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1 Introduction

The treatment of urban sewage inevitably produces
plentiful sludge as a byproduct (Hu et al., 2019). The

sludge contains various pollutants, such as infectious
pathogens, heavy metals, and micro-organic pollutants
(Romdhana et al., 2009; Yang et al., 2015). Although
sludge is the main sink of pathogenic microorganisms in
WWTPs and a potential source of microorganisms in the
environment (Fig. 1), it is also an important source of
organic matter and nitrogen- and phosphorus-containing
nutrients. Reuse of sludge is the general trend. To date,
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G R A P H I C A B S T R A C T

A B S T R A C T

The rapid global spread of coronavirus disease 2019 (COVID-19) has promoted concern over human
pathogens and their significant threats to public health security. The monitoring and control of human
pathogens in public sanitation and health facilities are of great importance. Excessive sludge is an
inevitable byproduct of sewage that contains human and animal feces in wastewater treatment plants
(WWTPs). It is an important sink of different pollutants and pathogens, and the proper treatment and
disposal of sludge are important to minimize potential risks to the environment and public health.
However, there is a lack of comprehensive analysis of the diversity, exposure risks, assessment
methods and inactivation techniques of pathogenic microorganisms in sludge. Based on this
consideration, this review summarizes the control performance of pathogenic microorganisms such as
enterovirus, Salmonella spp., and Escherichia coli by different sludge treatment technologies,
including composting, anaerobic digestion, aerobic digestion, and microwave irradiation, and the
mechanisms of pathogenic microorganism inactivation in sludge treatment processes are discussed.
Additionally, this study reviews the diversity, detection methods, and exposure risks of pathogenic
microorganisms in sludge. This review advances the quantitative assessment of pathogenic
microorganism risks involved in sludge reuse and is practically valuable to optimize the treatment
and disposal of sludge for pathogenic microorganism control.
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many wastewater treatment plants (WWTPs) install sludge
treatment units, and treated sludge may be used as
fertilizers and nutritional soils to improve fertility. In this
case, pathogenic microorganisms should be carefully
inactivated and controlled to minimize potential risks to
water bodies, soils, and human health as much as possible
(Pritchard et al., 2010).
The pathogens in sewage and WWTP effluents have

been widely reported to threaten the health of humans and
animals (Schöniger-Hekele et al., 2007; Sutherland et al.,
2010; Boehm et al., 2018). However, relatively less
attention has been given to the occurrence, concentrations,
and risks of aerosol transmission and epidemiology of
various pathogens in sludge (Viau et al., 2011). This makes
considering the annual production of large amounts of
sludge an important global issue. For example, in China,
WWTPs produced 67.65 million tons of sludge with a
moisture content of 80% in 2018, and the annual growth
rate was expected to be in the range of 5% to 8% (Dai et al.,
2020).
To achieve proper sludge treatment, different countries

and regions have issued standards and documents (Table
1). However, most regulations on pathogenic microorgan-
ism control are dependent on several pathogens, such as
coliforms and enteroviruses, and the risk of pathogen
transmission via sludge can hardly be well characterized
(Viau et al., 2011; Kelessidis and Stasinakis, 2012). In
addition, the risk of pathogenic microorganisms carrying
antibiotic resistance genes (ARGs) and thus having
antibiotic resistance has not been considered by standards
and regulations. Regulation standards and detection
methods need to be updated and improved (Yang et al.,
2015). It is important to promise a theoretical and technical
basis to guarantee the update of relevant standards. In
China, there is no virus indicator in the relevant standards
for municipal sludge treatment and sludge agricultural use.

Recently, the risks of SARS-CoV-2 spreading through
fecal-oral and fecal-respiratory transmission have received
great attention, but transmission and spread via sludge is
far from well-illustrated (Carraturo et al., 2020; Foladori
et al., 2020; Li et al., 2020b). A recent study showed that
because sludge contains more virus particles and longer
residence times, it is easier to detect SARS-CoV-2 in
sludge than in sewage (Balboa et al., 2021). Obviously,
routine detection cannot adequately represent the risk of
special pathogens in sludge during a particular period. In
this case, the treatment and disposal of sludge concerning
pathogenic microorganism control should be given more
attention than before.
Conventional sludge treatment methods include anae-

robic digestion, aerobic digestion, composting, lime
stabilization, etc. (Yang et al., 2015; Tong et al., 2019;
Major et al., 2020). Disposal methods include sanitary
landfills, incineration, land application, production of
building materials, etc. (Yang et al., 2015). Recently,
resource reclamation and energy harvesting have been an
essential focus in the process of upgrading existing
WWTPs, and land application is an important way to
reuse sludge. The inactivation efficiency of pathogenic
microorganisms is largely dependent on the different
physical, chemical, and biological processes (Kelessidis
and Stasinakis, 2012; Dauknys et al., 2020; Jin et al.,
2020). This strategy may potentially minimize potential
pathogenic risks by reducing the sludge pathogenic load
with optimized temperature, pH, residence time and other
conditions (Goberna et al., 2018). To achieve promising
sludge sanitation for land application, combined processes
with two or more units are expected to be implemented;
however, there is still a lack of sufficient data to propose
feasible processes and optimized strategies to control
pathogenic microorganisms.
Based on these considerations, this review aims to

Table 1 Pathogen requirements for sludge applied to land in China, the United States and the European Union

Countries
and
regions

Type of
sludge

Indicator pathogens

Standards or documents
Fecal coliforms

Clostridium
perfringens

Helminth ova Salmonella Enteric viruses

China Agricultural
sludge

Colititer is not less
than 0.01

— Mortality of
Ascaris eggs is
not less than 95%

— — Control standards of pollutants
in sludge for agricultural use
(2018)

United
States

Class A Less than 1000
MPN per gram of
total solids (dry
weight basis)

— The alternative:
Less than 1
viable helminth
ova/4 grams of
total solids (dry
weight basis)

Less than 3 MPN
per 4 grams of total
solids (dry weight
basis)

The alternative:
Less than 1 PFU
per 4 grams of
total solids (dry
weight basis)

USEPA, Environmental
Regulations and Technology:
Control of Pathogens and
Vector Attraction in Sewage
Sludge (2003). (Lloret et al.,
2012)

European
Union

Sludge
applied to
land

(Escherichia coli)
99.99% (4 log)
reduction to less
than 1 � 103

colony forming
units per gram
(dry weight)

No more than
3 � 103 spores
per gram
(dry weight)

— No detectable
Salmonella spp.
in 50 g (wet weight)

— European Commission,
Proposal for a Directive of the
European parliament and of the
Council on the spreading of
sludge on land (2003).
(Lloret et al., 2012)
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1) summarize the different species and methods of
detecting pathogenic microorganisms in sludge; 2) inves-
tigate the efficiency and the dominant influencing factors
involved in pathogen control by different sludge treatment
processes; and 3) compare the advantages and disadvanta-
geous of the currently used sludge treatment processes, as
well as risks and potentials of sludge in land applications.
This review provides insight into the treatment and
disposal of sludge, and it is expected to be practically
valuable with regard to pathogenic microorganism control
in sludge.

2 Detection, diversity, and potential risks of
pathogenic microorganisms in the sludge

Sewage sludge is reported to contain plentiful and diverse
pathogenic microorganisms, such as pathogenic bacteria,

viruses, and pathogenic protozoa (Ye and Zhang, 2011;
Bibby and Peccia, 2013; Amoah et al., 2018). Under-
standing of pathogen diversity and exposure risk benefits
the establishment of treatment strategies and standards for
pathogen control, although it is rather difficult to detect all
pathogenic microorganisms in sludge (Levantesi et al.,
2015).

