Hoek—Brown
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(GHB) yield criterion [15] is well accepted for modeling
rock mass. By implementing the finite element limit
analysis method, it is possible to estimate the collapse
load in a bracketed form, i.e., the upper and lower bound
collapse load. Among these, a conservative and safe
collapse load can be predicted by using the lower bound
finite element limit analysis (LBFELA). Most
importantly, no assumption is considered for the
geometry of the collapse mechanism in the LBFELA. For
this reason, the present study implements the LBFELA
technique. Here, the LBFELA in conjunction with two
conic optimization techniques, namely second-order cone
programming (SOCP) and power cone programming
(PCP), are utilized to model MC and GHB yield criteria,
respectively. Additionally, cohesive soil—rock interface is
taken into account in this study. Recently, Halder and
Chakraborty [16] anticipated a generalized outline for the
frictional soil-reinforcement interface friction angle in the
LBFELA. Formulation of Halder and Chakraborty [16] is
modified and applied in this study in an effort to consider
the effect of developed adhesion in the cohesive soil-rock
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interface. Effects of thickness of the soil layer (T,,), rock 2 Problem definition

mass strength parameters (GSI, m,, D), and cohesive soil-

rock adhesion factors (a,) are examined in detail. A rough strip footing of width B, as shown in Fig. 1(a), is
Additionally, the extent of the failure zone during Jocated on a cohesive soil overlying a rock mass. A
collapse is examined in an effort to understand failure vertical compressive load (Q,) is present in the strip

mechanism. footing. MC and GHB yield criteria are utilized to model
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Fig. 1 (a) Problem definition; (b) chosen domain and stress boundary conditions; (c) finite element mesh used in the analysis along with
zoomed view around the footing for ¢ = 0°, @, = 1, GSI = 30, m; = 25, D = 0, o /yB = «, T, /B = 2; (d) triangular element, stress
discontinuity between two triangular elements, and boundary condition in the LBFELA.
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the failure of cohesive soil and rock mass, respectively.
This study is intended to evaluate ultimate bearing
capacity of strip footing for various magnitudes of soil
layer thickness to footing width ratio (7./B) by
considering various values of the cohesive soil-rock
adhesion factor (a,,).

3 Mesh and boundary details

Two-dimensional plane strain domain with associated
stress boundary conditions is illustrated in Fig. 1(b).
Shear stress along the vertical boundary (MR) are
considered as zero. Additionally, shear and normal
stresses are considered as zero along the horizontal
ground surface (UP). Because the footing base-soil
interface is considered as rough, no boundary condition is
implemented along MU. The shear strength of cohesive
soil, by default, controls the stresses on this boundary.
The thickness of cohesive soil layer, 7, is varied for
different depths to determine the collapse load. The
thickness of rock layer (7) below the cohesive soil layer
and the horizontal extent (L;) of the ground surface are
selected in such a manner that 1) rock mass elements on
boundary edges (PS and RS) do not yield, and 2) the
magnitude of collapse load does not depend on selected
size of the domain. Triangle elements having three nodes
are utilized to discretise the selected problem domain. A
study regarding mesh convergence is performed to
inspect the effect of mesh types on the magnitude of
efficiency factor, /;, as presented in Table 1. Five types of
mesh (very coarse, coarse, medium, fine, and very fine)
are utilized based on the number of elements. By
comparing the magnitude of I, there is a negligible
difference between fine and very fine mesh. In addition,
comparatively, more computational time is required for
the case of very fine mesh. Therefore, fine type mesh is
utilized to carry out the analysis. A typical finite element
mesh having ¢ = 0°, @, = 1, GSI = 30, m, = 25, D = 0,
o /YyB =, and T /B = 2 is illustrated in Fig. 1(c), where
the total number of nodes, elements, discontinuities, and
nodes along the footing base are described by Ny, Ng, Np,
and NV, respectively.

4 Methodology

The plane strain LBFELA formulation of Sloan [17] is
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utilized to perform the analysis. Therefore, at each node
of triangular elements, there are three unknown nodal
stresses, o,, o, and 7,, (Fig. 1(d)). The value of
maximum collapse load (objective function) is
determined by employing equality and inequality
constraints in the problem domain. These constraints arise
from the satisfaction of 1) the equilibrium equations at all
the elements, 2) the stress boundary conditions, 3) stress
discontinuity across the edges of two adjacent elements,
and 4) the yield criterion. Two different conic
programming techniques, namely SOCP and PCP, are
applied at the nodes of the same problem domain to
implement the well accepted MC yield criterion for
cohesive soil [18] and GHB yield criterion for rock mass
[7], respectively. In addition, the existence of interface
adhesion between cohesive soil and rock mass are also
investigated. In this study, a brief discussion of GHB
yield criterion and detailed expressions regarding
interface formulation are provided below.

