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Abstract Among various genera of free-living amoebae prevalent in nature, some members are identified as
causative agents of human encephalitis, in whichNaegleria fowleri followed by Acanthamoeba spp. and Balamuthia
mandrillaris have been successively discovered. As the three dominant genera responsible for infections,
Acanthamoeba and Balamuthia work as opportunistic pathogens of granulomatous amoebic encephalitis in
immunocompetent and immunocompromised individuals, whereas Naegleria induces primary amoebic
meningoencephalitis mostly in healthy children and young adults as a more violent and deadly disease. Due to
the lack of typical symptoms and laboratory findings, all these amoebic encephalitic diseases are difficult to
diagnose. Considering that subsequent therapies are also affected, all these brain infections cause significant
mortality worldwide, with more than 90% of the cases being fatal. Along with global warming and population
explosion, expanding areas of human and amoebae activity in some regions lead to increased contact, resulting in
more serious infections and drawing increased public attention. In this review, we summarize the present
information of these pathogenic free-living amoebae, including their phylogeny, classification, biology, and
ecology. The mechanisms of pathogenesis, immunology, pathophysiology, clinical manifestations, epidemiology,
diagnosis, and therapies are also discussed.

Keywords free-living amoebae; central nervous system infection; primary amoebic meningoencephalitis; granulomatous
amoebic encephalitis

Introduction

As an easily neglected source of infection, free-living
protists exist worldwide and potentially cause infections in
humans and other animals, leading to serious clinical
problems [1]. Their infection has low morbidity but is
usually characterized by a relatively high mortality rate,
thereby becoming a huge challenge for efficient diagnosis
and therapy [2]. Among these pathogenic and opportunis-
tic protozoa, free-living amoebae (FLA) are a conspicuous
group with a pattern of primary existence as free-living
organisms in nature. They occasionally invade a host and
live as parasites within the host tissue, which explains why
they are also called amphizoic amoebae [3]. FLA can cause
localized systemic diseases and disseminated infections.
The skin, eyes, lungs, kidneys, and sinuses are all
predilection sites. However, the most misleading and

almost always fatal infections caused by FLA are those
“brain-eating” ones of the central nervous system (CNS)
occurring in immunocompetent and immunocompromised
individuals, such as patients with AIDS [4].
From the numerous genera of FLA in nature, some are

extensively known to cause CNS diseases in humans and
animals. Among them are several species of Acantha-
moeba (such as Acanthamoeba castellanii and Acantha-
moeba culberstoni) and only one species of three genera,
namely, Balamuthia (Balamuthia mandrillaris), Naegleria
(Naegleria fowleri) and Sappinia (Sappinia pedata). The
former three genera are also the dominant FLA pathogens
for humans and animals [3,5]. Known as a “brain-eating”
amoeba, N. fowleri is the causative agent for the invasive
and fulminating fatal form of meningoencephalitis called
primary amoebic meningoencephalitis (PAM), which
primarily occurs in healthy children and young adults
[6]. By contrast, Acanthamoeba and B. mandrillaris are
responsible for a chronic infection in immunocompetent
and immunocompromised hosts known as granulomatous
amoebic encephalitis (GAE). S. pedata has been identified
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in only one case of an immunocompetent male in Texas,
USA, causing a unique GAE encephalitis with a favorable
clinical outcome. The causative agent of this amoeba-
associated encephalitis case was originally identified as
Sappinia diploidea, whereas an affiliation to Sappinia
pedata has later been proven through molecular biology
[7,8]. Some recently described FLA species have also been
discovered to invade humans and other animals occasion-
ally. Among them, Paravahlkampfia francinae is the only
species in its genus known to cause infection in the CNS.
The species was isolated from the cerebrospinal fluid
(CSF) of a patient with PAM-like symptoms, which is
usually caused by N. fowleri [9].

Phylogeny and classification

Amoebae were first described shortly after the invention of
the microscope. Since then, increasing numbers of
amoebae have been named, described, and classified
[10]. Nevertheless, before the innovation of molecular
phylogeny, a great variety of FLAwere generally described
and sorted in the Rhizopoda clade of the Sarcodina
supergroup in the original classification [11]. Morpholo-
gical traits such as pseudopodium type, cell shape at
different life stages, and amoeboid movements were
extensively used for the subdivided FLA classification at
that time [12]. In recent years, molecular evidence and an
associated re-evaluation of morphology have enabled a
more molecular-based and a more validated morphologi-
cal-based classification on the relationships among higher-
level groups of amoebae, leading to the revision and
improvement in FLA classification [13,14]. Given the
much richer databases of 18S rRNA gene sequences, they
have become the most extensively used marker gene for
the single-gene phylogeny investigation of FLA. More-
over, the burgeoning technology of mitochondrial genome
sequencing has been implemented in a series of studies and
shown to serve as a potent and scientific source of
information for an evolutionary and phylogenetic classi-
fication. However, available data remain insufficient to this
day, with only several dozens of mitochondrial genomes
for FLA [15,16]. As a result, FLA have been classified into
four clades in the eukaryotic tree of life, focusing primarily
on Amoebozoa, Excavata, and to a lesser extent, Rhizaria
and Opisthokonta [14,17].
Among the four clades of amoeba, Amoebozoa is the

most studied and diverse clade with a gross estimate of
about 17 000 species [18]. Along with the systematic
implementation of high-throughput sequencing technol-
ogy, a reconstructed phylogenetic classification enables a
more detailed overview of Amoebozoa supergroup
diversity and taxonomic relationships [19,20]. Acantha-
moeba spp. and B. mandrillaris, as single-celled, flattened
naked amoebae causing CNS diseases, belong to Amoe-
bozoa in the line of Order Acanthopodida, Class

Centramoebia, Phylum Discosea, Amoebozoa clade in
the Amorphea domain of eukaryotic organisms. Among
Excavata, Class Heterolobosea encompasses approxi-
mately 140 described species [21]. Compared with
Amoebozoa, molecular approaches that contribute to
confirm a detailed taxonomy within the clade remain
lacking for these Heterolobosea groups. Heterolobosea are
widely known mostly because of the representative N.
fowleri with the line of Family Vahlkampfiidae, Order
Schizopyrenida, Class Heterolobosea, Phylum Percolozoa,
Excavata clade in the Amorphea domain of eukaryotic
organisms [22]. Molecular and morphological evidence
also systematically and extensively supports the diversity
of other FLA’s phylogenetic classification. There are two
remaining genera that cause CNS infection, S. pedata
(Order Thecamoebida, Class Flabellinia, Phylum Disco-
sea) and P. francinae (Family Vahlkampfiidae, similar to
the orientation of N. fowleri).
Lacking distinctive morphological or behavioral char-

acters, FLA such as filose and reticulose cercozoans are
found in the Rhizaria clade with a scattered distribution in
different phylogenetic groups. A clear estimate or reliable
formulation of FLA diversity affiliated with Rhizaria
remains lacking [23,24]. According to the revisions of
classification and diversity in 2019, FLA in Opisthokonta
are incorporated in two well-supported clades named
Holozoa and Nucletmycea [14,25].

Biology and ecology

Most FLA such as the above-mentioned Acanthamoeba
spp., B. mandrillaris, and S. pedata have two develop-
mental stages: the trophozoite as a nutrition feeding form
and the cyst as a resting form. With a general size of some
dozens of microns, the trophozoite is an infective stage
engaged in amoeboid locomotion, whereas a cyst is a
dormant stage against the harsh environment with a
smaller size of about more than 10 μm [26]. Some
amoebae like Naegleria spp. have an additional flagellate
stage; the trophozoite transforms into this temporary motile
stage when a nutritional deficiency occurs in the environ-
ment, but water is present [27]. With a length ranging
within 10–16 μm, N. fowleri’s flagellate stage is usually
pyriform. They neither divide nor feed, generally reverting
to trophozoites within an hour or less. As a metabolically
active stage, the trophozoite feeds primarily on Gram-
positive and Gram-negative bacteria, as well as on algae,
fungi, and other protozoa [28]. Sometimes they even feed
on relatively large organisms, such as nematodes and
planktonic rotifers in aquatic systems [29,30]. The
trophozoite multiplies by binary fission and sometimes
actively and constantly changes its size and shape [26]. In
most FLA such as Acanthamoeba and Naegleria, cysts
generally have two layers: the ectocyst and the endocyst.
The ectocyst forms during the initial stage of encystment
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and appears as an amorphous and discontinuous layer.
Although the endocyst varies in shape such as polygonal or
spherical, it has a tiny granular texture with a more
consistent and thicker structure than the former [31,32].
Flush pores have been found in the cyst wall of N. fowleri.
Some species like B. mandrillaris even have a third layer
between the outer and inner ones as the mesocyst in an
amorphous shape. These structures may contribute to the
resistance to biocides contained in contact lenses and
bronchoscope disinfectants, as well as chlorination and
sterilization agents of domestic water systems and hospital
water-treatment networks [33–36]. Encystment occurs
under the conditions of imbalanced pH, unsuitable osmotic
pressure, or inadaptable temperature; it also occurs under
nutritional deficiency and in the presence of antiamoeba
agents [37]. By contrast, FLA excyst when environmental
conditions become favorable again.
FLA are omnipresent in soils, freshwater, marine waters,