2.1 Pathogenic bacteria

Bacterial pathogens can survive and reproduce rapidly in
suitable environments (Cai and Zhang, 2013), and most
studies have focused on human pathogenic bacteria in
sludge. Total coliforms, fecal coliforms and Salmonella are
usually used as indicators in standards (Viau et al., 2011;
Kelessidis and Stasinakis, 2012). Generally, the detection
method of inoculating and cultivating cultivable bacteria
has obvious limitations because the infectious doses vary

Fig. 1 Transfer and exposure pathways of pathogens involved in sludge treatment and disposal.
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greatly with different microorganism species (Shannon
et al., 2007). Most bacteria in the environment are
unculturable, which may cause deviations in test results
(Lu et al., 2015). The quantitative real-time polymerase
chain reaction (qPCR) method has the advantages of faster
speed, higher sensitivity, and better specificity than other
traditional methods. It is not limited by the cultivability of
microorganisms. The good evident strengths enabled it to
be widely used to detect pathogens and viruses in many
studies (Jyoti et al., 2011; Jebri et al., 2014; Jahne et al.,
2020). With the rapid development of molecular biology
technology, 16S rRNA amplicon sequencing and metage-
nomic sequencing technologies have also been applied to
study sewage sludge (Ye and Zhang, 2011; Lu et al., 2015;
Ju et al., 2017; Huang et al., 2018). These technologies
enable in-depth research to discover new pathogens in
sewage sludge, explore the relationship between patho-
genic and nonpathogenic microorganisms, and analyze the
co-occurrence of pathogens and ARGs (Ju et al., 2016).
However, these methods also have some limitations. For
example, the results of 16S rRNA amplicon sequencing
were strongly influenced by PCR primer choice and
sample processing (Walker et al., 2015). Different DNA
extraction methods may also cause significant differences
in 16S rRNA gene sequencing (Kennedy et al., 2014). The
selection of 16S rRNA gene variable regions potentially
leads to different amplification biases (Claesson et al.,
2010), which infers the importance of the experimental
verification of primers. In addition, depth bias is
characteristic of metagenomic approaches and one factor
that may cause differences between test results and cell
culture tests. Thus, it is critical to decide the appropriate
sequencing depth in metagenomic sequencing (Quince
et al., 2017). For cultivable microorganisms, cell culture
more easily detects low-level bacteria than large-scale
molecular detection because of sequencing detection
thresholds (Lagier et al., 2012). In analyzing the sequen-
cing results, in addition to the 16S rRNA gene sequence
database, the virulence factor database is also often used to
study pathogens. Virulence factors (VFs) are applied not
only to study the pathogenesis of human pathogens but
also as pathogenic indicators for the detection of human
bacterial pathogens. For example, Cai et al. studied the 16S
rRNA genes and the VF genes in AS, and Mycobacterium
tuberculosis was reported to be the most dominant
pathogen (Cai and Zhang, 2013). The use of these two
databases may obtain more comprehensive results of
pathogen diversity. The rapid development of metage-
nomic sequencing methods provides optimistic insight into
the analysis of microbial diversity in sludge.
The US Environmental Protection Agency (USEPA)

Office of Research and Development released information
on the 24 types of pathogenic bacteria that may be found in
Class B sludge: Legionella, Aeromonas, Bacillus, Listeria,
Brucella, Campylobacter, Proteus, Pseudomonas,
Coxiella, Clostridium, Mycobacterium, Escherichia,

Salmonella, Shigella, Citrobacter, Enterobacter, Serratia,
Erysipelothrix, Staphylococcus, Klebsiella, Streptococcus,
Francisella, Yersinia, and Vibrio (Lewis. and Gattie.,
2002). In recent years, sequencing technology has
continuously reported new pathogenic bacteria in sludge.
Li et al. detected Collinsella aerofaciens, Eubacterium
rectale, Streptococcus salivarius, and Vibrio mimicus,
which were previously unreported in activated sludge
(AS), and discovered Bacteroides vulgatus, E. rectale, C.
aerofaciens, Streptococcus suis, and S. salivarius, which
were previously unreported in anaerobic digestion sludge
(ADS) (Li et al., 2015). Additionally, Ju et al. found that C.
aerofaciens, Arcobacter butzleri, S. salivarius, E. rectale,
Acinetobacter johnsonii and S. suis had high relative
abundances in sludge digesters (Ju et al., 2016). It has been
reported that Oligella urethralis, Aeromonas hydrophila,
Aeromonas veronii, Mycobacterium smegmatis, Vibrio
cholerae, and Pseudomonas putida have high relative
abundances in AS (Zhang et al., 2021). Because more
human bacterial pathogens were detected in the sludge, the
risk of infection related to these pathogens should be taken
seriously.
In addition, the risk of bacterial pathogens carrying

ARGs leading to drug resistance cannot be ignored. The
large-scale use of human and animal antibiotics may
further complicate pathogenic risks to environments and
humans, and ARGs in sludge have become a research
hotspot (Zhang et al., 2009; Su et al., 2015; Liao et al.,
2018). It has been reported that most ARGs in AS were
carried by chromosomes (Zhang et al., 2021), which
proved the possibility that bacterial pathogens in the sludge
had antibiotic resistance. Bacterial pathogens may serve as
ARG hosts, and the ARGs of multidrug and macrolide-
lincosamide-streptogramin are most likely to co-occur with
human pathogens in sludge digesters (Ju et al., 2016). The
hosting relationship is considered the most direct origin of
ARG species co-occurring events (Ju et al., 2016), which
undoubtedly increases the risks of resistant pathogens to
environments and humans. In aerobic granular sludge
(AGS) cultivation, abundant AGS may lead to the
proliferation of inactivated ARGs (Li et al., 2020a), and
much effort has been made to determine the potential hosts
of ARGs in sludge and the corresponding control strategy.

2.2 Viruses, pathogenic protozoa, and worms

Due to the limitation on virus cultivability and the high
detection costs, only the indicators of a few viruses were
regulated by most standards for virus control. However, the
exposure and environmental risks of viruses should be
given more attention, especially during the coronavirus
disease 2019 (COVID-19) pandemic. Somatic coliphages
(SOMCPH) can be used as a good indicator of viruses to
illustrate their fate in the sludge treatment process
(Mandilara et al., 2006); however, a single indicator can
hardly provide full insight into the fate and risks of viruses.
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The diversity of human viruses in sludge is expected to be
much higher than in wastewater and other environmental
samples. Unfortunately, the methods used to explore the
diversity of human viruses in sludge are far from well
developed. The application of traditional cell culture
methods is primarily restricted by their time consumption
(Monpoeho et al., 2004), low adaptation to various virus
species, and difficulty in culturing viruses such as
noroviruses and astroviruses. (Sano et al., 2003). Immu-
nological detection methods have the disadvantages of a
high detection limit and low sensitivity (Graff et al., 1993).
Metagenomic sequencing, gene chip, and qPCR methods
can also be applied to virus detection (Soueidan et al.,
2015; Li et al., 2016b; Zou et al., 2017). However, unlike
bacterial pathogens, viruses have two types of genetic
material, DNA and RNA. Viral metagenomics, which is
more suitable for detecting viruses, has been widely used
for viruses in environmental samples such as sewage and
soil (Yu et al., 2019b; Guajardo-Leiva et al., 2020).
However, its application in sludge is rare because people
have paid less attention to viruses in sludge in the past.
Compared to qPCR, metagenomic sequencing provided
less sufficient data to promisingly represent human viruses
(Bibby and Peccia, 2013). In addition, the viral genome
database contains only a small portion of all viruses, and
the genomes of most viruses remain to be studied.
Sludge may contain multiple viruses, such as astro-