4.1 Generalized Hoek—Brown yield criterion

GHB vyield criterion [15] is employed in this study to
model the collapse of rock mass and can be expressed in
this form:

1= 05— (—(crci)(%‘l)mbm + S(crci)%)a <0,

()

where 0| and o5 are effective major and minor principal
stresses, m,, s, and a are the functions of Geological
Strength Index (GSI), material constant (m;), and
disturbance factor (D). In this study, normal tensile stress
is viewed as positive. The above parameters are
calculated using the following relationships:

G811 100 o8

o = MEXP\ 58 14D )’ 4
GSI-100

= exp| ———— |, 2b

S=e ( 9-3D ) (2)
1 | 2

a=§+g(e 5 —e 3), (2¢)

where GSI varies from 10 (poor rock mass) to 100 (intact

Table 1 Mesh convergence study for a rough strip footing placed on cohesive soil overlying rock mass having 7. /B = 0.5, GSI = 30, m; = 5,

D=0,0,/yB=w,and o, =1

different parameters type of mesh

very coarse coarse medium fine very fine
number of elements 2223 5919 7273 10825 13793
efficiency factor, /; 0.912 0.920 0.924 0.931 0.932
required CPU time for the analysis (s) 10.06 40.93 55.19 85.17 127.18
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rock mass); m; varies between 1 and 35; D varies from 0
(undisturbed rock mass) to 1 (highly disturbed rock
mass).

4.2 Cohesive soil-rock interface

To incorporate interface effect within formulation,
discontinuity in the shear stress and continuity in the
normal stress is considered between adjacent elements
along the cohesive soil—rock interface. Expressions for
shear stress (7,) and normal stress (o) acting on a plane
having an angle 8 with horizontal are written as:

7, =-0.50,sin2+0.50, sin 26 + 7,, cos 23, (3a)

o, = 0, 8in°B +0,cos’B—7,,s5in 2. (3b)

Therefore, considering the above, two new constraints
equations are formulated along the cohesive soil-rock
interface and expressed in the matrix form as:

AL 0w = (B2 (4a)
where
[Adc]—[ 0 0 P -p } (4b)
[Pl=[ sin’B cos’B —sin2B |, (4c)
(e} ={0 0}, (4d)
{(Tdc }T = {O-XJ O-yJ Txy,l () 0'»2 T)ry,z o (46)
Oy3 Ty3 Oxa Oya Txy,4} .

In this study, except for cohesive soil-rock interface,
four constraints equations are applied in the discontinuity
edges of the problem domain and written as:

[Ai]{oa) = (D}, (5a)
where
<. R -R 0 0
[Adc] _[ O O R —R ]’ (Sb)
_ sin’8 cos’8  —sin2p
[R]‘[ ~05sin28 05sin28  cos2B } (5¢)
(pef'={0 0 0 0} (5d)

The effect of developed cohesive soil-rock interface
adhesion (4,,) is considered in this study, by introducing
different values of cohesive soil—rock interface adhesion
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cr

factor (a, =

). The effect of the cohesive soil-rock

interface is examined by considering the variation of «,
between 0 and 1. In the formulation, it is ensured that
shear stress of the top cohesive soil layer does not cross
the shear strength of cohesive soil. This assumption tends
to generate two constraints equations along nodes of the
cohesive soil—rock interface and may be written as:

Ty <acrca (63)
(A% o = (b (6b)
where
«1_10 0 -1

[Aint,i] _[ 0 0 1 }, (60)

st _ CUy
b} —{ @ } (6d)

O-x.i
(i} =1 o (6€)

T.x'y,i

In Eqgs. (6b) and (6e), {o,,;} is stress vectors
containing stresses for nodes located along the soil side of
the cohesive soil-rock interface. Other than the
discontinuity constraints equations, the equilibrium,
boundary, and yield constraints equations are also
implemented in the problem domain. To avoid
repetitions, these formulations are not discussed. One can
refer Sloan [17], Makrodimopoulos and Martin [18], and
Kumar and Rahaman [7] for detailed formulation on
equilibrium, boundary, and yield conditions.

