REVIEW ARTICLE

Hydroxyl radical-involved cancer therapy via Fenton reactions

Mengying Liu¹, Yun Xu², Yanjun Zhao¹, Zheng Wang (🖂)¹, Dunyun Shi (🖂)³

1 School of Pharmaceutical Science & Technology, Tianjin University, Tianjin 300072, China 2 Central Lab, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China

3 Institute of Hematology, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China

© Higher Education Press 2021

Abstract The tumor microenvironment features overexpressed hydrogen peroxide (H_2O_2) . Thus, versatile therapeutic strategies based on H_2O_2 as a reaction substrate to generate hydroxyl radical (•OH) have been used as a prospective therapeutic method to boost anticancer efficiency. However, the limited Fenton catalysts and insufficient endogenous H_2O_2 content in tumor sites greatly hinder •OH production, failing to achieve the desired therapeutic effect. Therefore, supplying Fenton catalysts and elevating H_2O_2 levels into cancer cells are effective strategies to improve •OH generation. These therapeutic strategies are systematically discussed in this review. Furthermore, the challenges and future developments of hydroxyl radical-involved cancer therapy are discussed to improve therapeutic efficacy.

Keywords hydroxyl radical, Fenton catalyst, hydrogen peroxide, cancer therapy

1 Introduction

Currently, the high mortality rate of cancer is a big threat to human health because of its complexity and versatility [1]. In this regard, scientific research on efficient cancer therapy is necessary. Therefore, the development of various effective anticancer agents has become a top priority. In recent years, reactive oxygen species (ROS) [2], including superoxide anion (O_2^{-}) [3], hydrogen peroxide (H_2O_2) [4], hydroxyl radical (•OH) [5], and singlet oxygen (1O_2) [6], have been considered as important therapeutic agents for cancer therapy because of their ability to induce cancer apoptosis. The traditional ROS-based therapies, such as photodynamic therapy [7],

Received February 3, 2021; accepted June 1, 2021

E-mails: wangzheng2006@tju.edu.cn (Wang Z), Dunyunshi01@gmail.com (Shi D) radiotherapy [8], and sonodynamic therapy [9], require exogenous energy input to induce cancer cell death, resulting in serious damage to surrounding normal tissues or cells. However, chemodynamic therapy utilizes endogenous chemical reactions between Fenton catalysts and H_2O_2 to produce •OH without external energy input [10]. Therefore, damage on normal cells or tissues can be avoided. The content of H₂O₂ in cancer cells is higher than that in normal cells. The H_2O_2 content in tumor cells is approximately 0.1–1 mmol· L^{-1} [11], whereas that in normal cells is nearly $1-8 \mu mol \cdot L^{-1}$ in a dynamic balance [12,13]. Nevertheless, the •OH generation depends not only on intracellular H2O2 content but also on the Fenton catalysts. As a classical Fenton catalyst, iron ions can trigger •OH generation by reacting with over-produced H_2O_2 in tumor cells [14–16]. Free iron ions in cells are low and primarily found in ferritin and hemosiderin proteins [17,18]. Thus, iron-based nanocarriers have been extensively fabricated to transport iron ions into cells, thereby increasing •OH generation [19–22].

Apart from iron-based Fenton catalysts, other metalbased catalysts can be used to generate •OH through Fenton-like reactions, such as Mn-based Fenton catalysts and Cu-based Fenton catalysts. Once internalized by cancer cells, the Fenton catalyst-based nanocarriers could be degraded and release Fenton catalysts in the acidic tumor microenvironment, thereby catalyzing intracellular H_2O_2 decomposition and generating abundant toxic •OH (Fig. 1). These typical metal catalysts have been widely studied, and they have shown excellent •OH generation for inducing cancer oxidative stress and apoptosis [23–26]. Although tumor cells are characterized by the overexpression of H_2O_2 , the amount of •OH needed to achieve the desired therapeutic outcomes still cannot be produced. Therefore, elevating H_2O_2 levels to produce considerable •OH is a feasible approach to improve therapeutic effectiveness. Many strategies have been designed to elevate H₂O₂ levels in tumor sites for cancer treatment [27-33].