viruses, norwalk viruses, hepatitis viruses, rotaviruses and
enteroviruses (Wong et al., 2010; Prado et al., 2014;
Lizasoain et al., 2018). With the continuous development
of detection technologies, an increasing number of new
viruses have been discovered in sludge, and virus-related
databases have been updated accordingly. The risk of
bacteriophages in sludge as a resistance gene carrier was
also assessed, and the densities of the two resistance genes
of blaTEM and sul1 in sludge phages were as high as 5.5
and 4.4 log10 gene copies (GC)/g (Calero-Cáceres et al.,
2014). For the viruses in sludge, most studies have
investigated nonenveloped enteroviruses, which are more
difficult than enveloped viruses to inactivate in sewage
sludge (Sano et al., 2003; Monpoeho et al., 2004; Jebri
et al., 2014). Enteroviruses are also adopted as the virus
indicator in the standard. While being used for land, the
risk estimates, including those of adenoviruses and
noroviruses, proved that the risk values of enteroviruses
significantly underestimate the total infection risk of
pathogenic microorganisms in sludge (Viau et al., 2011).
By using a metagenomic sequencing method, 43 different
types of human viruses, i.e., 26 DNA viruses and 17 RNA
viruses, were detected in sewage sludge, and newly
emerging viruses, such as coronavirus HKU1, the
cosavirus, and the klassevirus, have high relative abun-
dance, and the detection rate of coronavirus HKU1
exceeds 80% (Bibby and Peccia, 2013). The SARS-CoV-
2 virus that causes pneumonia is an enveloped virus
(Foladori et al., 2020), and there is still limited knowledge

about the inactivation efficiency of enveloped viruses in
the treatment processes of sludge. A recent study showed
that different temperatures of anaerobic digestion play an
important role in the inactivation of the SARS-CoV-2 virus
(Bardi and Oliaee, 2021). However, the high pathogenicity
and rare data on its fate and transportation advocate
concern for its ecological and health risks. In addition, the
current virus enrichment methods are mainly for none-
nveloped viruses, such as enteroviruses, and further studies
must be done on the enrichment methods of enveloped
viruses in sludge (Yang et al., 2020). The occurrence and
risks of enveloped viruses in sludge treatment and
reclamation should be carefully studied in the future.
Pathogenic protozoa that may be present in sludge

include Giardia, Cryptosporidium, Entamoeba, Toxo-
plasma, and so on, and their infection may cause different
symptoms, such as intermittent diarrhea, abdominal pain,
cramps, bloody stools, weight loss, and dehydration
(Amorós et al., 2016; Benito et al., 2020). Giardia and
Cryptosporidium are often used as indicator protozoans in
sewage. For parasitic worms, the inactivation rate of worm
eggs is usually used as a biological indicator to evaluate
sludge treatment performance, and worm egg concentra-
tions are also used to assess the health risks of composted
sludge to be applied to agricultural soil (Navarro et al.,
2009; Amoah et al., 2018).

3 Inactivation of pathogenic microorgan-
isms by different sludge treatment processes

3.1 Composting and vermicomposting

Sludge composting is a typical exothermic aerobic process
and is one of the most widely used methods for sludge
treatment (Liao et al., 2018). The efficiency of reducing the
pathogenic load of sludge by composting is compared in
Table 2 (Wéry et al., 2008). In the thermophilic phase, the
composting temperature is in the range of 55°C to 70°C,
the majority of pathogenic microorganisms are inactivated,
and sludge sanitation is achieved (Lung et al., 2001; Mehta
et al., 2014). High temperature may cause enzyme
denaturation, RNA inactivation, and protoplast membrane
damage, and these effects lead to the death of microbial
cells. Comparatively, hyperthermophilic composting may
achieve a rapid rise in temperature to as high as 90°C
within 24 h, and a significantly higher capability to
inactivate pathogenic microorganisms is expected com-
pared to conventional composting (Liao et al., 2018). It
was reported that 91% of resistance genes and 88% of
mobile genetic elements were removed after 21 days of
hyperthermophilic composting, and the ratios of conven-
tional composting were observed to be 39% and 51%,
respectively (Liao et al., 2018). In addition, the inter-
specific competition of microorganisms was reported to
play an important role in the inactivation of most

Mengtian Li et al. Risk control of pathogenic microorganisms in sludge treatment 5



pathogenic microorganisms, and the rapid propagation of
dominant bacteria inhibited the survival of pathogenic
microorganisms accordingly (Millner et al., 1987; Pietro-
nave et al., 2004). Dehydration can also lead to the rupture
of the protein shell of viruses (Ward and Ashley, 1978).
Further studies are required to illustrate the contribution of
various factors, the optimized parameters, and the
inactivation efficiency of different pathogenic microorgan-
isms.
Conventional composting technology has disadvantages

with regard to the removal of pathogenic microorganisms.
For example, the presence of heat-resistant mutants greatly
affects the inactivation of pathogens (Wichuk and
Mccartney, 2007; Elving et al., 2010; Inglis et al., 2010),
and this tends to increase the proportion of heat-resistant
mutants in environments. Additionally, some specific
bacteriophages or plant viruses, e.g., cucumber green
mottle mosaic viruses, were reported to be highly resistant
to conventional composting (Robledo-Mahón et al., 2019).
At the end of thermophilic composting, the abundance of
Pseudomonas spp. and Streptomyces spp. in sludge was
detected to be near 1% of the entire community, which did
induce the disease in crops such as potatoes (Robledo-
Mahón et al., 2020).
In contrast to conventional composting, vermicompost-

ing is a mesophilic process with a temperature below 35°C,
and this range enables the growth of worms and pathogenic
microorganisms (Khwairakpam and Bhargava, 2009;
Swati and Hait, 2018). Vermicomposting achieves sludge
stabilization by the synergistic effect between worms and
microbial populations (Table 2), and it has been reported
that the enzyme activity and endosymbiotic microorgan-
isms of earthworms play an important role (Monroy et al.,

2009; Sen and Chandra, 2009; Swati and Hait, 2018).
Furthermore, the humate in sludge and gut transport of
worms are also involved in pathogen inactivation (Soob-
hany et al., 2017). Comparatively, mesophilic vermicom-
posting was better than vermicomposting at controlling
heat-resistant mutants, and the contrary result has also been
reported before (Huang et al., 2020). The worm presenta-
tion significantly changed the community structure of
pathogenic microorganisms, and their abundance was
rarely reduced (Fig. 2). Most studies suggest that
vermicomposting is reliable for inactivating pathogenic
microorganisms in sludge, and there are still conflicts to be
well illustrated.

3.2 Anaerobic digestion and aerobic digestion

Anaerobic digestion is one of the most popular techniques
used to achieve sludge stabilization, and the inactivation
efficiency of pathogenic microorganisms by different
anaerobic digestion methods has been reported in various
studies (Table 2). In general, the reduction in pathogenic
load by thermophilic anaerobic digestion (TAD) was over
3 log units, whereas that by mesophilic anaerobic digestion
(MAD) was below 2 log units (Traub et al., 1986; Astals
et al., 2012; Grübel and Suschka, 2015; Levantesi et al.,
2015). The occurrence rates of human adenoviruses,
enteroviruses, and human polyomaviruses in biosolids
upon MAD were reported to be as high as 83%, 42%, and
58%, respectively (Wong et al., 2010). Conventional MAD
can only meet the USEPA Class B biosolid standard with
regard to pathogen control (USEPA, 1994; Lewis. and
Gattie., 2002; Forster-Carneiro et al., 2010; Wong et al.,
2010; Simmons and Xagoraraki, 2011) and can hardly

