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Abstract The design of three novel fatty nitrogen
mustard-based anticancer agents with fluorophores incor-
porated into the alkene structure (CXL 118, CXL121, and
CXL122) is described in this report. The results indicated
that these compounds are selectively located in lysosomes
and exhibit effective antitumour activity. Notably, these
compounds can directly serve as both reporting and
imaging agents in vitro and in vivo without the need to
add other fluorescent tagging agents.

Keywords fluorescent drug, lysosomal, anticancer, zeb-
rafish, nude-mouse tumour imaging

1 Introduction

Lysosomes, existing in all protozoa and multicellular
animal cells, are essential organelles that degrade endocy-
tosed poisonous molecules. Because they contain a wide
spectrum of hydrolytic enzymes, lysosomes play major
roles in the degradation and recycling of macromolecules
[1–4]. Lysosome dysfunction is often involved in pathol-
ogies, including cancer [5], neurodegenerative diseases [6–
8], atherosclerosis, and rheumatoid arthritis [9,10].
Recently, researchers have shown great interest in lyso-
some research and have achieved certain scientific results.
Miao et al. demonstrated that the activation of lysosomes is
induced by structural damage and the role of this activation

pathway in extracellular matrix regeneration [11]. Fuji-
maki et al. revealed for the first time that lysosomal
function plays an important role as a “regulatory switch” in
mediating the extent eukaryotic cells quiescence [12].
These research results are of great significance for
understanding important physiological processes such as
tissue homeostasis, repair and regeneration and ageing of
the body. In terms of fluorescent probes, Hu et al. designed
a new type of fluorescent molecule that is sensitive to
intracellular polarity [13]. The probe emits red and blue
light in lysosomes with high polarity and lipids with low
polarity, respectively. The study of Hu et al. provided a
new idea for studying the mechanism of lipid droplet-
lysosome interactions and related diseases. In addition,
lysosomes are involved in many cell signalling pathways,
e.g., endocytosis, autophagy, and apoptosis [2,14,15], and
many lysosomal proteases, such as cathepsins and
lysosome-associated membrane glycoprotein (Lamp) sig-
nalling pathways, are involved in apoptosis [16]. Werne-
burg et al. reported that a tumour necrosis factor-related
apoptosis-inducing ligand activates a lysosomal pathway
of apoptosis that is regulated by bcl-2 proteins [17]. These
studies show that the visualization of lysosomes is critical
for understanding intracellular metabolism and cell
membrane recycling [18,19]. Therefore, development of
lysosomal-targeted fluorescent probes is a useful endea-
vour.
Cell death in mammals can be characterized by two main

types: apoptosis and necrosis [20–22]. Autophagy, which
has recently been proposed as a third distinct mode of cell
death, is a homeostatic process critical for sequestering
long-lived proteins and damaged organelles for subsequent
degradation upon fusion with a lysosome [20,23–25].
Autophagy and apoptosis are activated in parallel in
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cancer. In addition, autophagy plays a complex role in
cancer [5,26,27].
Nitrogen mustards (N-mustards) are dichloroethylamine

alkylating agents and are highly active compounds. These
compounds possess an active group, bis(2-chloroethyl)
amine, which can interact with amino, sulfhydryl, carboxyl
and phosphoric acids in cells [28–30]. The reactions
eventually affect the metabolism of cells and lead to cell
death. However, drawbacks to the use of N-mustards to
promote cell death include poor selectivity in the
intracellular milieu and reactivity with untargeted cellular
components, which may result in many unwanted side
effects, such as bone marrow toxicity and genotoxicity
[31]. Therefore, over decades, many structural modifica-
tions have been made to the N-mustard scaffold to increase
its targeting affinity/specificity. Most modifications of N-
mustard compounds are directed to the carrier structure
[32]. Compared with other types of N-mustards, the
nitrogen atom in fatty N-mustard is more alkaline. Thus, in
free fatty nitrogen mustard and fatty nitrogen mustard at
physiological pH values, the nitrogen atom is more likely
to cause intramolecular cyclization, resulting in the
formation of ethyleneimine ions, which are highly active
strong electrophilic alkylating agents [33,34]. As a
consequence, fatty N-mustards have great potential for
high antitumour activity in a wide range of in vitro and in
vivo environments [35].
To our knowledge, most fluorescent probes, which are