inside vertebrates, and on the aerial parts of plants and
animals [38]. They have also been isolated from human
volunteers’ nasal mucosa and CSF [39,40]. The abundance
and diversity of these protists in the environment are
strongly related to temperature, moisture, precipitation,
pH, and nutrient availability [41]. As the main predators
controlling bacterial populations in soils, FLA are more
abundant in the rhizospheric zone and the surrounding
bulk soil because plants allow the growth of various plant
parasites such as bacteria and fungi on which amoebae
feed. However, they may also further penetrate the vadose
zone of groundwater systems, especially where bacterial
populations have reached a high density. In water, a
flagellate stage enables some FLA to swim at liberty,
whereas others have to be attached to suspended
particulates [38]. Attached FLA are also spread throughout
water columns in the first 30 μm of the water surface or on
the bodies of submerged animals and plants. Given the
need for attachment, FLA often live on biofilms and at
water–soil, water–air, water–plant interfaces. This life
habit of living at interfaces further results in difficulty
distinguishing their attributive environments. Biofilms
such as those on contact lenses and dental-unit waterlines
are supportive to FLA growth [42,43]. Some genera such
as Acanthamoeba spp. and Naegleria spp. have been
detected as well in treated waters like drinking water, tap
water, cooling towers, swimming pools, hydrotherapy
pools, and domestic water systems [35,44–46]. Unconven-
tional water sources such as sewage and aquaria are also
not spared from them [47].
Among all pathogenic FLA leading to human encepha-

litis, several species such as Acanthamoeba, B. mandril-
laris, and N. fowleri are the dominant ones of concern and
are thus massively studied (Table 1). In two forms of
encephalitis, N. fowleri acts as the agent causing PAM,
whereas Acanthamoeba spp. and B. mandrillaris are
identified to be the causative organisms of GAE.

Naegleria fowleri in PAM

The genus name Naegleria was first coined by Alexeieff in
1912 [48]. Forty-five years later, the earliest case of N.
fowleri infection was found in Australia [49]. Up to 2019,
around 430 cases of PAM have been reported worldwide,
with the USA and South Asia having the two most
conspicuous infection areas [35,50,51]. Evaluation of the
origin and evolution of Naegleria has revealed more than
40 species within the genus, whereas N. fowleri is the only
known species to infect humans and cause disease in the
CNS. Numerous studies on the molecular and genetic
characteristics of Naegleria spp. have been conducted in
recent years; some N. fowleri genomes such as ATCC
30863 and ATCC 30894 are already publicly available,
and others can be obtained by requesting the authors
[52,53]. Based on the length of the internal transcribed
spacer 1 and a 1 bp transition in the 5.8S rDNA, the most
accepted system for the identification of N. fowleri species
was created in 2011, which revealed the existence of at
least eight different genotypes unevenly distributed
throughout different continents [54,55]. Without evidence
of virulence differences among various N. fowleri types,
three genotypes (I, II, and III) are found in the USA, seven
genotypes (II, III, IV, V, VI, VII, and VIII) are found in
Europe, two genotypes (II and III) are found in mainland
Asia, and only one genotype (V) is found in the Oceania
and Japan. Five of these eight genotypes (I, II, III, IV, and
V) have been confirmed to cause PAM in patients [56,57].

Invasion pathways and pathogenesis

PAM targets the human CNS as water is identified to be the
most frequent route of infection in most PAM cases
[51,58]. During recreational water activities such as
swimming, diving, and water skiing, N. fowleri has the
ability to intrude into the human body by entering the nose
due to splashing or forcing of contaminated water within
the nasal cavity. In the form of trophozoites, infectivity is
initiated with the attachment onto the nasal mucosa,
followed by the locomotion along the olfactory nerve and
cribriform plate. The chemotactic response to nerve-cell
components then leads to the arrival on the olfactory bulbs
in the CNS [59–61]. As a result, the tissue necrosis and
neuron destruction caused by N. fowleri are reflected in the
ingestion of brain tissue, the release of cytolytic molecules,
and the fierce immune response of the host, giving rise to
severe inflammation [62,63]. However, individuals can
also be infected through a dry pathway of entering the
nasal passages by cyst-laden dust followed by excysting
and reaching the CNS similar to water infection [51,64].
When contaminated dust alights on the eye, cysts may also
enter the nasal part through the nasolacrimal ducts [51]. As
these dry infections tend to occur in regions with higher
temperatures like those in South Asia, people living in
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these areas are particularly at risk because they can do little
to avoid inhaling cysts. Fortunately, due to the consider-
ably higher incidence of nasal contact than the relevant
cases of PAM dry infection, a threshold effect seems to
exist because numerous activated amoebae are required for
valid penetration into the epithelium and invasion into the
brain. Thus, a high probability of cyst exposure may not
equate with a high risk of PAM disease [51].

The factors associated with the pathogenesis of N.
fowleri infection can be direct and indirect [65]. Direct
factors include contact-dependent mechanisms involving
adherence and phagocytosis and contact-independent
mechanisms involving various cytopathic enzymes. Con-
versely, indirect factors include phenotypic switching,
morphology, ubiquity, physiologic tolerance, chemotaxis,
and drug resistance. As the primary step for parasite

Table 1 Comparative features of three free-living amoebae and their pathogenic role in amoebic encephalitis
Naegleria fowleri Acanthamoeba spp. Balamuthia mandrillaris

Trophozoite stage Diameter 10–30 μm, speed
about 1.0 μm/s

Diameter 15–35 μm, speed
0.3–0.4 μm/s

Diameter 10–60 μm, speed about
0.25 μm/s

Cyst stage Diameter 7–15 μm, cysts not
formed in brain tissue

Diameter 10–15 μm, cysts
formed in brain tissue

Diameter 10–30 μm, cysts formed
in brain tissue

Flagellate stage Transformed from trophozoites Not found Not found

Environmental habitat Warm fresh waters, soil, dust Freshwater, soil, dusty air,
hospital and household
environments

Soil, freshwater

CNS infection Primary amoebic
meningoencephalitis (PAM)

Granulomatous amoebic
encephalitis (GAE)

GAE

Susceptible host Immunocompetent children
and young adults

Mainly immunocompromised
individuals

Immunocompetent and
immunocompromised individuals

Portal of entry Olfactory neuroepithelium Nasopharyngeal or cutaneous
epithelium

Mainly in cutaneous epithelium

Incubation period Days Weeks to months Weeks to months, even years

Clinical manifestations Headache, fever, nausea, nuchal
rigidity, personality changes,
seizures, coma, behavioral
abnormality

Headache, irritability, fever,
nausea, seizures, confusion,
ataxia, hemiparesis, abnormal
behavior

Headache, irritability, fever, nausea,
stiff neck, sinus infection, behavioral
abnormality

CSF Elevated WBCs, generally low
glucose level and high protein
concentration, detected
trophozoite, no flagellate
or cyst

Elevated WBCs and protein,
hydrocephalus, generally low
glucose level

Elevated WBCs and protein, generally
low glucose level

Neuroimaging Cerebral edema, multifocal
parenchymal and pseudotumor
lesions, nonspecific and unhelpful

Single and multiple space-
occupying or ring-enhancing
lesions, not specific

Single and multiple space-occupying or
ring-enhancing lesions, not specific

Diagnosis CSF examination for trophozoites
and polymorphonuclear leukocytes,
neuroimaging CT and MRI,
polyclonal and monoclonal
antibodies, PCR assays