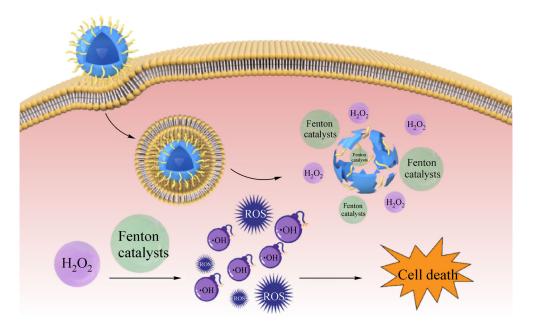


Fig. 1 Schematic illustration of •OH-mediated cancer therapy.

This review aims to highlight different strategies for boosting •OH generation. On one hand, we focus on the supply of typical metal-based Fenton catalysts to promote •OH generation. On the other hand, we emphasize on the synergistic elevation of H_2O_2 level to boost •OH generation, thereby achieving satisfactory therapeutic performance. Finally, the limitations and improvement of hydroxyl radical-based cancer therapy are also discussed.

2 Introduction of Fenton catalysts

Intracellular H_2O_2 can be converted into •OH by introducing Fenton catalysts. Therefore, supplying Fenton catalysts to the tumor sites is an effective strategy to promote •OH generation. Many research groups have investigated the efficacy of classical metal Fenton catalystbased nanocarriers to enable •OH generation (shown in Table 1).

According to the sources of Fenton catalysts, three classical metal types are mainly summarized in Fig. 2: Febased Fenton catalysts, Mn-based Fenton catalysts, and Cu-based Fenton catalysts. We review the Fenton catalysts based on three types in the following.

2.1 Fe-based Fenton catalysts

Iron ions as the classical Fenton catalyst have been extensively applied in •OH generation. With the development of nanotechnology, various nanocarriers have been developed and applied in antitumor therapy [83–85]. Febased nanocarriers have been constructed and proven effective in generating •OH because of the presence of iron

ions, including iron oxide NPs [34,35,86], iron-based metal-organic frameworks [36], and other iron-based nanocarriers [37,38]. These iron-based nanocarriers have good magnetic targeting ability, specifically targeting cancer cells. Hence, iron-based nanocarriers could accumulate at the tumor sites to target the release of iron ions, thereby promoting •OH production. Moreover, the released iron ions show the function of nuclear magnetic imaging, monitoring the therapeutic process.

As an example for iron oxide NPs, Yu et al. constructed pH-sensitive $Fe_5C_2@Fe_3O_4$ NPs that could be adequately decomposed, promoting the release of Fe^{2+} in acidic tumor conditions. As shown in Fig. 3, the constructed $Fe_5C_2@-Fe_3O_4$ nanocarriers had high sensitivity to the acidity of tumor sites, effectively releasing Fe^{2+} in tumor regions. The released Fe^{2+} could react with overexpressed H_2O_2 to produce •OH, specifically killing cancer cells and showing an excellent antitumor effect. Considering that the release of iron ions from $Fe_5C_2@Fe_3O_4$ depended on low pH, the toxicity of $Fe_5C_2@Fe_3O_4$ was minimal in normal cells [39]. The designed nanocarriers provided a new strategy for efficient and specific cancer therapy based on the selective catalysis of •OH generation.

In addition to Fe-based nanocarriers, Fc and its derivatives can generate •OH and simultaneously release Fe^{2+} in the presence of H_2O_2 and H^+ . Therefore, numerous nanocarriers designed on the basis of Fc and its derivatives have been applied in anticancer treatments [40–45,87]. For example, Chen et al. constructed a new nanodrug (GOx&Pt@FcNV) using a Fc-containing nanovesicle. As shown in Fig. 4, the GOx&Pt@FcNV nanodrug could deliver GOx, Fc and cisplatin (Pt) into the tumor sites. The GOx-mediated starvation therapy could consume intracel-