Fig. 2 Unigenes of human pathogenic bacteria at the phylum level (a) and their relative abundances (log10-transformed) at the genus
level (b) in different samples obtained from initial sludge (IS), control (C), and sludge vermicompost (S). Reprinted with permission from
Elsevier (Huang et al., 2020).
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achieve the Class A standard for agricultural purposes
because it cannot ensure that the treated sludge is virtually
pathogen-free. TAD improves the inactivation of patho-
genic microorganisms to a greater extent; however, after
TAD, the detection of some pathogenic microorganisms
has also been reported in many studies (Kearney et al.,
1993; Astals et al., 2012; Levantesi et al., 2015). To
achieve promising control of pathogenic microorganisms,
the combination of conventional anaerobic digestion and
other sanitation technologies, such as thermophilic pre-
treatment and sludge disinfection, may be practical to meet
the Class A biosolid standard (Cheunbarn and Pagilla,
2000).
The mechanisms of pathogenic microorganism inactiva-

tion involved in anaerobic digestion are far from well
illustrated, and the efficiency is highly dependent on
different factors, such as temperature and solid retention
time (Zhao and Liu, 2019). TAD at temperatures higher
than 55°C is recognized to be efficient in obtaining Class A
biosolids in the United States, and high temperature plays a
determining role in the inactivation of pathogenic micro-
organisms (Kabrick and Jewell, 1982; Liu et al., 2011;
Benito et al., 2020; López et al., 2020). A higher
temperature improved inactivation, and TAD showed
better performance than MAD to remove pathogenic
microorganisms and ARGs (Diehl and LaPara, 2010;
Pandey and Soupir, 2011; Rizzo et al., 2013; Forbis-Stokes
et al., 2016). However, different pathogenic microorgan-
ism species have different tolerances to temperature
(Watcharasukarn et al., 2009). Some pathogenic micro-
organisms, e.g., Bacillus cereus, L. monocytogenes, and
some spores and eggs, exhibit strong resistance to

temperature and can survive upon TAD treatment
(Elmerdahl Olsen and Errebo Larsen, 1987; Kearney
et al., 1993; Orzi et al., 2015; Zhao and Liu, 2019).
Moreover, interspecific competition between pathogenic
microorganisms and anaerobic bacteria also contributed to
the lowered pathogenic load of sludge (Orzi et al., 2015).
Additionally, the produced volatile fatty acids (VFAs) and
free ammonia in anaerobic digestion also positively
improved the inactivation of pathogenic microorganisms
(Sahlström, 2003; Lloret et al., 2013; Fidjeland et al., 2015;
Magri et al., 2015; Orzi et al., 2015). Free ammonia may
penetrate the cell membrane and result in proton
imbalance, potassium ion (K+) deficiency, and intracellular
pH variation and adversely affect the normal physiologic
function of cells (Rajagopal et al., 2013; Yenigün and
Demirel, 2013; Chen et al., 2014).
Autothermal thermophilic aerobic digestion is reported

to completely remove total coliforms of E. coli
and Salmonella spp., and unfortunately, the removal
efficiency of C. perfringens spores is as low as 1.97 log
units (Lloret et al., 2012). The elevated pH during aerobic
digestion also showed inactivating effects toward patho-
genic microorganisms (Kabrick and Jewell, 1982; Lloret
et al., 2012). Additionally, two-phase anaerobic–aerobic
digestion improved sludge digestion and methane produc-
tion and positively favored sludge sanitation (Min Jang
et al., 2019). Upon anaerobic digestion, thermophilic
aerobic digestion further decreased the species of
human bacterial pathogens from 44 to 16, and the
relative abundance of human bacterial pathogens was
reduced from 2.42% to 0.77% (Fig. 3) (Min Jang et al.,
2019).

Fig. 3 Species and relative abundance of human bacterial pathogens (HBPs) found in sludge treated by anaerobic digestion (AnDresidue)
and thermophilic aerobic digestion (TADresidue). Reprinted with permission from Elsevier (Min Jang et al., 2019).
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3.3 Lime stabilization

Convenient and cost-effective lime stabilization is widely
used for sewage sludge sanitation and can significantly
reduce the pathogenic load in sludge in USEPA guidelines
(USEPA, 1994). Many studies have reported that after lime
stabilization, pathogenic bacteria, indicator bacteria such
as E. coli and Salmonella, and human viruses such as
adenovirus and rotavirus can be reduced to below the
detection limit (Table 2) (Gantzer et al., 2001; Plachá et al.,
2008; Wong and Selvam, 2009; Yin et al., 2017; Martín-
Díaz et al., 2020). However, the risks of bacterial spores
and helminth eggs with strong resistance to lime stabiliza-
tion should also be considered (Capizzi-Banas et al.,
2004). Bean et al. reported an insignificant difference in the
numbers of Ascaris lumbricoides ova before and after lime
stabilization (Bean et al., 2007). Lime stabilization can
hardly inactivate nematode eggs in a short time, and the
storage of sludge for over 6 months at pH>11.5 may
achieve this goal (Gantzer et al., 2001). For lime
stabilization, other sanitation strategies should be intro-
duced to strengthen pathogen inactivation.
In lime stabilization, the contributive effects on patho-

gen inactivation include high pH, high temperature,
dehydration, and ammonia toxicity, and extremely high
pH is regarded to be the dominant factor (Mignotte-
Cadiergues et al., 2002; Capizzi-Banas et al., 2004). The
addition of plentiful calcium oxide (CaO) and calcium
hydroxide [Ca(OH)2] remarkably increased the sludge pH
to as high as 12 and the sludge temperature to above 65°C
(Pecson et al., 2007; Valderrama et al., 2013). Under strong
alkaline conditions, the hydrolysis of nitrogen-containing
organic matter led to increased concentrations of free
ammonia, with toxic effects on microbial cells (Pecson
et al., 2007; Magri et al., 2015). Additionally, CaO strongly
absorbed water in sludge and gradually stabilized the
physical and chemical properties by rapid water loss and
inhibited microorganism survival. However, to achieve
sludge stabilization and sanitation, extremely high lime
doses and pH are both required, which adversely increase
the inorganic contents and is detrimental to sludge disposal
for land use and incineration.

3.4 Heat drying

Heat drying can greatly reduce the volume of sludge and
improve the performance of sludge (Font et al., 2011; Deng
et al., 2013). As the USEPA mentioned, sludge heating to
over 80°C by hot gas may reduce the water content to
below 10%, which significantly reduces the pathogenic
load and accordingly minimizes the negative effects
(USEPA, 1994). However, the extent of pathogenic load
reduction varies with the operating conditions (Gantzer
et al., 2001; Mocé-Llivina et al., 2003; Monpoeho et al.,
2004). Romdhana et al. compared four heat drying

processes on hepatitis A virus control in sewage sludge;
the agitated conductive process (120°C), fry-drying
process (vacuum, oil temperature: 95°C) and drum drying
process (112°C–137°C) exhibited complete inactivation of
hepatitis A virus within 20 min, 10 min, and 10 s,
respectively, and solar drying showed a much lower
efficiency (Romdhana et al., 2009). High temperature
plays a determining role in the inactivation of pathogenic
microorganisms (Romdhana et al., 2009; Naidoo et al.,
2019; Espinosa et al., 2020; Gomes et al., 2020), and the
efficiency is highly dependent on the heat transfer rate.
Thin-layer drying with rapid heat transfer required much
less time to achieve sludge drying and sanitation
(Romdhana et al., 2009). The dehydration effect also
greatly contributed to the inactivation of pathogenic
microorganisms, and this was supported by the remarkable
decrease in pathogenicity in air drying at natural
temperature (Mondal et al., 2015; Kong et al., 2018).

3.5 Innovative sludge treatment processes

Recently, an increasing number of studies have proposed
innovative processes such as microwave treatment, radia-
tion, and chemical oxidation for sludge treatment and the
control of pathogenic microorganisms.