powerful tools used in cell biology, cannot simultaneously
meet the two requirements for effective visualization and
antitumour activity. Recently, our group presented several
new types of mitochondria-targeting N-mustard agents
with fluorophores incorporated into the main N-mustard
skeleton [36–39]. The molecules we synthesized exhibited
highly selective activity against cancer cells. In biology
and life sciences, the development of lysosome-targeting
N-mustard fluorescent drugs is important for lysosome
imaging and the treatment of lysosome-related diseases. In
previous works, we have reported two new types of

molecules, both aromatic N-mustards, with mitochondria-
targeting imaging and fluorescent DNA alkylation ability
[36,37]. In the present study, when we replaced aromatic
N-mustard with fatty N-mustard, three lysosome-targeted
agents (CXL118, CXL121, and CXL122) were formed,
and then, three different fluorophores were integrated into
the fatty N-mustard skeleton. As shown in Fig. 1,
fluorophores 2-(2-methyl-4H-chromen-4-ylidene)malono-
nitrile, 1-ethyl-2,3,3-trimethyl-3H-indol-1-ium, and 3-
ethyl-1,1,2-trimethyl-1H-benzoindol-3-ium were linked
to fatty N-mustard skeletons by an olefin double bond.
Our synthetic probes were then used for zebrafish and nude
mouse tumour imaging. The experiments showed that
these probes can be used for diagnostic imaging.

2 Experimental

2.1 Materials and methods

All reagents are purchased with no special note. All of the
solvents were dried according to the standard methods and
were spectroscopic grade in the optical spectroscopic
studies. Nuclear magnetic resonance (NMR) spectra were
measured on a Bruker AM-400. The 1H NMR (400 MHz)
and 13C NMR (101 MHz) chemical shifts were given using
CDCl3 and DMSO-d6 as the internal standard. The 1H
NMR (400 MHz) chemical shifts were given in ppm
relative to the internal reference trimethylchlorosilane.
Electro-spray ionization mass spectral and high-resolution
mass spectral data were recorded on a Finnigan
LCQDECA and a Bruker Daltonics Bio TOF mass
spectrometer, respectively. JUNYI Power Supply of
JY300C was used for DNA agarose gel electrophoresis,
data recorded in the Molecular Imager of Gel Doc TM
XR+ with Image Lab TM Software of BIO-RAD.
Inhibition rate is calculated by software of Graph Pad
Prism 5.01 (Graph Pad Software, USA).

Fig. 1 Novel functional fluorescence compounds developed in this study.
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2.2 Synthesis and characterization of compounds CXL118,
CXL121, and CXL122

The synthetic procedures of probes were depicted in
Scheme 1. All the designed compounds contain two parts
that are chromophoric units and N-mustards “warhead”.
Initially, the intermediates of chromophoric units 4, 5, and
6 and N-mustards “warhead” including 4-(2-(bis(2-chlor-
oethyl)amino)ethoxy)benzaldehyde (3) were synthesized.
Take the case of compound synthesis process of CXL118.
General process: 2-(2-Methyl-4H-chromen-4-ylidene)

malononitrile (4) (208 mg, 1 mmol) and 4-(2-(bis(2-
chloroethyl)amino)ethoxy)benzaldehyde (3) (289 mg, 1
mmol) were dissolved in dry acetonitrile (100 mL for 14
mmol) under argon. Piperidine (91 μL, 1 mmol) was added
and the solution was stirred at 60 °C for 8 h. The red
solution was concentrated and the product (CXL118, (E)-
2-(2-(4-(2-(bis(2-chloroethyl)amino)ethoxy)styryl)-4H-
chromen-4-ylidene)malononitrile) was purified by crystal-
lization or column chromatography. Brick red solid;
Yield 26%. 1H NMR (400 MHz, CDCl3, δppm): 8.93 (t, J
= 12.4 Hz, 1H, Ar–H), 7.75 (t, J = 8.2 Hz, 1H, Ar–H),
7.58–7.56 (m, 4H, Ar–H), 7.45 (t, J = 4.2 Hz, 1H, Ar–H),
6.96 (d, J = 8.4 Hz, 2H, –CH = CH–), 6.85 (s, 1H, Ar–H),
6.69 (d, J = 8.6 Hz, 1H, Ar–H), 4.10 (t, J = 6.4 Hz, 2H, –
O–CH2–CH2–), 3.56 (t, J = 6.2 Hz, 4H, N(CH2)2), 3.10–