Microscopic staining,
immunofluorescent microscopy,
neuroimaging CT and MRI,
PCR assays, trophozoite and cyst

Microscopic staining, immunofluores-
cent microscopy, neuroimaging, PCR
assays, metagenomic deep sequen-
cing, unsuitable for isolation and
culture in vitro, trophozoite and
cyst

Epidemiology Worldwide distribution
especially warm regions, hot
summer months

Worldwide distribution, any time
of year

Mainly on American continent

Estimated cases >300 >200 ~200

Case fatality rate >95% >90% >90%

Therapy Amphotericin B, azithromycin,
chlorpromazine, miltefosine,
rifampin, miconazole and
fluconazole

Voriconazole, sulfadiazine,
fluconazole, pentamidine,
itraconazole, rifampin,
meropenem, flucytosine,
liposomal amphotericin B,
and miltefosine

Fluconazole, pentamidine, sulfadiazine,
itraconazole, rifampin, azithromycin,
flucytosine, linezolid, liposomal
amphotericin B, and miltefosine

Prognosis Poor Poor Poor

WBC, white blood cell; CSF, cerebrospinal fluid; CT, computerized tomography; MRI, magnetic resonance imaging; PCR, polymerase chain reaction.
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cytopathogenicity, adherence onto target cells is one of the
first events during the invasion of N. fowleri [66,67]. A
comparison between pathogenic N. fowleri and another
nonpathogenic Naegleria reveals a differential ability of
adhesion and invasion [68]. Mediated by adhesins
expressed on the surface of N. fowleri, fibronectin (FN)
is considered an important extracellular matrix (ECM)
protein involved in the adherence onto epithelial cells [69].
Furthermore, FN receptors are known to be integrins, so
two integrin-like amoebic proteins are described as co-
localized to the focal adhesion-like structures assisting in
the adherence of N. fowleri [68]. In the study, a 60 kDa FN
binding protein is observed to play a significant role in
amoeba-mediated host cell cytotoxicity, and protein kinase
C in N. fowleri is identified to improve the ability of
adherence and cytotoxicity on host cells as a downstream
component of integrin-like protein. With the impact of
anti-integrin antibody, the reduced ability of N. fowleri to
bind to ECM further supports this point [68]. A 23 kDa
plasma membrane protein is probably involved in the
cytotoxicity of N. fowleri [70]. In binding assays of
different multivalent lectins, carbohydrates are also
identified to participate in adherence and cytotoxicity
[71,72]. The carbohydrate expression of N. fowleri and N.
gruberi are confirmed to be differential, among which the
expression of mannose residues is essential for N. fowleri
adherence onto the nasal mucosa.
Cytopathic enzymes play a crucial role in PAM

progression. Early in the initial stage of penetrating the
mucous layer, enzymes with mucinolytic activity like a 37
kDa cysteine protease may contribute to the avoidance of
the host response of N. fowleri [73,74]. Mucin secretion is
suggested to be an important protective barrier against
infection, whereas one study has shown that the mucino-
lytic activity of N. fowleri is prominently higher than N.
gruberi that leads to evasion. Naegleriapores A and B, two
pore-forming polypeptides of N. fowleri processed from
separate multipeptide precursor structures, have been
found to share similar structural properties with antimi-
crobial and cytolytic polypeptides [75]. The glycosylation
degree of these naegleriapores also reflects their stability
against degradation by proteases [76]. Phospholipases are
found to be related to the extensive demyelinization in the
white matter of PAM patients, and lysophospholipase and
sphingomyelinase are identified as factors inflicting
damage to the lipid-rich cytoplasmic membrane of cells
and the demyelinization of nerve tissue after several years
[77,78]. Neuraminidase activity, detected in pathogenic N.
fowleri, is related to reported glycolipid alterations in
demyelinating diseases, and the activity is maximal at pH
4.5–5.0 and is ion independent [79]. Although the role of
cysteine proteases in N. fowleri has not been clearly
defined, they are also suggested to participate in PAM
progression [80]. The capability of N. fowleri to induce
lactate dehydrogenase release and intracellular reactive

oxygen species (ROS) accumulation reportedly gives rise
to the death of host target cells [81]. Another study has
revealed that electrodense granules are secreted by N.
fowleri trophozoites in the course of brain-tissue invasion,
and then they make contact with epithelial cells or collagen
substrates to cause damage [82]. Trophozoites ofN. fowleri
are found to produce nitric oxide (NO) in vitro and react to
the NOS2 antibody, suggesting that NO may participate in
PAM pathogenesis [83].
N. fowleri’s capacity of active locomotion and phago-

cytosis of various host cells also involve host-cell damage
[66,84]. As a sucker apparatus protruding from the surface
of N. fowleri, food cups play an important role in the
piecemeal consumption of target cells [85,86]. Along with
polymerization from monomeric G-actin into filamentous
F-actin, the consumption process is actin dependent, and a
360 bp nfa1 gene has been identified to be expressed on
pseudopodia encoding Nfa1 protein with a size of 13.1
kDa [87]. Several years later, one study has further
supported the idea that anti-Nfa1 antibody and gene
silencing of nfa1 could reduce host-cell damage induced
by N. fowleri [88–90]. As phagocytosis depends on the
dynamics of cytoskeleton rearrangements, myosin and
tubulin have been identified in trophozoites, whereas actin
exists in the cytoplasm, pseudopodia, and food-cup
structures [91]. Consisting of a 1.2 kbp coding sequence,
the nf-actin gene produces a 50 kDa recombinant fusion
protein (Nf-actin), which has been found to cluster in the
food-cup structures of N. fowleri under fluorescence
microscopy [92]. The phagocytic activity of nf-actin-
overexpressing N. fowleri is sharply increased compared
with that of control groups comprising wild-type ones.

Host immune response

N. fowleri is an FLA existing worldwide, so numerous
individuals are exposed to N. fowleri in the course of their
lives, either through direct contact such as soil or water or
through wind-blown cysts landing on the nasal mucosa. In
a study implemented among Czechoslovakian students and
psychiatric patients, the positive antibody to Naegleria is
detected to range from 1% to 4%. Conversely, another
study implemented in the USA exhibits a much higher
percentage of positive responses to the pathogenic N.
fowleri and the nonpathogenic Naegleria lovaniensis, i.e.,
more than 80% of serum samples from hospitalized
patients [93,94]. In general, because of the swiftness of
PAM and the rarity of surviving patients, the comprehen-
sion of the mechanisms underlying early immune failure
and the factors leading to subsequent fulminant inflamma-
tion is challenging. Fortunately, a remarkable similarity
exists between PAM animal models and human infections
[63].
Although the mechanism of PAM pathogenesis is not

well understood, innate and adaptive immune responses
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have been identified to participate in the defense against N.
fowleri invasion [95]. However, N. fowleri belongs to
eukaryotes instead of bacteria or viruses, so most
mammalian pattern-recognition receptors do not recognize
it as foreign. During the initial stages of infection, the host
response is activated by the secretion of mucus trapping the
trophozoites, and mucus contains mucin as the major
component [61,73]. Mucus is considered as an effective
protective barrier resisting most PAM erosion, and
invasion occurs only when the number of amoebae is
overwhelmingly sufficient to the innate immune response
(Fig. 1A). Early in respiratory epithelial cells, the
activation of innate defense has been induced by N.
fowleri, leading to ROS production and then expressing the
MUC5AC gene and protein, as well as the pro-inflamma-
tory mediators interleukin-8 (IL-8) and interleukin-1β (IL-
1β) [96]. The canonical Toll-like receptor (TLR) 4 pathway
has also been demonstrated to express and produce the
proinflammatory cytokines and β defensin-2 in a time-
dependent manner [97]. Eosinophils and neutrophils
participate in the inflammatory process induced by
trophozoite invasion, and activated neutrophils play
notable roles in early-stage infections [61]. Neutrophils
surround N. fowleri through contact-dependent and con-
tact-independent mechanisms and then engulf them
[62,65,98]. Moreover, although a single neutrophil is
insufficient for phagocytosing an entire N. fowleri, the
cluster of several neutrophils is adequate to rupture N.
fowleri by pinching off and engulfing them part by part.
Complement activation especially that mediated by
antibodies has been identified to enhance neutrophil
activity against amoebae, and the cleavage products of
complement also play a role as a chemotactic impetus for
immune-cell recruitment [99,100]. Tumor necrosis factor-
α (TNF-α) augments neutrophil activity by enhancing the
production of oxygen radicals that destroy N. fowleri
[101]. DNA, myeloperoxidase, histones, and elastase
enzymes are all found to play roles in the definitive
mechanism of neutrophils [102]. The feature of macro-
phages in the host defense against N. fowleri has also been
demonstrated, among which microglial cells are the ones
located in the brain [103]. During exposure to N. fowleri
lysates, microglial cells release TNF-α, IL-1β, and IL-6,
whereas astrocytes lead to AP-1 activation and the
subsequent expression of IL-1β and IL-6 in an extracellular
signal-regulated kinase, c-Jun N-terminal kinase, and p38
mitogen-activated protein kinase (MAPK) dependent
pathway [104].
Due to the swift and lethal disease course of PAM,