3.5.1 Microwave irradiation

Microwave irradiation is often used as a pretreatment for
anaerobic digestion because of the effective inactivation of
pathogenic microorganisms (Hong et al., 2006; Coelho
et al., 2011; Afolabi and Sohail, 2017; Mawioo et al., 2017;
Gil et al., 2018). Microwaves showed the complete
removal of E. coli, coliforms, Staphylococcus aureus,
and Enterococcus faecalis, and the sludge volume was
reduced by more than 60% due to the thermal effect of
microwave radiation (Mawioo et al., 2017). Additionally,
microwave pretreatment increased biogas production in
anaerobic digestion by 35% (Uma Rani et al., 2013).
The inactivation mechanism toward pathogenic micro-

organisms includes thermal effects as the dominant factor
and electromagnetic radiation. In microwave radiation,
elevated temperatures over 60°C effectively inactivate
pathogenic microorganisms, and the efficiency is posi-
tively correlated with higher microwave energy (Mawioo
et al., 2017). Microwave radiation also destroys the cell
membrane, causes the exclusion of intracellular species
(Cosgun and Semerci, 2019), and causes DNA damage to
pathogenic microorganisms (Hong et al., 2004).

3.5.2 High-energy electron beam radiation

The radiation of γ-rays and high-energy electron beams (β-
rays) is produced by an electron accelerator, and it was
reported to reduce the sludge volume and improve sludge
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dissolution and organic pollutant degradation (Wang and
Wang, 2007; Kim et al., 2011; Wu et al., 2017). Radiation
is also effective in inactivating pathogens in sludge
(Borrely et al., 1998; Chmielewski and Han, 2016). The
pathogenic load may be promisingly reduced to a safe level
at ray radiation doses above 2 kGy (AL-Ghonaiem et al.,
2010). Additionally, different microbial species have
different sensitivities toward electron beam radiation. γ-
ray radiation at a 1 kGy dose contributed to the complete
inactivation of E. coli in raw waste sludge, whereas the
decrease ratio of the mold abundance was as low as 0.6 log
units (Ranković et al., 2020).
The inactivation of microorganisms by radiation is

attributed to direct irradiation and indirect effects. In the
irradiation of sewage sludge, radiation tends to destroy the
structure of biological macromolecules such as nucleic
acids and proteins and to cause ionization and destruction
of intercellular substances (Wang and Wang, 2007;
Chmielewski and Han, 2016). On the other hand, high-
energy rays induce chemical processes such as sensitizer
reactions and the generation of free radicals such as �OH,
eaq

–, and H� (Wang and Wang, 2007; Chmielewski and
Han, 2016). The formed radiation products may further
interact with nucleic acids, proteins, and enzymes and
hinder the normal physiologic process of cells.

3.5.3 Electrochemical treatment

Many studies have investigated the coagulation and
disinfection effect of electrochemical treatment toward
sewage and sludge (Huang et al., 2008; Cui et al., 2013;
Lei et al., 2020), and the sanitation efficiency to produce
Class A biosolids has been investigated recently (Navab
Daneshmand et al., 2012; Rumky et al., 2020). In
electrocoagulation, the in situ-produced coagulants reduce
sewage turbidity by destabilization and flocculation
effects, and most pathogens are captured and enter the
sludge with flocs thereafter (Buzzini et al., 2007). Reactive
oxygen and chlorine species were also produced during
electrochemical treatment (Bakheet et al., 2020), which
may destroy the microbial cell structure and inactivate the
microorganisms in sludge (Fig. 4) (Zeng et al., 2019). At a
voltage of 15 V, the extent of the E. coli decrease was more
than 3 log units, and the extents of Salmonella spp. and
Streptococcus faecalis decrease were nearly 5 log units. At
an anode current density of 4.71 A/dm2, the removal rate of
E. coli and fecal coliform in municipal sewage sludge was
reported to be as high as 5 log units (Drogui et al., 2013). In
addition, the combined use of a low-energy input
electrochemical system and alkaline digestion may
promisingly remove fecal coliform and E. coli in sewage

Fig. 4 (a) Images of microorganisms in sludge before and after electrochemical treatment at 8 Vand 15 Vand (b) distribution of the live
and dead bacterial consortia observed with a confocal laser scanning microscope (CLSM). Reprinted with permission from Elsevier (Zeng
et al., 2019).
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sludge and achieve the Biosolid Class A standard (Jafari
and Botte, 2021).
To date, the inactivation mechanism of pathogenic

microorganisms involved in the electrochemical process is
far from well understood, and three positive effects were
proposed (Navab Daneshmand et al., 2012; Yin et al.,
2018; Zeng et al., 2019): 1) the generation of ohmic heat in
electrochemical reactions; 2) the formation of different
oxidants, such as free chlorine and reactive oxygen
species; and 3) the extremely high or low pH at the
interfaces of electrode plates. The quantitative contribution
of these factors to sludge sanitization is not clear, and most
studies suggest that ohmic heat is the primary contribution
(Navab Daneshmand et al., 2012; Yin et al., 2018; Zeng
et al., 2019). Future studies may focus on the other factors,
and the molecular biological mechanisms involved in
pathogen inactivation and the effects of electrochemical
treatment on the post biological units for pathogen control.

3.5.4 Chemical oxidation

Strong oxidants with high redox potential tend to destroy
the microorganism structure and degrade biological
macromolecules such as enzymes and genetic materials,
thus inactivating pathogenic microorganisms accordingly.
Common oxidants include peracetic acid and chlorine-
containing disinfectants, e.g., HOCl and Ca(ClO)2 (Yu
et al., 2010; Yu et al., 2019d; Hu et al., 2021; Luukkonen
et al., 2020). At peracetic acid doses over 480 mg/L, the
complete inactivation of E. coli and Salmonella spp. in
sludge was observed (Luukkonen et al., 2020). NaClO at a
dose of 2.2 g/L decreased the most probable number of
fecal coliform in sludge from 6.9 log units to 0.8 log units,
and positive effects on improving dewatering and heavy
metal leaching were also observed (Zhang et al., 2020).
Higher doses of chemical oxidants are required to achieve
the complete inactivation of pathogens in sludge than in
sewage (Hu et al., 2021), owing to the protection of
microbial cells and extracellular polymeric substances.
Advanced oxidation processes (AOPs) generate various

free radicals, and recently, AOPs have been proposed to
treat sewage and sludge. Fenton and Fenton-like processes
have been indicated to effectively remove pathogenic
microorganisms in sewage (Tong et al., 2020; Venieri et al.,
2020; Wang et al., 2020). The persulfate at 0.5 mM
activated by solar energy may contribute to a 6.0 log unit
reduction in bacteria in sewage after 2 h of reaction
(Ferreira et al., 2020). The combined use of ozone and
zerovalent iron (ZVI) at doses of 30 and 63 mg/g TS may
contribute to the reduction in the total coliforms and E. coli
in sludge by 98.6% and 97.7%, respectively, and �OH was
reported to play an important role (Yu et al., 2019c). Wang
et al. compared five pretreatment approaches for pathogen
inactivation in sewage sludge, and electric-Fenton reac-
tions exhibited the best performance and contributed to the
removal of coliform and E. coli by 4.84 log units and 3.86

log units after 60 min (Wang et al., 2021). Furthermore,
H2O2 at a low dose can hardly improve the removal of
pathogenic microorganisms in sludge due to its decom-
position into water and oxygen instead of free radicals with
its exposure to the organic matter in sludge (Yu et al.,
2010). In addition to pathogen inactivation, AOPs were
reported to improve sludge conditioning and dewatering
performance (Maqbool et al., 2019; Yu et al., 2019d; Ge
et al., 2020). The effects of AOPs on the degradation of
micropollutants, the inactivation of ARGs, and sludge
ecotoxicity in post land application should be further
confirmed.