3.03 (m, 4H, –CH2Cl), 2.02 (m, 2H, –O–CH2–CH2–).
13C

NMR (101 MHz, DMSO, δppm): 159.08, 153.37, 152.50,
139.13, 135.81, 130.56, 126.57, 125.10, 119.49, 117.56,
116.43, 115.60, 106.54, 60.00, 56.58, 53.03. MS m/z
(ESI): calcd for C26H24Cl2N3O2

+: 480.12; found 480.13.
(E)-2-(4-(2-(Bis(2-chloroethyl)amino)ethoxy)styryl)-1-

ethyl-3,3-dimethyl-3H-indol-1-ium (CXL121): Yield
23%. 1H NMR (400 MHz, CDCl3, δppm): 8.30 (t, J =
8.6 Hz, 2H, Ar–H), 8.22 (d, J = 8.2 Hz, 1H, Ar–H), 7.56 (d,
J = 10.4 Hz, 1H, Ar–H), 7.57–7.50 (m, 4H, Ar–H), 7.06 (t,
J = 10.6 Hz, 2H, –CH = CH–), 5.05–5.00 (q, J = 14.4 Hz,
7.2 Hz, 2H, –NCH2CH3), 4.15 (t, J = 6.4 Hz, 2H, –O–
CH2–CH2–), 3.52 (t, J = 8.6 Hz, 3H, –CH2Cl), 3.25–3.19
(m, 1H, –CH2Cl), 3.18–2.99 (m, 6H, N(CH2)3), 1.84 (s,
6H, –(CH3)2), 1.62 (t, J = 6.8 Hz, 3H, –CH2–CH3).

13C
NMR (101 MHz, DMSO, δppm): 181.70, 162.16, 154.21,
153.84, 144.26, 140.90, 133.67, 130.10, 129.56, 128.61,
123.57, 116.22, 115.41, 110.95, 55.91, 52.58, 51.75,
28.81, 26.23, 22.53, 14.15. MS m/z (ESI): calcd for
C26H33Cl2N2O

+: 459.19; found 459.19.
(E)-2-(4-(2-(Bis(2-chloroethyl)amino)ethoxy)styryl)-3-

ethyl-1,1-dimethyl-1H-benzo[e]indol-3-ium (CXL122):
Yield 19%. 1H NMR (400 MHz, CDCl3, δppm): 8.32–
8.19 (m, 4H, Ar–H), 8.12 (d, J = 8.6 Hz, 1H, Ar–H), 8.07
(t, J = 10.6 Hz, 1H, Ar–H), 7.84 (t, J = 8.4 Hz, 1H, Ar–H),
7.77–7.71 (m, 2H, Ar–H), 7.67 (t, J = 8.0 Hz, 1H, Ar–H),

Scheme 1 Synthetic routes of compounds CXL118, CXL121, and CXL122. (a) 1,2-dibromoethane, K2CO3, DMF, 80 °C; (b) K2CO3,
acetonitrile, 80 °C, (c) SOCl2, DCM, 30 °C, and (d) piperidine, acetonitrile, 60 °C.
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7.09 (dd, J = 12.4 Hz, 8.2 Hz, 2H, –CH = CH–), 5.17 (q, J
= 10.6 Hz, 8.4 Hz, 2H, –NCH2CH3), 4.16 (t, J = 8.8 Hz,
2H, –O–CH2–CH2–), 3.56 (t, J = 4.8 Hz, 3H, –CH2Cl),
3.19 (t, J = 12.0 Hz, 1H, –CH2Cl), 3.12–3.01 (m, 6H, N
(CH2)3), 2.10 (s, 6H, –(CH3)2), 1.69 (t, J = 8.2 Hz , 3H,
–CH2–CH3).