research on the adaptive immune response to N. fowleri
infection is difficult (Fig. 1B). Circulating antibodies have
been identified as the dominant protective adaptive
immune mechanism by immune serum-transfer experi-
ments [105,106]. Among them, immunoglobulin M (IgM)
is the primary antibody isotype generated by N. fowleri

infection [2]. Although IgM contributes to the agglutina-
tion of N. fowleri and complement activation, its function
is severely hindered by its high molecular weight of about
900 kDa, which confers difficulty in crossing the blood–
brain barrier (BBB) [107]. Together with polymorpho-
nuclear cells (PMNs), IgA and IgG antibodies could
reportedly avoid the attachment of N. fowleri to the nasal
epithelium [108–110]. Secretory immunoglobulin A
(SIgA) can inhibit the binding of N. fowleri to collagen
type I and block the proliferation of N. fowleri [111,112].
By forming neutrophil extracellular traps, IgG mediates
PMN activation, which may be a crucial antimicrobial
response against N. fowleri [113]. The ability to stimulate
the migration and maturation of antigen-presenting cells
(APCs) such as macrophages and dendritic cells is related
to the enhanced adaptive immune response against N.
fowleri [114]. Amoebic surface antigens seem to favor T-
independent responses, and cell-mediated immunity
against N. fowleri is observed in the form of delayed-
type hypersensitivity [115]. Unfortunately, further studies
on the functionality of amoeba-specific CD4+ T cells are
still lacking.
N. fowleri has evolved a series of effective mechanisms

to cause the evasion of the host immune system, so early
failure occurs in the detection of parasites and the use of
effective antiamoeba mechanisms [62]. Except for the
mucolytic activity toward nasal mucosa, virulent N. fowleri
are resistant to subsequent complement-mediated lysis by
expressing complement-regulatory proteins and shedding a
membrane-attack complex from C5b to C9 on vesicles
[106,116,117]. N. fowleri can also evade host immune
defenses by internalizing surface-bound antibodies. For
example, the antigen–antibody complex of SIgA can be
eradicated from the surface of N. fowleri by capping and
then internalizing surface-bound antibodies [112,118,119].
As opposed to the early stage, the host immune system
activates an acute inflammatory reaction against N. fowleri
in the later course of PAM, which plays a crucial role in
inflicting damage to CNS tissue [2,65]. At this stage,
macrophages of the olfactory region are inclined to recruit
an intense neutrophil influx [120]. With all the acute
inflammatory cytokines produced by local and recruited
leukocytes, the release of various tissue-destructive
lysosomal products induces extensive cerebral edema
and neuronal tissue damage. Acute inflammatory cells
that are recruited as part of chemotaxis exhibit a release
reaction of lysosomes and cytokines, causing the activation
of the complement cascade. This process contributes to the
BBB breach and further results in extensive cerebral
damage in PAM patients (Fig. 1C). After BBB breach,
neutrophils and macrophages become the predominant
leukocytes infiltrating in the neural tissue. Stimulated by
fowlerstefin, microglial cells also produce proinflamma-
tory cytokines through the nuclear factor-κB- and AP-1-
dependent MAPK signaling pathways, and then they can
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exacerbate the inflammatory response in tissues infected
with N. fowleri [121].

Pathophysiology and clinical manifestations

Neurological symptoms of PAM present as acute and
fulminating hemorrhagic meningoencephalitis, which
occurs primarily in healthy children and young adults
having a contact history with contaminated water and also
in other individuals like infants [122,123]. The disease

generally starts within 5–7 days from the initial contact and
sometimes as short as 24 h [2]. Initially, a sudden onset of
PAM symptoms occurs; these symptoms include severe
bifrontal or bitemporal headaches, nuchal rigidity, chills,
and high fever, followed by nausea, vomiting, weakness,
fatigue, or behavioral abnormalities including restlessness
and irritability [57,124–126]. Except for nuchal rigidity,
other positive meningeal irritation signs including the
Kernig sign and Brudzinski sign can also be detected
sometimes along with the Babinski sign [127]. As the

Fig. 1 Model of parasite molecules and host components in invasion by N. fowleri. (A) Representative scheme of olfactory epithelium invasion by
trophozoites. As the primary step of contact, the penetration into the mucous layer occurs when trophozoite number is overwhelmingly sufficient in the
presence of parasite molecules, including adhesins, lectins, and mucinolytic enzymes. Once the barrier is disrupted, trophozoites attach, separate, and
lyse epithelial cells moving toward the basal lamina with the participation of lectins, lipolytic enzymes, complement-regulatory proteins, integrin-like
proteins, protein kinase C, naegleriapores, N. fowleri antigen-related protein 1 (Nfa1), and actin. IgA, IgG, and IgM with the ability of potentially
obstructing the attachment to the olfactory epithelial surface are secreted in the airway. (B) Representative scheme of trophozoites invasion in blood.
Trophozoites follow the blood stream and carry out adherence and cytotoxicity toward blood–brain barrier. Similar to those participating in epithelial
invasion, the parasite molecules involved in the endothelial invasion process include cysteine protease, fibronectin-binding protein, naegleriapores,
carbohydrates, complement-regulatory proteins, lipolytic enzymes, Nfa1, and nitric oxide. Trophozoites induces lactate dehydrogenase release and
intracellular reactive oxygen species (ROS), whereas ROS is related to the expression of MUC5AC gene and protein and the proinflammatory
mediators interleukin-8 and interleukin-1β. Except for various circulating antibodies, neutrophils, eosinophils, monocytes, and macrophages are
activated in response. The canonical Toll-like receptor 4 pathway expresses and produces proinflammatory cytokines and β defensin-2 in a time-
dependent manner. (C) Representative scheme of trophozoite invasion in cerebrospinal fluid. After gaining access to neuron and gliacyte, trophozoites
proliferate and finally provoke an acute inflammatory reaction consisting of monocytes, neutrophils and eosinophils, resulting in damage to CNS
tissue. Parasite molecules such as actin, neuraminidase, and lipolytic enzymes are involved in the process. Considering that a single neutrophil is
insufficient for phagocytosing an entire parasite, the cluster of several neutrophils is needful as a reinforcement and activity can be enhanced by tumor
necrosis factor-α and complement activation.
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disease progresses, it leads to photophobia and later
neurological abnormalities, such as lethargy, confusion,
coma, diplopia, seizures, and bizarre behavior [2,126,128].
Cranial nerve palsies may be the sign of brain edema and
herniation with intracranial pressure for 600 mm H2O or
even higher. Finally, patients die within a week.
Analysis of predilection sites in brains of N. fowleri

infection has revealed that the frontal lobe is the most
favorable destination in the majority of cases, followed by
the parietal lobe and corticomedullary junction [129].
Hydrocephalus is also observed in 27% of selected cases.
The observed lesion sites include the base of the
orbitofrontal and temporal lobes, base of the brain,
posterior fossa, hypothalamus, midbrain, pons, medulla
oblongata, and upper portion of the spinal cord [130,131].
Autopsies of PAM cases demonstrate that the cerebral
hemispheres are usually soft, swollen, edematous, and
severely congested with severely congested leptomeninges
[2,132,133]. Limited purulent exudates can be found
microscopically within the cerebral hemispheres, base of
the brain, brainstem, cerebellum, and upper portion of the
spinal cord, which contain primarily neutrophils followed
by eosinophils, macrophages, and lymphocytes [134].
Olfactory bulbs and orbitofrontal cortices reveal changes
such as hemorrhagic necrosis surrounded by purulent
exudates [2]. Numerous N. fowleri trophozoites without
the presence of polymorphonuclear leukocytes can be
found in edematous and necrotic neural tissues; sometimes
they also appear in Virchow–Robin spaces with the ability
of surrounding blood vessels but not causing an inflam-
matory response. Brain tissue, meninges, and CSF are all
suitable for N. fowleri proliferation, and the amoebae can
be detected and cultured from brain tissue and CSF
samples obtained postmortem [26,135]. By contrast,
flagellates or cysts in brain tissue and CSF have not yet
been detected [136].