4.3 Final form of the optimization problem

All constraints equations are expressed in matrix form
and assembled in a manner which allows one to solve the
problem by using SOCP and PCP. The final form of the
present optimization problem is written as:

maximize {cjbj} {z}, (72)
subjected to [A]{Z} = {b}, (7b)
f@<0, (7¢)

where {c(,;}is the global vector comprising coefficients of
objective function; {z} is the global vector of unknown
stresses including auxiliary variables; f(Z) is the function
having global inequality constraint associated with yield

criteria; [A] and {b} are the global matrix and vector of
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the constraints, respectively. A computer code is
developed and executed in MATLAB [19] to perform an
analysis by using LBFELA formulation with the SOCP
and PCP by employing primal-dual interior-point solver,
MOSEK [20]. Previously, several studies [18,21-25]
implemented MOSEK to solve SOCP optimization
issues. Conversely, a limited number of current studies
[7,26] have applied MOSEK to solve PCP optimization
problems.

5 Results and comparison

5.1 Variation of I;

Influence factor (/;) is defined as the ratio of bearing
capacity of footing placed on cohesive soil overlying rock
mass, to bearing capacity of footing placed only on
cohesive soil. Variation of the magnitude of /; is obtained
as a series of design charts (Figs. 2—4) by varying T, /B
between 0.25 and 8; @, between 0 and 1; GSI value
between 10 and 100; m, value between 5 and 35; D value
between 0 and 1 for a weightless (o ;/yB = ) rock mass.
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In this study, relative increase in the magnitude of /;
can be observed with the increase in «, value for all
cases. The value of I; increases gradually to unity with the
increase of T,/B value for an underneath rock mass
having lower GSI and m; values, as shown in
Figs. 2(a)—2(e), 3(a)—-3(g), 3(1), 4(a)—4(j). For relatively
higher value of GSI having . = 0.8, and 1, it is observed
that the magnitude of /; decreases to unity with the
increase of T, /B. While rock mass having the relatively
higher value of GSI and a, = 0, 0.2, 0.4, and 0.6, the
magnitude of I decreases to a particular value and then
increases to the unity with the increase of 7 /B, as shown in
Figs. 2(f)—2(g), 3(h), 3(G)—3(k), 4(1)—4(m). It can also be
found that the magnitude of /; reaches to the unity at
relatively lower T, /B value with the increase in a,, value.
In contrast, the value of /; reaches to the unity at
relatively higher 7./B value with the increase in the
magnitude of D, as shown in Figs. 2—4.

5.2 Comparison
For validation, a rigid strip footing placed on cohesive

soil (¢ = 0° without any underlying rock mass is
considered. The presently obtained magnitude of bearing
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Fig. 2 Variation of influence factor (/) for: (a) GSI =10, m; =5, D=0, o, /yB = o0; (b) GSI =10, m; =15, D =0, o /yB = ; (c) GSI =
10, m;=25,D=0, o /yB=; (d) GSI=10,m,=35,D=0, 0 /yB=00;(e) GSI=30,m;=5,D=0, o ,/yB=o0; (f) GSI=30,m; =2 15,D =

0,0 /yB=o;(g) GSI = 50,m; = 5,D=0, o /yB = .
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Fig.3 Variation of influence factor (/) for: (a) GSI =10, m; =5, D =

0.5, o /yB = ; (b) GSI = 10, m; = 15, D = 0.5, 0,/yB = o0; (c) GSI

=10, m;=25,D=0.5, o /yB =0; (d) GSI= 10, m;=35,D =0.5, o /yB = ; (¢) GSI =30, m;= 5, D = 0.5, o ;/yB = o; (f) GSI = 30, m; =
15,D=0.5, o /yB = ; (g) GSI =30, m; =25, D = 0.5, o/yB = ; (h) GSI = 30, m; =35, D = 0.5, o ,/yB = o0; (1) GSI = 50, m;= 5, D =
0.5, o /yB=0; (j) GSI=50,m; = 15,D=0.5, o /yB =0; (k) GSI = 70, m; = 5,D=0.5, o /yB = 0.

capacity factor (N, = %) is compared with 1) the

elastoplastic finite element analysis solution of Griffiths
[9], 2) limit equilibrium solution of Meyerhof [2], and
3) LBFELA in conjunction with linear programming
solution of Chakraborty and Kumar [27]. The comparison
is presented in Table 2. It is observed that N, value
matches with above-mentioned studies.