3.6 Comparison and summary of sludge treatment pro-
cesses

The efficiency of reducing the pathogenic load of sludge
by different sludge treatment processes is compared in
Table 2. Lime stabilization is superior to conventional
composting and mesophilic anaerobic digestion in inacti-
vating pathogens, and several innovative sludge treatment
processes can also reduce the pathogenic load in sludge to
the sanitary level (Drogui et al., 2013; Mawioo et al., 2017;
Luukkonen et al., 2020; Ranković et al., 2020). The
reduction in the pathogenic load of sludge by conventional
composting and anaerobic digestion obviously depends on
the operating temperature (Liao et al., 2018; López et al.,
2020), and the potential of thermophilic anaerobic
digestion in the suppression and elimination of pathogens
is significantly greater than that of mesophilic anaerobic
digestion (Astals et al., 2012; Grübel and Suschka, 2015;
Levantesi et al., 2015). However, the vast majority of
sludge treatment processes are ineffective in controlling
heat-resistant mutants, and the spores or ova of pathogens
can also survive due to resistance to high temperatures and
extreme pH. Comparatively, vermicomposting is a more
promising method to control their spread through sludge,
but interaction mechanisms between worms, their endo-
symbiotic microorganisms and pathogens should be
further studied from the perspective of microbial ecology.
Furthermore, to more thoroughly inactivate pathogens in
sludge and control the spread of heat-resistant mutants, a
combination of two or more sludge treatment processes is
recommended.
The mechanisms of pathogen inactivation by different

sludge treatment processes are summarized in Table 3.
High temperature is the dominant factor for the inactiva-
tion of pathogens in most sludge treatment processes, and
dehydration also plays an important role in the inactivation
of pathogenic microorganisms. In innovative sludge
treatment processes, some special pathogenic inactivation
mechanisms, such as direct irradiation by a high-energy
electron beam, have been reported (Wang andWang, 2007;
Chmielewski and Han, 2016). Different mechanisms may
cause changes in the properties of sludge and affect the
land application of sludge. Sludge after lime stabilization
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Table 2 Pathogenic load control by different sludge treatment processes

Treatment
Duration of the process;
maximum temperature

Pathogenic microorganism or
microbial indicator

Change in the
pathogenic load Reference

Composting NA a; NA Enteric viruses ND b Watanabe et al., 2002

4 weeks of the active phase,
matured for 2 months and
stored for 2‒3 months;
60°C‒70 °C

E. coli ND Wéry et al., 2008

C. perfringens ND Wéry et al., 2008

Salmonella spp. ND Watanabe et al., 2002;
Wéry et al., 2008

Enterococcus spp. ↓(2.9 log10 gene copies/g)
c Wéry et al., 2008

Vermicomposting 4 weeks; NA Fecal coliforms ↓(2.98 log10 MPN/g) Hait and Tare, 2011

Enterococcus ↓(2.21 log10 MPN/g) Hait and Tare, 2011

Salmonella ↓(1.82 log10 MPN/g) Hait and Tare, 2011

Helminths ova ND Hait and Tare, 2011

40 days; NA Ochrobactrum anthropi ND Lv et al., 2018

Brevundimonas diminuta ND Lv et al., 2018

Eubacterium tenue ND Lv et al., 2018

Bacillus thuringiensis ND Lv et al., 2018

Mesophilic
anaerobic
digestion

NA; 34.5 °C Bacteriophage f2 ↓(0.04 log10 PFU/Lper h) Traub et al., 1986

14 days; 36 °C Enterovirus ↓(1 log10 gene copies/g) Monpoeho et al., 2004

20 days; 37 °C Somatic coliphages ↓(1 log10) Astals et al., 2012

F-specific RNA-bacteriophages ↓(2.7 log10) Astals et al., 2012

E. coli ↓(2.2 log10) Astals et al., 2012

Thermophilic
anaerobic
digestion

15 days; 55 °C Somatic coliphages ↓(4.2 log10) Astals et al., 2012

E. coli ↓(2.3 log10) Astals et al., 2012

F-specific RNA-bacteriophages ↓(3.4 log10) Astals et al., 2012

Aerobic
digestion

30 days; Winter: 25 °C;
Other season: 48 °C

E. coli ↓(3.5�0.9 log10 MPN/g) Gantzer et al., 2001

Enterococci ↓(2.1�0.5 log10 MPN/g) Gantzer et al., 2001

Spores of sulfite-reducing
anaerobic bacteria

↓(1.3�0.5 log10 MPN/g) Gantzer et al., 2001

14.6 days; 62 °C Total coliforms ND Lloret et al., 2012

Salmonella spp. ND Liu et al., 2011;
Lloret et al., 2012

C. perfringens spores ↓(1.97 log10 spores/mL) Lloret et al., 2012

Lime
stabilization

24 hours; NA Bacteriophage MS2 ND Hansen et al., 2007

Adenovirus type 5 ND Bean et al., 2007;
Hansen et al., 2007

Rotavirus ND Bean et al., 2007;
Hansen et al., 2007

NA; NA Enteroviruses ND Monpoeho et al., 2004

24 hours; NA E. coli ↓(>6 log10 MPN/mL) Bean et al., 2007;
Santos et al., 2020

Salmonella ND Bean et al., 2007

Ascaris lumbricoides ova No significant difference Bean et al., 2007

Heat
drying

Indirect drying;
10 hours; 108 °C

E. coli ↓(3.7�0.3 log10 MPN/g) Gantzer et al., 2001

Enterococci ↓(3.9�0.6 log10 MPN/g) Gantzer et al., 2001

Spores of sulfite-reducing
anaerobic bacteria

↓(3.2�0.1 log10 MPN/g) Gantzer et al., 2001
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(Continued)

Treatment
Duration of the process;
maximum temperature

Pathogenic microorganism or
microbial indicator

Change in the
pathogenic load Reference

Microwave
technology

MW energy: 3.4 kWh E. coli ND Mawioo et al., 2017

Coliforms ND Mawioo et al., 2017

S. aureus ND Mawioo et al., 2017

E. faecalis ND Mawioo et al., 2017

Electrochemical
pretreatment

Applied voltage: 15 V;
Time: 1 hour

E. coli ↓
(3.12� 0.2 log10 CFU/g TS)

Zeng et al., 2019

Salmonella spp. ↓(>4 log10 CFU/g TS) Zeng et al., 2019

S. faecalis ↓(>4 log10 CFU/g TS) Zeng et al., 2019

Gamma radiation Dose of gamma irradiation:
2 kGy

Fecal coliforms ND AL-Ghonaiem et al.,
2010

Salmonella spp. ND AL-Ghonaiem et al.,
2010

Peracetic acid
(PAA) oxidation

480 mg of 100% PAA
per L of sludge

E. coli ND Luukkonen et al.,
2020

Salmonella spp. ND Luukkonen et al.,
2020

Note: a) Not available; b) Not detected; c) Signifies the decrease in pathogenic load with the log value of the decrease in brackets.