Diagnosis

Due to the lack of distinctive clinical features, PAM is
easily confused with other bacterial or viral meningoence-
phalitis in most cases; thus, a complete and precise clinical
history is essential for diagnosis. Relevant information
should contain any recent patient contact with freshwater
and history of upper respiratory tract diseases such as
rhinitis and allergies, especially in children and young
adults [67]. In early-stage N. fowleri infection, a computed
tomography (CT) scan is usually performed, and then it
leads to cerebral edema with obliteration of cisterns as the
disease progresses. The sulci and adjacent gray matter are
also intensely enhanced with a normal-sized ventricle
[137]. Combined with the images of magnetic resonance
imaging (MRI), multifocal parenchymal lesions, pseudo-
tumor lesions, hemorrhagic infarcts, meningeal exudates,
and necrosis are visible in the brains of PAM patients with

edema and hydrocephalus [67,138]. Unfortunately, these
neuroimaging methods cannot distinguish meningitis cases
with different etiologies from one another [139].
Among PAM cases infected with N. fowleri, 63.7% are

diagnosed postmortem and 36.3% are diagnosed premor-
tem, whereas microscopy is implemented successfully in
36.4% of postmortem cases [129]. Thus, observing motile
amoeba trophozoites in CSF samples by microscopy is the
most extensively and successfully used premortem diag-
nostic method. Generally, CSF may have a relatively high
pressure with low glucose and high protein concentration,
whereas lumbar puncture can be performed under the
condition of low CSF pressure [3]. The CSF of PAM
patients exhibits various abnormal colors ranging from
gray and yellowish-white in early-stage infection to red in
the later stage of infection due to the significant increase of
erythrocytes [57,140,141]. During PAM, the count of
erythrocytes can increase from 250 cells per mm3 to 24 600
cells per mm3 [2]. By staining the fixed samples with
Giemsa, Wright, trichrome, periodic acid–Schiff, or
hematoxylin and eosin (H&E), microscopic examination
can reveal the presence of trophozoites in CSF
[26,142,143]. However, Gram staining is not applied in
the diagnosis due to its uncharacteristic amoebic nuclear
morphology [3,144]. Sometimes N. fowleri can be
confused with macrophages, so their nucleus that contains
a large, central, and round nucleolus starts to become
important for distinguishing from host cells [133,142].
Moreover, in the early stage of PAM, N. fowleri are
probably invisible and polymorphonuclear leukocytes can
be observed in the CSF primarily comprising neutrophils.
Phase-contrast microscopy is beneficial for optimizing
amoeba visualization [139,145]. Monoclonal antibodies
with the capability of recognizing a glycosylated epitope
on N. fowleri have been used to diagnose PAM infections
[146]. The technique can specifically identify N. fowleri in
CSF and serum and distinguish N. fowleri from other
Naegleria species, even from other FLA in various
samples [147–149]. Molecular techniques such as poly-
merase chain reaction (PCR), nested PCR, quantitative
PCR, and multiplex PCR assays are more sensitive, rapid,
and specific for N. fowleri detection in clinical and
environmental samples [57,125,150–152]. A PCR assay
can also reportedly detect N. fowleri successfully in
formalin-fixed paraffin-embedded brain sections [153].
Compared with quantitative PCR, next-generation droplet
digital PCR already exhibits better specificity [154].

Epidemic situation, therapy, and prognosis

As a globally distributed pathogen, N. fowleri is detected
throughout all continents except Antarctica, especially in
warmer equatorial countries [54]. Generally, most PAM
cases are acquired through recreational activities such as
swimming, diving, and water sports in freshwaters
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containing amoebae [50]. Nasal irrigation and ritual nasal
ablution by using tap water are also highly correlated in
some countries, such as India or Pakistan [35,155]. In
temperate countries such as those in northern and eastern
Europe, the growing environments of N. fowleri are limited
in waters warmed either artificially or naturally. Although
N. fowleri are inclined to be more active in warmer regions,
fewer cases are reported in extremely warm areas [50].
Meanwhile, except for the most frequent water-infection
route, dry infection can also occur through cyst-laden dust
entering the nasal passages. Dry infections tend to occur in
hot regions with a percentage of 8% in the Indian
subcontinent, whereas it is almost 0% in the USA [51].
With a highly seasonal life cycle, N. fowleri has been
proven to grow at 30 °C to 46 °C. Although trophozoites
degenerate within several hours below 10 °C, cysts can
survive at 4 °C for nearly 6 months [156–158]. Due to
global warming, average temperatures have increased and
large areas have hugely changed as either increased
drought conditions or increased precipitation leads to the
erosion and eutrophication of freshwater courses. Con-
sidering that habitats favored by N. fowleri are increasing,
climate change may inevitably result in the geographic
spread of the amoebae and increased PAM incidence [159].
Moreover, because of the misdiagnosis and lack of
autopsies, PAM is suspected to be much more common
than currently indicated, especially in developing countries
[58,160]. Through the isolation of N. fowleri from the
resident’s nares, it has been suggested that PAM
epidemiology is much more serious in warm and dry
regions, such as India and Nigeria [161–163].
Given that PAM is rarely confirmed during early-stage

infection, the untimely treatment of this acute and
fulminating infection contributes to a high mortality rate
of more than 90% [65]. Additionally, because of the low
incidence of PAM and economic constraints especially in
developing countries, interest in the development of such
anti-PAM drugs is lacking despite the utmost need. A
deficiency exists in clinical trials assessing the efficacy of
one therapeutic method over another [164]. Along with the
improvement of research on drug use, amphotericin B has
been identified as the primary choice used alone or in
combination with other drugs for treating PAM. In an
in vitro study, an amphotericin B concentration of at least
0.1 μg/mL can suppress more than 90% of N. fowleri
growth, whereas 0.39 μg/mL can completely suppress its
proliferation [165]. As the cornerstone of therapy, the
intravenous dose of amphotericin B is 1.5 mg/kg/day in
two divided doses for 3 days followed by 1 mg/kg/day
once daily for an additional 11 days, whereas the
intrathecal dose of amphotericin B is 1.5 mg/day for 2
days followed by 1 mg/day for an additional 8 days as
recommended by the Centers for Disease Control and
Prevention [164]. Due to the various side effects of
amphotericin B such as anemia, fever, nausea, and dose-

related nephrotoxicity, new formulations with improved
toxicity profiles, such as deoxycholate amphotericin B
with a very low minimum inhibitory concentration of 10%,
have been developed [65]. To reduce side effects,
amphotericin B is also used in combination with other
drugs, such as azithromycin, chlorpromazine, miltefosine,
rifampin, and fluconazole [80,165–168]. Animal trials on
experimental mice exhibit survival rates of 40%, 75%, and
55% with amphotericin, chlorpromazine, and miltefosine,
respectively [166]. A recent study has indicated that
auranofin may also be effective for PAM treatment either
as a monotherapy or in combination with the standard
amphotericin B [169]. Furthermore, though there are a
series of clinical guidelines for amoebic meningoencepha-
litis, physicians usually adjusts the combinations of
various classes of drugs with different action mechanisms
for liberal and individualized therapies [129].