There are no studies available for strip footing located
on cohesive soil overlying rock mass. However, in recent
past, using PLAXIS software, Ouahab et al. [13]
determined the bearing capacity of strip footing located
on cohesive soil overlying bedrock, which was modeled
as a rigid material. More significantly, Ouahab et al. [13]
did not consider the influences of the rock mass strength

parameters (GSI, m,;, D) of the beneath rock mass layer
and the interface adhesion factor (a). Therefore, strip
footing having different values of GSI, m,, D, o, =1 and
o, /yB = oo is considered, and the obtained influence
factor (/p) is compared with the solution of Ouahab et al.
[13], as shown in Fig. 5. One must note, the magnitude of
I; is slightly lower than the values described by Ouahab et
al. [13] for relatively strong rock. Additionally, the trend
of obtained magnitude of /; matches with the solution of
Ouahab et al. [13] for a rock mass having relatively
higher GSI, m,, and lower D values. Alternatively, it was
found that a significant effect of rock mass strength
parameters is present on the magnitude of /; for a strip
footing located on the cohesive soil overlying relatively
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Fig. 4 Variation of influence factor (/) for: (a) GSI =10, m;=5, D =0.5, o, /yB = o0; (b) GSI =10, m; =15, D = 0.5, o /yB = 0; (c) GSI
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weak rock mass. Therefore, it indicates that the influences
of the rock mass strength parameters (GSI, m,, D) of
beneath rock mass layer and interface adhesion factor
() is needed to be considered for a rock mass having
relatively lower GSI, m,, and higher D values.

5.3 Failure patterns

Failure patterns for the footing with different thicknesses
of soil layer (T,,) and different values a, are illustrated in
Fig. 6. By using a non-dimensional ratio a,/d,, the state of
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Table 2 Comparison of bearing capacity factor, N, for rough strip footing placed on cohesive soil without any underlying rock mass

) present study” Meyerhof [2]

Griffiths [4]7 Chakraborty and Kumar [27]V

0 5.13 5.14

5.10 5.09

Notes: a) LBFELA with second order cone programming; b) limit equilibrium method; c) elastoplastic finite element; d) LBFELA with linear programming.

1.6 1.6
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0.0 - : : : 0.0 : : : :
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()

Fig. 5 Comparison of obtained influence factor (/) with the result of Ouahab et al. [13] for (a) GSI having m; = 5, D = 0; (b) m; having

GSI=30,D=0.5; (c) D having GSI =30, m; = 15.

stress at each node is expressed for cohesive soil; where
a,=(o,—0,)*+(Q27,), and d, =4c*. Alternatively, the
state of stress at each node for rock mass is expressed by
a ratio, a,/d,, where a, = (o, —03) and

(oa . .
dzzac,-(—mb—1+s)". For a point at plastic state, the

values of al/dluand a,/d, become unity; on the other hand,
a,/d; <0 and a,/d, <0 indicate the non-plastic state.
Figures 6(a)-6(i) illustrate the failure patterns for 7, /B =
0.5 and 3, having GSI =30 and 50, m;= 5, o /yB = o and
@, =0, 0.4, and 1.0. It can be clearly visible that at a
lower value of T, /B, the plastic zone propagates to the
rock mass layer and increases gradually with the increase
of the value of ¢, as shown in Figs. 6(a)-6(c). Whereas,
with the increase of the values of 7, /B and «,,, the plastic
flow confines within the cohesive soil layer only.
Additionally, at lower values of 7, /B and a, = 0, the
plastic flow can be found within the top cohesive soil
layer (Figs. 6(a) and 6(d)), which indicates sliding of top
cohesive soil layer along the cohesive soil-rock interface.
The effect of the magnitude of D is shown in

Figs. 6(j)-6(1).

6 Remarks

Although by using the LBFELA, the safe collapse load is
determined for the strip footing placed on the cohesive
soil overlying rock mass, the presently obtained failure
mechanisms needs more comprehensive studies by using
other numerical methods such as the Phase Field Model
(PFM) [28-32]. Therefore, the present problem can be
investigated in the future by adopting PFM for the failure
mechanisms in soils and rocks.

7 Conclusions

This study aims to provide general guidelines for strip
footing in the existence of cohesive soil-rock interface.
Thus, the bearing capacity of strip footing placed on
cohesive soil overlying rock mass is investigated in terms
of influence factor (/;) by considering various values of
cohesive soil-rock adhesion factor and rock mass
parameters. Effects of different parameters are also
investigated, and results are presented as design charts. It
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Fig. 6 Failure patterns obtained for: (a) ¢ = 0°, GSI =30, m;=5,D =0, o /yB =0, T, /B=0.5, a,=0; (b) ¢ =0° GSI =30, m;=5,
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is observed that for all cases with the increase of «,
value, the magnitude of I increases. In most cases of
undisturbed rock mass it was found that the magnitude of
I becomes unity at 7, /B > 2. Adversely, it was found that
the magnitude of /; becomes unity at a much higher 7, /B
value for disturbed weak rock mass. Design charts
presented in this study would likely be beneficial for

practicing engineers.
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