13C NMR (101 MHz, DMSO, δppm): 182.32,
163.12, 157.92, 153.89, 138.68, 133.71, 131.51, 131.14,
130.06, 128.82, 127.03, 123.51, 115.89, 115.46, 113.53,
109.74, 59.39, 57.46, 54.09, 53.74, 26.11, 14.34. MS m/z
(ESI): calcd for C30H35Cl2N2O

+: 509.21; found 509.22.

3 Results and discussion

We performed fluorescence imaging on zebrafish and nude
mouse tumours without needing to introduce other
fluorescent tagging agents. Therefore, in contrast with
aromatic N-mustards, fatty N-mustards have lysosome-
targeting and antitumour activity. As a consequence, this
study provides a reference for the development of novel
lysosome-targeted anticancer drugs to inhibit cell prolif-
eration in the field of innovative drug research.
We first investigated the absorbance (UV-visible) and

fluorescence emission spectra of the three target com-
pounds. As shown in Fig. S1 (cf. Electronic Supplemen-
tary Material, ESM) and Table S1 (cf. ESM), compounds
CXL118, CXL121, and CXL122 exhibited maximum
fluorescence emissions at 573, 553, and 597 nm in PBS/
DMSO (7/3, v/v, pH = 7.4), respectively. The maximum
UV absorbances of compounds CXL118, CXL121, and

CXL122 were 450, 427, and 433 nm, respectively [40,41].
Specifically, the Stokes shift of CXL122 was greater than
160 nm, which indicated minimized excitation interference
in cell-imaging experiments. Therefore, the following
studies mainly focused on compound CXL122.
Because of the aforementioned fluorescent properties,

these compounds can be used in the cellular environment
to exert effects. To determine whether CXL118, CXL121,
and/or CXL122 can specifically localize in lysosomes,
HeLa cells were incubated with one of the synthetic
fluorescent fatty N-mustards (2 μmol$L–1) and lysosome-
tracker deep red (lysotracker deep red, a commercially
available lysosome dye, 300 nmol$L–1) for 20 min [42].
Subsequently, co-localization experiments were performed
using the method described. As shown in Fig. 2, after HeLa
cells were incubated with these compounds, the fluores-
cence ascribed toCXL118, CXL121, and CXL122 clearly
co-localized with lysosomes, and the Pearson correlation
coefficients were 0.84, 0.74 and 0.82, respectively. More-
over, as shown in the merged images presented in Fig. 2,
we confirmed that all compounds can penetrate the cell
membrane, and fluorescent signals were located only in the
intracellular region.
As shown in Fig. 3, an 3-(4,5)-dimethylthiahiazo(-2)-

3,5-diphenytetrazoliumromide (MTT) assay was per-
formed to test the antiproliferative activity of the
fluorescent agents (CXL118, CXL121, and CXL122) at
gradient concentrations (0.078, 0.156, 0.313, 0.625, 1.25,
2.5, 5, 10 and 20 μmol$L–1) in different cell lines (A549,
DU145, HeLa and BCPAP cells). The results are shown in

Fig. 2 HeLa cells were cultured with compounds CXL118 (2 μmol$L–1), CXL121 (2 μmol$L–1), and CXL122 (2 μmol$L–1) and
lysotracker deep red (300 nmol$L–1) for 20 min. The compounds CXL118, CXL121, and CXL122 possess maximum UVabsorption at
400–450 nm and maximum emission wavelengths between 550 and 600 nm. For these compounds, the green channel (400–520 nm), 488
nm was the excitation wavelength; for the lysotracker deep red channel (620–750 nm), 633 nm was the excitation wavelength.
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Table 1. Compounds CXL118, CXL121, and CXL122
showed different antiproliferative activities. Overall,
CXL118, CXL121, and CXL122 have a certain inhibitory
effect on A549 cells, DU145 cells, HeLa cells and BCPAP
cells, with particularly potent inhibition of A549 cells.
Next, Western blot assays were performed to examine