Table 3 Mechanisms of pathogen inactivation by different sludge treatment processes

Treatment Mechanisms Reference

Composting High temperature in the thermophilic phase Mehta et al., 2014; Liao et al., 2018

Interspecific competition of microorganisms Pietronave et al., 2004

Dehydration Ward and Ashley, 1978

Vermicomposting Enzyme activity and endosymbiotic microorganisms
of earthworms

Monroy et al., 2009; Swati and Hait, 2018

Humate in sludge and gut transport of worms Soobhany et al., 2017

Anaerobic digestion and
aerobic digestion

High temperature López et al., 2020

Elevated pH Kabrick and Jewell, 1982; Lloret et al., 2012

Interspecific competition between pathogens and
anaerobic bacteria

Orzi et al., 2015

Produced VFAs and free ammonia Sahlström, 2003; Lloret et al., 2013;
Fidjeland et al., 2015; Magri et al., 2015

Lime stabilization Extremely high pH Pecson et al., 2007; Valderrama et al., 2013

High temperature Pecson et al., 2007; Valderrama et al., 2013

Dehydration Capizzi-Banas et al., 2004

Ammonia toxicity Capizzi-Banas et al., 2004

Heat drying High temperature Naidoo et al., 2019; Gomes et al., 2020

Dehydration Mondal et al., 2015; Kong et al., 2018

Microwave technology Thermal effect Mawioo et al., 2017

Cell membrane destruction and the exclusion of
intracellular species

Cosgun and Semerci, 2019

DNA damage Hong et al., 2004

High-energy electron
beam radiation

Direct irradiation (inactivation of biomacromolecules
and the ionization and destruction of the intercellular
substance)

Wang and Wang, 2007;
Chmielewski and Han, 2016

Indirect effects (sensitizer reaction and the generation
of free radical)

Wang and Wang, 2007;
Chmielewski and Han, 2016
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has an extremely high pH (Mosquera-Losada et al., 2012).
Oxidants can change the oxidation-reduction potential of
sludge. Microwave irradiation or high-energy electron
beam radiation may induce mutated genes (Sado et al.,
2001; Sutherland et al., 2010). These are not conducive to
the subsequent land application of sludge. Moreover, due
to the input of energy or the addition of a large amount of
oxidant, innovative sludge treatment processes may be
expensive with regard to the cost of implementation and
operation, and the cost estimation of innovative sludge
treatment processes, especially microwave irradiation and
high-energy electron beam radiation (Zimek, 2020),
should be further studied. Comparatively, composting,
anaerobic digestion and lime stabilization are more cost-
effective, biofuels such as CH4 can be produced by
anaerobic digestion, and mature and sanitary compost can
be an effective soil conditioner.

4 Pathogen risk in sludge treatment and
land application

4.1 Pathogen risk during sludge treatment

Sludge treatment involves concentration, conditioning,
dehydration, transportation and other links, and includes
aerobic and anaerobic digestion, composting, heat treat-
ment, and other processes (Kelessidis and Stasinakis,
2012; Yang et al., 2015; Zhang et al., 2016; Yu et al., 2017;
Wang et al., 2019; Yu et al., 2019a). The exposure of
pathogenic microorganisms via contact and air inhalation
in these processes should be evaluated and minimized as
much as possible for the operators (Viau and Peccia, 2009;
Han et al., 2021). In the process of sludge treatment, the
exposure and health risk via bioaerosols should be well
considered. The colony-counting method was proposed to
detect bioaerosols, and the aerosol levels in the sludge
thickening house were observed to be the highest at a
fungal concentration of 8775�406 CFU/m3, which was
remarkably higher than the acceptable guideline of
500 CFU/m3 (Xu et al., 2020). In the areas near the sludge
thickening basin, the contents of culturable bacterial

aerosols and fungal aerosols were also the highest at
1697 CFU/m3 and 930 CFU/m3, respectively (Li et al.,
2016a). Aerosols containing S. aureus may be used as an
indicator of health risk. In residual sludge storage yards,
the particle size of S. aureus bioaerosols was observed to
be in the range of 3.3 to 4.7 mm, and the contents of
respirable bioaerosols< 4.7 mm in size were also higher
than those in aeration tanks (Yan et al., 2021). Arcobacter
was observed to be the dominant taxon in aerosols, and the
pathogens in indoor bioaerosols mainly came from sewage
and sludge (Yang et al., 2019). Although a study showed
that ARGs in liquid sludge from aeration tanks could
diffuse through aerosols (Gaviria-Figueroa et al., 2019),
there is still a lack of evidence suggesting that ARGs can
diffuse through bioaerosols during sludge treatment.
In addition, there is also the risk of pathogens spreading

in the process of sludge stabilization. The higher risk of
bioaerosol exposure in sludge treatment units may be due
to external forces such as dehydration applied to sludge
(Xu et al., 2020). An aerosolization experiment using
sludge of anaerobic digesters showed that some opportu-
nistic pathogens were more likely to be aerosolized
(Moletta-Denat et al., 2010), so attention should be given
to the risk of pathogenic microorganisms that may exist in
the biogas produced by the anaerobic digestion of sludge.
It has been proven that long-term occupational exposure to
bioaerosols in composting sites can adversely affect health
(Schlosser et al., 2009). A recent study on bioaerosols
found that Fusarium graminerum and Stenotrophomonas
rhizophila had high bioaerosolization indexes during
sludge biostabilization, which might cause risks to
human health (Lu et al., 2021). In addition, inhalable
dust could also be used as an indicator of culturable
bacterial concentrations in the air during sludge compost-
ing (Schlosser et al., 2018). Although many studies have
focused on the exposure risk of bioaerosols in sludge
treatment units, there is still a lack of comprehensive data
to assess the transmission and exposure pathways and
health risks of pathogenic microorganisms. Additionally,
the characterization and assessment of health risk by
nonindicative pathogenic microorganisms should also be
considered.

(Continued)
Treatment Mechanisms Reference

Electrochemical
pretreatment

Generation of ohmic heat in electrochemical reactions Navab Daneshmand et al., 2012;
Yin et al., 2018; Zeng et al., 2019

Formation of different oxidants such as free chlorine
and reactive oxygen species

Navab Daneshmand et al., 2012;
Yin et al., 2018; Zeng et al., 2019

Extremely high or low pH at the interfaces of electrode
plates

Navab Daneshmand et al., 2012;
Yin et al., 2018; Zeng et al., 2019

Chemical oxidation Destruction of the microorganism structure and degradation
of biomacromolecules

Hu et al., 2020; Luukkonen et al., 2020
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4.2 Pathogen risk associated with the land application of
sludge

The ecological and health risks involved in the post
application of sludge should be carefully evaluated.
Currently, sludge landfills are prohibited in an increasing
number of cities, and many WWTPs are planning to
upgrade sludge treatment facilities to harvest the resources
and energy in sludge. Land application has been widely
implemented for global sludge reclamation and disposal.
Sludge has been widely used as fertilizer on land after
composting (Major et al., 2020). The process of concen-
tration, anaerobic digestion, dehydration, and land applica-
tion is considered to be one of the priority technical routes
in China (Yang et al., 2015). The risks of different
pathogen infections toward plants, animals and humans
involved in land application have received great concern.
While introducing undisinfected sludge on land, the
desorption and leaching of adsorbed viruses may occur
and potentially pollute water sources (Chetochine et al.,
2006). Additionally, the risks of pathogenic aerosol
inhalation occur while putting sludge into containers,
spraying sludge, and mixing the soil (Brooks et al., 2005;
Paez-Rubio et al., 2007). Brooks et al. used coliphage MS-
2 as an indicator virus and reported the low risks of one-
time and annual infection by inhaling sludge aerosols at a
downwind distance above 30.5 m (Brooks et al., 2005).
Unfortunately, there is still much uncertainty due to
insufficient information on pathogen species and concen-
trations, exposure pathways, and corresponding dose–
response effects. In terms of the risk of different exposure
routes, direct ingestion is generally considered greater than
aerosol transmission, indirectly contaminating ground-
water and plants (Brooks et al., 2012). However, the
possibility of people directly ingesting contaminated soil is
low, so bioaerosols are considered the most concerning
exposure risk related to the land application of sludge
(Tanner et al., 2008; Viau et al., 2011).
In addition, the ingestion of agricultural crops using

sludge as fertilizer sources and soil conditioners may still
have pathogen infection risks. The risk of infection by
worm eggs is relatively high while eating lettuce grown on
sludge-improved soil. It may take as long as 30 to 40 days
to reduce this risk to the WHO tolerable risk value of 10–4