Acanthamoeba spp. and Balamuthia
mandrillaris in GAE

Genus Acanthamoeba was created by Volkonsky in 1931.
Acanthamoeba species were initially classified into three
distinct groups (I–III) according to their morphology and
cyst size, but this classification was considered unreliable
due to variations in culture environments [170]. Nine years
later, a modified classification of three groups (I–III) was
proposed by analyzing the following three isoenzymes:
hexokinase, esterase, and acid phosphatase [171]. Since
then, pathogenic and nonpathogenic Acanthamoeba have
been differentiated based on the differentiation of protein
and antigen profile [172]. To date, 22 genotypes (T1–T22)
have been identified and designated according to the
comparison of sequences of the nuclear 18S rRNA gene
[173]. Genotypes T1, T2, T4, T5, T10, and T12 are
responsible for causing meningitis in humans, whereas
genotype T4 appears to be the most prevalent and
predominant one characterized by increased virulence
and decreased sensitivity to chemotherapeutic agents
[174–176]. Additionally, about 31 species have been
described and placed within genus Acanthamoeba up to
2020, among which 18 species are reportedly pathogenic
or implicated in the medical field. These species are A.
polyphaga, A. palestinensis, A. castellanii, A. rhysodes, A.
astronyxis, A. culbertsoni, A. griffini, A. lenticulata, A.
royreba, A. divionensis, A. lugdunensis, A. quina, A.
triangularis, A. healyi, A. stevensoni, A. jacobsi, A.
hatchetti, and A. byersi [173,177–192].
B. mandrillaris was initially considered by some people

as an innocuous soil organism, and all GAE cases were
identified to be caused by Acanthamoeba, yet brain tissue
from some cases could not react with Acanthamoeba-
specific immunohistochemical tests [193–195]. As an
organism associated with soils, soil exposure has been
identified as an important risk factor for Balamuthia
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infection, but its isolation from soil is especially difficult
because only several prior occasions have been reported in
Iran, Peru, and USA [196–198]. The first report of
B. mandrillaris causing disease is described in a pregnant
mandrill monkey with meningoencephalitis at the San
Diego Zoo in 1986, and then the amoeba was identified as
a human pathogen four years later [199]. Except for
primates, Balamuthia has also been reported to cause
infection in various other animals such as horses and dogs
[200–202]. As the only known pathogenic species
infecting humans within the genus, all B. mandrillaris
are demonstrated to belong to one single genotype through
nuclear and mitochondrial rDNA analysis [203]. With no
diversification among different isolates, B. mandrillaris
exhibits a low genetic-variation level [149,204,205].

Invasion pathways and pathogenesis

Through the inhalation of air or aspiration of water
contaminated with invasive forms of these amoebae,
Acanthamoeba infection generally begins with the pene-
tration of the upper respiratory tract and damaged or
ulcerative skin, whereas lesions on cutaneous epithelium
act as the most common sites for the initial B. mandrillaris
infection [206–209]. Ocular cornea, oral mucosa, and
intestinal mucosa are also possible sites for Acanthamoeba
infection, whereas the gastrointestinal tract has been
demonstrated as a possible route for the entry of
B. mandrillaris [2,210,211]. Moreover, B. mandrillaris
can spread through organ transplantation [212,213]. An
important migration route of Acanthamoeba and
B. mandrillaris to the CNS is through the nasal mucous
membrane, the endothelium of capillaries in the brain, and
the ethmoid bone along olfactory nerves [214–217]. These
two amoebae also cause cutaneous and respiratory
infections, and Acanthamoeba is responsible for an
additional ocular infection named amoebic keratitis
[218,219]. Unfortunately, the hematogenous spread is a
precondition for BBB invasion, so it makes GAE
pathogenesis especially complicated and remains unclear
to date [220,221].
Similar to N. fowleri in PAM, factors determining the

CNS pathogenicity of Acanthamoeba spp. and B. man-
drillaris can also be divided into direct and indirect ones
[222]. Direct agents are related to adherence, interaction,
and the secretion of enzymes that are cytotoxic to human
neurons. For Acanthamoeba, attachment onto the surface
of host tissue is identified as the crucial step to establish
infection, later culminating in the host cell’s death [223].
With the use of cytochalasin B (CB) and latrunculin B
(LB), actin cytoskeleton has been revealed to participate in
the adherence onto neuronal cells [224]. The main
mechanism of action of cytochalasin and latrunculin is to
decrease the polymerization rate of actin. With the CB and
LB treatment of trophozoites, the normal distribution of

actin filaments changes and the acanthopodia of Acantha-
moeba disintegrate, thereby presenting remarkable inhibi-
tion of trophozoite adhesion. After Acanthamoeba
trophozoites cross the olfactory epithelium, Schwann
cells (SCs) are probably some of the first target cells
protecting the olfactory nerve bundles [225]. The study
reveals that the interaction between Acanthamoeba and SC
could result in SC autophagy or necrosis. This interaction
is characterized primarily by contact-dependent mechan-
isms including intimate contact and phagocytosis through
the emission of cytoplasmic projections, such as amoe-
bostomes. Appearing as sucker-like structures on various
amoebic surfaces, amoebostomes play an active role in
lysing and engulfing different targets [226,227]. As the
entry sites of Acanthamoeba into the brain, the BBB is
momentous for studies on invasion [228,229]. Different
pathogens own various modes of BBB crossing from
intracellular to paracellular. As an efficient method of
distinguishing transcellular routes, measuring the integrity
of the BBB exhibits high transendothelial electrical
resistance (TEER) [230]. Through interaction with
human brain microvascular endothelial cells, Acantha-
moeba decrease TEER values to almost zero, causing a
Rho-dependent reduction of ZO-1 and occlusion similar to
that in N. fowleri [231]. Mannose-binding protein and
extracellular serine proteases also play a role in the
traversal process of Acanthamoeba [232]. Furthermore,
evidence including host cell DNA laddering, chromatin
condensation, membrane blebbing, and formation of
apoptotic bodies suggests that Acanthamoeba induce
apoptosis in neuroblastoma cells, thereby presenting a
mechanism for host cell death other than phagocytosis
[233]. One study has shown that Acanthamoeba induces
apoptosis through caspase-dependent and caspase-inde-
pendent pathways with the overexpression of the proa-
poptotic protein Bax. As a highly diverse set of proteolytic
enzymes, M28 aminopeptidase secreted by Acanthamoeba
spp. has sufficiently high virulence to inflict host damage
and induce the apoptosis of cell lines [234]. Besides, two
130 and 150 kDa proteases from an Acanthamoeba isolate
reportedly induce GAE, and both of them exhibit maximal
activity at neutral pH and over a range of temperatures
[235]. These proteases degrade ECM components in the
CNS such as collagen I, collagen III, elastin, and
plasminogen, as well as casein and hemoglobin.
Like Acanthamoeba, multiple elements may be involved

in B. mandrillaris pathogenesis, including adhesion to
cells, secretion of enzymes, penetration of the BBB, and
host inflammatory responses [236,237]. However, infor-
mation on the pathogenic mechanisms of B. mandrillaris
remains limited [216]. The amoebic invasion of the brain
probably occurs through BBB breakage or migration along
nerve fibers, and BBB may act as the most possible site for
the invasion of B. mandrillaris into the CNS [217].
Adhesion, proteolytic attack, and host inflammatory

Hongze Zhang and Xunjia Cheng 851



responses may all contribute to BBB disruption, whereas
normal human serum (NHS) is protective against amoebae
[238,239]. In turn, by specifically activating phosphatidy-
linositol 3-kinase, B. mandrillaris can induce human brain
microvascular endothelial cells to release IL-6, which later
participates in initiating the early inflammatory response as
a pleiotropic cytokine [240]. B. mandrillaris has been
demonstrated to have the capability to recognize and
interact with specific ECM glycoproteins, such as
collagen-1, laminin-1, and FN [241]. As metalloprotease
activity is found in two isolates of Balamuthia, the
proteolytic activities of amoebae to degrade ECM have
also been ascertained [242]. B. mandrillaris may possess
the ability to hydrolyze extracellular ATP through its
surface enzymes like ecto-ATPase [243].
As a multifactorial process, the ability of Acanthamoeba

and B. mandrillaris to induce human encephalitis also
depends on their capacity to survive outside the mamma-
lian host for various times and under diverse environ-
mental conditions [222,239]. These indirect factors include
encystment ability, morphology, ubiquity, tolerance to
unsuitable environmental conditions, chemotaxis, and
drug resistance. Except for the biological and ecological
ones mentioned above, the pathogenicity of amoebic
trophozoites may also be related to the number of
pseudopodia that allow connection with host cells [244].
The ability of these amoebae to grow at diverse
temperatures, osmolalities, and pH is positively correlated
with their prevalence in various environments and
pathogenicity. For example, although some nonpathogenic
strains with high thermal tolerance have been described,
pathogenic species among Acanthamoeba spp. exhibit
generally better thermal tolerance than nonpathogenic ones
[2,245].