the effect ofCXL122 on the LC3-I, LC3-II, P62, and Bcl-2
protein expression in intact cells; LC3-I, LC3-II and P62
are the typical substrates evaluated in autophagy research.
As shown in Fig. 4(A), the autophagy rate increased in a
CXL122 concentration-dependent manner. Furthermore,
the level of P62 was lower in the CXL122-treated groups
than in the control group. In addition, we also investigated
the effects of CXL122 on Bcl-2 protein expression in the
apoptotic pathway. The results showed that CXL122
decreased the levels of Bcl-2 in the A549 cell line in a
dose-dependent manner. In addition, bis(2-chloroethyl)
amine was used as a positive control to study cell death.
The Western blot assays indicated a reduction in Bcl-2
protein expression with an increase in the concentration of
bis(2-chloroethyl)amine, which suggested that apoptosis

was the main cause of cell death. All these results suggest
that CXL122-induced autophagy in lung cancer cells may
occur simultaneously with cancer cell apoptosis.
Finally, fluorescence-assisted flow cytometry was used

to study the ability of the fluorescent fatty-N-mustards to
be taken up by A549 cells (Fig. 4(B)) [43,44]. In this
experiment, no compound was added to the control group,
only the commercially available stains Annexin V and PI
were added (Fig. 4(B-a); (b) shows the result of adding
only CXL122 at a concentration of 10 μmol$L–1 without
additional stain). Notably, the performance of the experi-
mental group without any additional dye was similar to
that of the experimental group in which additional dyes
were added in the physiological range (Fig. S2, cf. ESM).
The flow cytometry experiments illustrate that the
fluorescent fatty nitrogen mustard molecules eliminated
background interference and the misleading data asso-
ciated with unreacted labelling dyes, which makes the
analysis more efficient and economical.
Zebrafish, which have been widely used in biological

and biochemical research, are important model organisms
with rapid embryonic development and short generation
times [45,46]. Zebrafish embryos and larvae have
frequently been used for in vivo imaging [47]. Here, we
described the results of fluorescence imaging of zebrafish
using CXL122 as the probe, which was introduced into
zebrafish embryos and larvae by soaking. Green in vivo
fluorescence imaging with CXL122 used as a probe was
observed, as shown in Fig. 5, which presents bright field
and fluorescence images of embryos and larvae after
soaking with CXL122. As shown in Fig. 5(A), the
fluorescence images of embryos 3 h post-fertilization
(hpf) become brighter with increasing concentrations of
CXL122, whereas the bright field images did not differ
from each other. Next, fluorescence imaging of zebrafish
embryos after soaking with CXL122 (at 2.5 μmol$L–1)
enabled the visualization of embryo development at
different periods, namely, from the single cell stage to
larval stage (Fig. 5(B)). We found that CXL122 did not
disturb embryo development, demonstrating the low
toxicity and high biocompatibility of CXL122. Finally,
zebrafish larvae were used as models to validate the results
of the imaging application of CXL122 in vivo. Fig. 5(C)
shows whole bodies of zebrafish larvae 78 hpf after

Fig. 3 MTT assay of different cell lines treated with the
compounds. The inhibition rate of CXL122 in different cells
was assayed at different drug concentrations (0.078, 0.156, 0.313,
0.625, 1.25, 2.5, 5, 10, and 20 μmol$L–1). The antiproliferative
activity of all compounds was evaluated by MTT assay in different
cell types, including A549 cells (a lung cancer cell line), DU145
cells (a human prostate cancer cell line), and HeLa cells (a cervical
cancer cell line). The values represent mean � S.D. (n = 3).