(Amoah et al., 2018). The application of sewage sludge on
land increased the exposure risk of root crops to
Cryptosporidium oocysts and Salmonellas by counts of
0.033 and 0.070 kg–1, respectively (Gale, 2003). However,
the infection risk encountered by eating vegetables on soil
treated with sludge application was reported to be low
based on the intake of 283.7 g of vegetables per person per
day (Gale, 2005). Biosolids upon anaerobic digestion and
aerobic digestion were used for farmland, and ARGs were
observed by qPCR and high-throughput sequencing
analysis to rarely transfer to vegetables during harvest
(Lau et al., 2017). Comparatively, the use of raw and

anaerobically digested sludge may greatly increase the
ARG abundance in harvested vegetables compared to land
without sludge application, and this phenomenon disap-
pears after one year of application (Rahube et al., 2014).
Therefore, the spreading risk of pathogens and ARGs from
sludge to crops and vegetables may be affected by many
factors, such as the sludge treatment processes, the amount
of applied sludge, and the time intervals between sludge
application and harvesting.
As mentioned in the USEPA 503 regulation, Class A

biosolids must be virtually pathogen-free, whereas Class B
biosolids may contain pathogens (Iranpour and Cox,
2007). When Class B biosolids are applied to land, the
risk to public health and the environment may be
minimized if the guidelines to reduce exposure are
followed, e.g., restricting site entry and reducing vector
attractants (USEPA, 1994). However, the standards for
Class A biosolids only include the detection of fecal
coliform and Salmonella, so Class A biosolids may have
other risks in considering the various pathogens and the
large number of unknown microorganism species in
sludge. It was reported that by measuring the concentra-
tions of fecal coliform indicators, pathogen-free Class A
biosolids can hardly be confirmed, and fecal coliform
inactivation is insufficient to assure safe pathogen
inactivation (Viau et al., 2011). In addition, the regrowth
of pathogenic microorganisms in treated biosolids tended
to occur in the case of improper storage (Sidhu et al., 2001;
Zaleski et al., 2005). After being treated by thermophilic
anaerobic digestion, the density of fecal coliforms in
biosolids may meet the Class A biosolid requirement.
However, the density may unfortunately increase to as high
as 107 MPN/g dry weight after the application of biosolids
to farmland, which indicates the regrowth of fecal
coliforms during transportation (Iranpour and Cox,
2006). Upon the application of biosolids to land, the
regrowth of Salmonella was observed to be on the time
scale of 10 to 39 weeks, whereas that of E. coli was
between 19 and 25 weeks (Eamens et al., 2006). However,
the regrowth potential of different pathogen species has not
been carefully evaluated, and the quantitative standard to
rediscover these pathogens and assess their risks may be of
crucial importance.

4.3 Potential application of quantitative microbial risk
assessment in sludge

To achieve a reliable evaluation of risks, a better under-
standing of the migration, transmission, exposure and
regrowth of pathogens in sludge treatment and biosolid
land application is valuable. Quantitative microbial risk
assessment (QMRA) has been widely employed to assess
health risks in different environments and the safety of
food (Lammerding, 2006; Elliott et al., 2019; Chen et al.,
2021), and the development of standard methods such as
QMRA is expected to improve the reliability of risk
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assessments on sludge land applications. QMRA by
mathematical methods may quantitatively evaluate the
probability of infection, disease, and death caused by
pathogenic microorganisms and integrates information on
the occurrence, infection, exposure assessment, and dose–
response model of pathogens (Eisenberg et al., 2008;
Hamilton and Haas, 2016). QMRA has been applied to
assess the risk of SARS-CoV-2 in WWTPs in South Brazil;
the viable virus concentrations were determined to be in
the range from 0.04 to 5.23 PFU$mL–1 at the WWTP
entrance, and the risk in aggressive and extreme situations
was higher than the tolerable value (Zaneti et al., 2021).
QMRA has also been applied to assess the aerosol
exposure risk in different units of WWTPs, including
sludge treatment units; the hazard index of exposure was
higher than 1, and L. pneumophila exhibited a higher risk
of infection and disease in men than in women (Xu et al.,
2020). This may be ascribed to the higher exposure dose
considering that men have a higher average respiratory
volume (Yan et al., 2021). Regarding the exposure risk of
S. aureus aerosols, staff at sludge storage yards have higher
risks than field engineers (Yan et al., 2021). QMRA may
also be applied to assess the exposure risk involved in the
land application of sludge. After applying Class B
biosolids to land, enteroviruses and Campylobacter jejuni
caused the greatest risk in a short time among these
pathogenic microorganisms, and the direct consumption of
soil was the greatest one-time risk, with a value above 10–1

(Brooks et al., 2012). In addition, the exposure risk of
viruses was mainly derived from biosolids, and the land
application of biosolids showed a higher risk than manure
due to the high infectiousness of viruses (Tanner et al.,
2008; Brooks et al., 2012).
However, most risk studies of sludge treatment and

disposal processes only focused on one or a few
pathogenic microorganisms, and the representativeness of
the pathogenic microorganisms used requires further
verification (Yang et al., 2019; Xu et al., 2020; Yan
et al., 2021). Selecting more pathogenic microorganisms
with a wide distribution, high abundance and high toxicity
is recommended for risk assessment after a more
comprehensive test of sludge and environmental samples
is performed. Because the values of the parameters in the
model vary with pathogenic microorganisms (Armstrong
and Haas, 2007; Van Abel et al., 2017; Hamilton et al.,
2019), the dose–response model is very important for
newly discovered pathogenic microorganisms. For high-
risk pathogens without regulations and standards in sludge,
the corresponding dose–response model needs more
research to increase the reliability of risk assessment.
When analyzing exposure pathways, all the possibilities of
the three media, solid, liquid and gas, as well as the
influence of the regeneration of pathogenic microorgan-
isms at different time nodes, should be fully considered
(Eisenberg et al., 2008). To control the exposure of
pathogens in sludge, a hazard analysis and critical control

point (HACCP) system can be adopted to control exposure
risks at key points (Tsitsifli and Tsoukalas, 2021). More
representative pathogens, more comprehensive exposure
pathways and more accurate dose–response models can
make risk assessments during sludge treatment and
disposal more reliable.

5 Conclusions and perspectives

The risk control of pathogenic microorganisms in sludge is
crucially important to achieve resource and energy
recovery, minimize adverse environmental effects, and
ensure public health safety. This review clarifies the
diversity and detection methods of pathogenic micro-
organisms in sludge, including pathogenic bacteria,
viruses, and protozoans. The control performance and
inactivation mechanism of various sludge treatment
processes on pathogenic microorganisms are analyzed
and compared with emphasis. And the health risks
involved in sludge treatment and land application are
discussed. These results may be valuable for pathogen risk
control with regard to sludge management.
Unfortunately, there is still a lack of sufficient research

on the detection methods, occurrence, survival, transfer,
and infection of unconventional pathogens in sludge, such
as some nonenveloped viruses, which restricts us from
proposing an effective strategy to avoid infection in this
pandemic period. The control performance of different
sludge treatment processes on pathogens can provide us
with some references. Although most sludge treatment
processes can inactivate indicator pathogens through
different mechanisms, such as high temperature, extreme
pH, and competition of microorganisms, combined treat-
ment processes are still suggested as a strategy to enhance
control performance. Finally, it is important to update the
guidelines and standards to regulate the treatment and
disposal of sludge based on fundamental research, field
investigation and theoretical modeling. For a more
comprehensive and reliable quantitative assessment
model, it is important to combine diverse species and
concentrations of pathogens, exposure pathways, and
dose–response data in the future.
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