Host immune response

On account of the ubiquitous distribution of Acantha-
moeba and B. mandrillaris in nature, contact with humans
and other animals with trophozoites, cysts, or their
antigens can widely elicit antibodies to these amoebae in
serum. For example, contact with Acanthamoeba appears
to be common because the presence of their antibodies has
been proven in serum samples from relevant patients and
many asymptomatic healthy individuals [94,124]. As an
opportunistic pathogen, the ability of Acanthamoeba and
B. mandrillaris to produce diseases in the CNS depends on
their own virulence and on host susceptibility and
environmental conditions. A competent immune system
is generally sufficient to defeat pathogens under normal
circumstances. However, due to the complexity of the host
immune system and low numbers of GAE infections, the
precise factors that contribute to host resistance and
associated mechanisms remain unclear.
Innate and adaptive immune responses have been

demonstrated to participate in the Acanthamoeba infection
[115,246] (Fig. 2A). TLRs play an important role in
recognizing amoebae and inducing cytokine production.
As an example, increased levels of TLR2 and TLR4
mRNA expression have been found in the brains and lungs
of mice infected with Acanthamoeba, suggesting the effect
of these receptors on immune-response initiation
[247,248]. The complement system works as a barrier to
infections and activates a cascade system that destroys
invading Acanthamoeba in GAE. As the first line of
defense against protozoa, the complement system is
activated through the classical pathway, alternative path-
way, or mannose-binding lectin pathway [222]. A recent
experiment on mice has suggested that the alternative
pathway plays a major role in Acanthamoeba lysis,
whereas the trigger molecules of the lectin pathway and
classical pathway are not essential in complement activa-
tion [249]. In vitro studies with NHS exhibit the lytic
activity of complement and antibodies against Acantha-
moeba, and the lytic pathway is highly effective in the
presence of phagocytes, such as macrophages and
neutrophils [250,251]. These interactions further stimulate
the secretion of proinflammatory cytokines such as IL-1β
and TNF-α released from monocytes and macrophages,
leading to the activation of neutrophils and vascular
endothelial cells [252,253]. However, the effect exerted by
Acanthamoeba trophozoites appears to be complex
because they can stimulate and inhibit cytokine production
[254]. They induce IL-10, IL-8, IL-6, and TNF-α release in
monocytes while inhibiting TNF-α and IL-8 production by
macrophages. TNF-α has been shown to induce the
encystation of Acanthamoeba, which in turn makes them
resistant to phagocytosis. Macrophages have been found to
be involved in initiating and maintaining an effective
immune response and play a role in tissue repair [255]. A
significant increase in natural killer cells is observed in
mice infected with Acanthamoeba, suggesting that these
cells also participate in the body’s protection against the
amoebae [256,257]. As a result, complement proteins are
induced to be deposited, the opsonization of amoebae is
induced and then taken up by phagocytes, and the
membrane attack complex ultimately forms, leading to
the death of target cells [222].
Antibodies to B. mandrillaris have been detected in

serum samples of GAE patients and healthy individuals,
and cord blood also contains antibodies at a lower titer
[258,259] (Fig. 2B). Although serum exerts a protective
effect against the combination and destructive activities of
B. mandrillaris, the amoebicidal effect is relatively limited
because only about 40% of trophozoites are killed
[239,260]. The protective role of antibodies is still under-
researched because several GAE patients with a high titer
of antibodies to B. mandrillaris have no positive protection
response [261]. Regarding the inflammatory response,
leukocytes are recruited to the sites of infection by
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modulating the expression of various adhesion molecules,
such as intercellular adhesion molecule-1. Among leuko-
cytes, macrophages have recently been identified to have
no inhibitory effect on the biological properties of
B. mandrillaris through in vitro experiments, and they
even increase the amoebic binding and cell cytotoxicity
mediated by protozoa [262]. Furthermore, lectins such as
mannose- and galactose-binding proteins are involved in
host damage mediated by Acanthamoeba and B. mandril-
laris, respectively [263].
Given that Acanthamoeba and B. mandrillaris do not

have adequate time to be stationed in the cerebral
circulation and invade the brain, they can provoke BBB
breach despite not actually invading the brain tissue. Brain
damage is actually evoked by the amplified host immune
responses [120]. The presence of a hardly phagocytable or
unphagocytable microorganism and an integrated cellular
immunity is critically needed to induce granuloma
formation and associated tissue destruction [264,265].
With a general size of about 25 μm, Acanthamoeba spp.

and B. mandrillaris are incapable of phagocytosis, and the
amoebic antigens being exposed to the immune system
tend to set up an ideal scenario for type IV hypersensitivity
reaction, including the exocytosis of tissues and the release
of matrix-damaging enzymes [120]. The human immune
response plays an important part in breaching the BBB and
damaging the brain in GAE.

Pathophysiology and clinical manifestations

Although Acanthamoeba spp. rarely leads to CNS
infections, their prognosis is very poor, with less than 10
documented survivors out of more than 150 reported cases
[266]. Balamuthia GAE is also a highly fatal disease with
fewer than 10% of patients surviving [208]. GAE caused
by Acanthamoeba generally occurs among immunocom-
promised individuals with AIDS and those who are
chronically ill, diabetic, having undergone organ trans-
plantation, or debilitated for other reasons (e.g., taking
steroids, antibiotics, and chemotherapeutic medications)

Fig. 2 Model of parasite molecules and host components in invasion by Acanthamoeba spp. and B. mandrillaris. (A) Representative scheme of
invasion by Acanthamoeba spp. trophozoites. Infection generally begins with penetration into nasopharyngeal or cutaneous epithelium. Trophozoites
attach onto the host-tissue surface and induce apoptosis and phagocytosis in the presence of parasite molecules, such as adhesins, lectins, proteases,
complement-regulatory proteins, and actin cytoskeleton. Schwann cells are some of the first target cells with the outcome of autophagy or necrosis.
Mannose-binding protein and extracellular serine proteases are related to the traversal process of the blood–brain barrier. Toll-like receptors recognize
the trophozoites and induce cytokine production, whereas the alternative pathway plays the major role in Acanthamoeba lysis by activating the
complement system. Neutrophils, eosinophils, monocytes, macrophages, and natural killer cells are activated in response, among which monocytes
are induced to release IL-10, IL-8, IL-6, and TNF-α, whereas macrophages are inhibited to release IL-8 and TNF-α. (B) Representative scheme of
invasion by B. mandrillaris trophozoites. Parasite molecules involved in the invasion process include adhesins, lectins, proteases, ecto-ATPase, and
actin. In the CNS, trophozoites induce the release of IL-6 by specifically activating phosphatidylinositol 3-kinase, and IL-6 later participates in
initiating an early inflammatory response as a pleiotropic cytokine. Neutrophils, eosinophils, monocytes, and macrophages are recruited to the sites of
infection. Type IV hypersensitivity reaction, including the exocytosis of tissues and the release of matrix-damaging enzymes, occurs in Acanthamoeba
spp. and B. mandrillaris invasion.
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[4,135,267–269]. Immunocompetent individuals are much
less likely to be infected because only 11 patients are
immunocompetent in the approximately 150 documented
cases of Acanthamoeba GAE [266,270,271]. By contrast,
GAE caused by B. mandrillaris occurs in healthy and
immunocompromised individuals, among which children
and young adults are the most vulnerable populations
[208,266,272–276]. Similar to viral or bacterial meningi-
tis, the clinical symptoms of GAE usually start with
headache, irritability, nausea, dizziness, and low-grade
fever. It progresses to other neurological symptoms,
including altered mental state, seizures, confusion, aphasia,
lethargy, hallucination, focal neurologic signs, diplopia,
cranial nerve palsies, ataxia, hemiparesis, stiff neck, and
personality changes [2,4,124,208,269,271,275,277–282].
Facial palsy and numbness are also common in Acantha-
moeba GAE as important causes of facial asymmetry.
Moreover, some patients affected with B. mandrillaris in
Peru exhibit skin lesions as common symptoms, whereas
the general symptoms in other regions’ cases are relatively
absent during the cutaneous stage of GAE [275,283]. As a
progressive disease, death due to GAE generally occurs
within 1–2 months because of the onset of symptoms
owing to the increased intracranial pressure. The disease
can also sometimes develop over a period lasting for
several years [135,284].
As to the predilection sites of Acanthamoeba and B.