Table 1 IC50 values for the synthesized compounds

Cell line
IC50/(μmol$L–1) a)

A549 DU145 HeLa BCPAP

CXL118 5.78 � 1.5 7.18 � 1.1 8.64 � 1.3 > 20

CXL121 2.06 � 1.1 10.28 � 1.3 17.35 � 1.2 > 20

CXL122 1.55 � 1.3 7.87 � 1.1 6.72 � 1.4 > 40

Bis(2-chloroethyl)amine 2.78 � 1.2 8.94 � 1.4 11.63 � 1.3 > 30

a) Cytotoxicity was determined by MTT assay after 72 h of treatment. The data are representative of three independent experiments.
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soaking in CXL122 solution at different concentrations for
6 h. The zebrafish larvae became increasingly brighter with
increasing concentration, showing a concentration-depen-
dent reaction, illustrating that CXL122 was successfully
introduced into the larvae. These results validate the
practicability of using CXL122 as an imaging probe.
Among various diagnostic imaging techniques, fluores-

cence imaging agents provide accurate outcomes for
cancer diagnosis through non-invasive, real-time, and
high-resolution imaging [48–50]. In vivo imaging of
various fluorescent chemical compounds has been reported
[51,52]. Therefore, to provide further evidence on the
fluorescence imaging capacity of CXL122 in vivo, dye
(20 mmol$L–1, 25 μL) was injected into the tumour site of
nude mice bearing BxPC-3 cells and imaged at various
times (0, 5, 10, 15, 20, 25 and 30 min). As depicted in
Fig. 6, the fluorescence intensity within the tumour was
markedly high and increased over time after the intratu-
mour injection of CXL122; however, the control did not
show any significant fluorescence in vivo. Thirty minutes

after the injection, the fluorescence imaging of CXL122
demonstrated a stronger fluorescence intensity at tumour
sites than at healthy sites, attesting to the outstanding
tumour imaging capacity and long-term preservation time
of the probe at tumour sites.

4 Conclusions

In conclusion, we developed three novel related multi-
functional fatty N-mustard compounds (CXL118,
CXL121, and CXL122) that were selectively located in
the lysosomes of living cells. Because of the excellent
fluorescent properties of these compounds, using flow
cytometry, we directly analysed the results without the
need for incorporating additional dyes or stains. These
fatty N-mustard compounds have potent antitumour with
inhibitory cell proliferation activity. Zebrafish embryos and
larvae were used as models to validate the practicability of
usingCXL122 as an in vivo imaging probe. In vivo tumour

Fig. 4 (A) Western blot analysis of LC3-I, LC3-II, P62, and Bcl-2 protein expression in A549 cells treated with the indicated doses of
CXL122 and bis(2-chloroethyl)amine for 72 h; (B) Flow cytometry to evaluate the effect of CXL122. (a) Control with Annexin Vand PI
added; (b) without additional stain, i.e., only CXL122 (10 μmol$L–1) was added to cells.
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Fig. 5 Bright field and fluorescence images of zebrafish embryos and zebrafish. (A) Bright field (upper) and fluorescence (lower) images
of zebrafish embryos 3 hpf after soaking for 3 h inCXL122 solution of different concentrations (0.5, 1.0, 1.5, 2.0, and 2.5 μmol$L–1). The
Images acquired under bright light show the yolk sac (ys) and the inner mass of the embryos (ime). A 4� objective lens was used. Scale
bars, 200 μm. (B) Bright field (upper) and fluorescence (lower) images taken at different time points of zebrafish embryos after soaking in
2.5 μmol$L–1CXL122 solution for 3 h: (a) 3, (b) 6, (c) 12, (d) 24, and (e) 48 hpf. A 4� objective lens was used. Scale bars, 200 μm. (C)
Bright field (upper) and fluorescence (lower) images of the whole bodies of zebrafish larvae taken 78 hpf after soaking for 6 h in CXL122
solution of different concentrations. A 4� objective lens was used. Scale bars, 200 μm.

Fig. 6 Representative images of BxPC-3 tumour-bearing mice acquired at different times after intratumour injection with CXL122 in vivo.
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imaging in a BxPC-3 tumour-bearing mouse experiment
showed that CXL122 had outstanding tumour imaging
capacity and long-term preservation time at tumour sites.
We anticipate that this design concept will enable the
development of additional fluorescent molecules contain-
ing fatty N-mustard and inspire the production of more
efficient fluorescent probes for use in vivo.
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