mandrillaris infection in the brain, the majority of
Acanthamoeba cases involve the cerebral cortices, with
the frontal and the temporal lobes being the most affected,
followed by the parietal and occipital lobes [129]. The
temporal lobe is the most vulnerable as observed in
Balamuthia cases, followed by other sites such as the
frontal, parietal, and occipital lobes. The cerebellum and
the corticomedullary junction are the most favored targets
among extracortical sites in Acanthamoeba GAE, whereas
the thalamus is the most affected target followed by the
corticomedullary junction, cerebellum, and basal ganglia
among extracortical sites in Balamuthia GAE. Addition-
ally, hydrocephalus is observed in a few Acanthamoeba
GAE resulting from the blockage of CSF drainage.
Unfortunately, premortem diagnosis cannot guarantee
survival because the patients have often already suffered
from intense damage in the brain before diagnosis.
Microscopic examinations of CNS sections obtained
from autopsies of Acanthamoeba and B. mandrillaris
GAE cases reveal changes such as edema, encephaloma-
lacia, tonsillar herniation, and multiple necrotic and
hemorrhagic areas [135,285]. Hemorrhagic infarcts can
be seen in areas such as the brainstem, cerebral hemi-
spheres, and cerebellum. Multinucleated giant cells are
also commonly seen in the brainstem, cerebral hemi-
spheres, cerebellum, midbrain, and basal ganglion. Blood
vessels may be occasionally seen as being cuffed by
amoebic trophozoites and cysts, and angiitis can exist with

surrounding perivascular inflammatory cells, among which
reactive macrophages are usually mistaken for amoebae
[3,26]. Given the deficiency of cellular immune response, a
granulomatous response may be absent or minimal in
immunocompromised patients [286]. Many of these
patients develop a series of skin lesions, abscesses, or
erythematous nodules on their body and limbs, especially
patients with AIDS. In the skin lesions, amoebic
trophozoites and cysts with a single nucleus can be seen.
The nodules are usually firm and nontender but are also
sometimes ulcerated and purulent [2,124,135,222,287]. In
a few cases of immunocompetent patients invaded by
Acanthamoeba, the infection has not even spread to the
CNS [288,289].

Diagnosis

Due to the nondirectional symptoms and rarity of the
disease, GAE may usually be confused with other bacterial
leptomeningitis or viral meningitis. Brain lesions can be
detected by neuroimaging methods such as CT and MRI,
but their results are not specific, resulting in limited
diagnostic value for GAE [3,290]. Single or multiple
enhanced lesions are often seen in the cerebral cortex, basal
ganglia, cerebellum, and subcortical white matter through
CT, whereas multifocal lesions and ring-like patterns of
enhancement are seen in the diencephalon, thalamus, brain
stem, and posterior fossa structures through MRI in
patients with GAE; edema and hydrocephalus are also
visible [4,217,266,269,291–294]. Intralesional hemor-
rhage has been observed in some GAE neuroimaging
findings. Amoebic encephalitis has been suggested to be
listed in the differential diagnosis for immunocompro-
mised patients with new brain lesions found on radio-
graphic imaging [295].
Microscopy with some staining such as calcofluor white,

acridine orange, or H&E of host brain tissue can be used to
detect trophozoites and cysts of Acanthamoeba and B.
mandrillaris. However, morphological features are insuffi-
cient for differentiating the exact amoeba genus, which is
problematic as it requires expertise. Samples generally
originate from CSF, brain-tissue biopsy, sinus or lung
biopsy, and skin lesions on the face or extremities obtained
either after surgery or postmortem [222,296]. Notably, a
negative CSF sample cannot exclude the possibility of
GAE infection in suspected patients [297]. As antiamoeba
antibodies are found in the serum of healthy and GAE-
infected individuals, several immunodiagnostic tests have
been well developed and put into application. Immuno-
fluorescent microscopy and indirect immunofluorescent
and immunoenzymatic assays (e.g., flow cytometry and
enzyme-linked immunosorbent assay) have been success-
fully used to examine serum and tissue samples [3,298–
301]. However, given that Acanthamoeba can be isolated
from patients’ tissues and then cultured in vitro, this
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method is unsuitable for B. mandrillaris because they grow
slowly and require the culture of tissue cells as a food
source [139,302]. Developing molecular techniques such
as PCR, multiplex PCR, and real-time PCR are extensively
used to identify Acanthamoeba and B. mandrillaris in the
CSF and brain-tissue samples for many years [4,151,174,
175,269,295,303–305]. These molecular assays are effec-
tive diagnostic techniques that can be implemented for
rapid and sensitive identification even in formalin-fixed
paraffin-embedded brain biopsy specimens, so it is
beneficial for the appropriate and timely treatment of
patients infected with GAE [306]. Metagenomic deep
sequencing has also been applied for the diagnosis of
amoebic encephalitis in recent years [307].

Epidemic situation, therapy, and prognosis

The number of either Acanthamoeba or B. mandrillaris
GAE cases worldwide exceeds 200 [124,136]. Among
them, Acanthamoeba cases reportedly have the highest
number of infected patients in North America and India,
whereas B. mandrillaris cases are found throughout the
entire American continent [208,276,284,308–312]. How-
ever, compared with the opportunities for humans and
other animals to make contact with these amoebae, the
number of GAE cases is relatively much smaller. Through
breaks in the skin contaminated by soil or through the
upper respiratory tract blown by the wind or air currents,
infection generally starts with the entry of the protozoa
[2,135,311]. Water may also serve as a vehicle for
transmission because Acanthamoeba and B. mandrillaris
have been detected in a series of water samples and
reported to cause disease in humans and other animals
[201,313–315]. B. mandrillaris can also be transmitted
through organ transplantation [316,317]. Balamuthia GAE
appears to be more frequent in Hispanics, but further
research is still needed to determine whether the unequal
incidence is a simple coincidence [318].
Additionally, because of nonspecific symptoms similar

to other bacterial or viral diseases and the difficulty in
diagnosis at an early stage resulting from the deficiency of
reliable diagnostic tests and clinicians’ nonfamiliarity with
FLA, more than 90% of GAE cases are fatal [284]. The
majority of GAE cases are detected postmortem, further
resulting in the lack of recommended treatment and
management patterns. Except for surgery, the treatment
of GAE is still based on limited in vitro experimental data
and clinical experiences reported in literature [319–321].
According to reported cases with therapeutic success,
various drugs are usually given alone or in combination,
including voriconazole, fluconazole, itraconazole, rifam-
pin, meropenem, linezolid, liposomal amphotericin B,
trimethoprim-sulfamethoxazole, moxifloxacin, caspofun-
gin, and miltefosine, yet treatment may be successful only
at early stages [2,26,124,208,222,290,322–325]. Some

agents such as quinoline nitroxoline are also considered
potent against pathogenic amoebae [326]. Most agents
exhibit low sensitivity to the amoebae or are unable to
sufficiently cross the BBB into the CNS. Some available
agents also exhibit severe side effects, which may result in
the disability of GAE survivors [327,328].

Conclusions

The most successful strategy for the survival and multi-
plication of parasites is sustainably exploiting their hosts,
yet many of these free-living organisms generally cause
violent infections and kill the patients. Although rare,
encephalitis caused by FLA especially Acanthamoeba,
Balamuthia, and Naegleria is eliciting attention as an
increasing cause of parasitic death worldwide. The low
number of infections caused by FLA is probably due to
diagnosis difficulty and the lack of experienced caregivers,
so many cases may not have been recognized and
diagnosed, especially in regions such as Africa and
South Asia where facilities are either minimal or lacking.
Along with global warming, ample evidence indicates that
the available environmental niches for numerous FLA
particularly N. fowleri can naturally increase. Meanwhile,
the population is continuously growing and areas of human
activity are also expanding in some regions. Multiple
factors conspire to increased contact between human and
FLA, leading to further increased number of infections.
Patients with amoebic encephalitis in various regions
usually have different clinical characteristics and prog-
noses. Considering that PAM and GAE are almost always
fatal as less than 10% of patients are reported to survive,
the cure rate urgently needs improvement through
immediate diagnosis and early treatment. Studies focused
on interactions between pathogenic amoebae and their host
contribute to the development of various novel therapeutic
drugs against the parasites. However, although numerous
new findings have been reported in recent years, the whole
picture is far from being complete and a series of topics on
the pathogenic role of FLA in encephalitis require further
research. Indeed, authoritative standards for the clinical
diagnosis and early treatment of FLA encephalitis remain
lacking. Future work should aim to address these points
with investigations focusing on pathogenesis, clinical
manifestations, diagnosis, and therapies.
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