Material	Functional mechanism	Cell	Ref.
IONPs	Fe ²⁺ -mediated •OH generation	HT1080	[34]
IFSNs-GOx	GOx-catalyzed H ₂ O ₂ generation; Fe ²⁺ -mediated •OH generation	4T1	[35]
CPT@MOF(Fe)-GOx	GOx-catalyzed H_2O_2 generation; Fe^{2+} -mediated •OH generation; CPT-mediated chemotherapy	HeLa	[36]
FeO _x -HMSN	Fe ²⁺ -mediated •OH generation	4T1	[37]
LET-6	Fe ²⁺ -mediated •OH generation; tPy-Cy-Fe-mediated photothermal therapy	U87MG	[38]
Fe ₅ C ₂ @Fe ₃ O ₄ NPs	Fe ²⁺ -mediated •OH generation	4T1	[39]
FDMSNs@GOx@HA	GOx-catalyzed $\mathrm{H_2O_2}$ generation; $\mathrm{Fe^{2+}}\text{-mediated}$ •OH generation	L-02; HeLa	[40]
Fe-CO@Mito-PNBE	CO-mediated gas therapy; Fe2+-mediated •OH generation	4T1; HeLa	[41]
CuS-Fe@polymer	Fe ²⁺ -mediated •OH generation; CuS-mediated photothermal therapy	HeLa; NIH3T3	[42]
Co-Fc@GOx	GOx-catalyzed H_2O_2 generation; Fe^{2+} -mediated •OH generation	HUVEC; 4T1	[43]
Zr-Fc MOF	Zr-Fc MOF-mediated photothermal therapy; Fe ²⁺ -mediated •OH generation	7702; 4T1; Huh7	[44]
CFNCs	Fe ²⁺ -mediated •OH generation; PTX-mediated chemotherapy	HCT-15; NIH3T3	[45]
GOx&Pt@FcNV	GOx-catalyzed H_2O_2 generation; Fe^{2+} -mediated •OH generation; Pt-mediated chemotherapy	A549; MCF7	[46]
GOx@ZIF@MPN	GOx-catalyzed H_2O_2 generation; Fe^{2+} -mediated •OH generation	4T1	[47]
3SO/GA-Fe(II)@liposome	BSO-mediated GSH synthesis inhibition; Fe ²⁺ -mediated •OH generation	4T1	[48]
SRF@Fe ^{III} TA	SRF-mediated GSH synthesis inhibition; Fe ²⁺ -mediated •OH generation	4T1; CT26; HepG2; 3T3; COS7; NCTC 1469	[49]
Fe ³⁺ -DOX@EGCG-PEG NPs	DOX-mediated chemotherapy; Fe2+-mediated •OH generation	U87MG; 293T	[50]
OOX/Fe ³⁺ /EGCG NPs	DOX-mediated chemotherapy; Fe2+-mediated •OH generation	LL2; A549	[51]
/InS@BSA	H_2S -mediated gas therapy; Mn^{2+} -mediated •OH generation	4T1	[52]
GOx-MnCaP-DOX	$GOx\text{-}catalyzed \ H_2O_2 \ generation; \\ Mn^{2+}\text{-}mediated \ \bullet OH \ generation; \ DOX\text{-}mediated \ chemotherapy}$	4T1	[53]
GNR@SiO2@MnO2	Mn ²⁺ -mediated •OH generation; GSM-mediated photothermal therapy	U87MG	[54]
BMC-DOX	Mn^{2+} -mediated •OH generation; DOX-mediated chemotherapy	4T1; U87MG	[55]
GMCD	GOx-catalyzed H ₂ O ₂ generation; Mn ²⁺ -mediated •OH generation; CAT-mediated O ₂ generation; DVDMS-mediated ¹ O ₂ generation	4T1	[56]
MS@MnO ₂ NPs	$MnO_2\mbox{-}mediated$ GSH depletion; $Mn^{2+}\mbox{-}mediated$ $\mbox{-}OH$ generation	U87MG	[57]
CN-224(Cu)-GOD@MnO ₂	MnO ₂ -mediated O ₂ supply; GOD-mediated H_2O_2 generation; Cu^+ -mediated •OH generation	L929; HeLa	[58]
Cu _{2-x} S-PEG NDs	Cu _{2-x} S-mediated photothermal therapy; Cu ⁺ -mediated •OH generation	4T1	[59]
EG-Cu ₂ Se HNCs	Cu ₂ Se-mediated photothermal therapy; Cu ⁺ -mediated •OH generation	HUVECs; 4T1	[60]
GC-DOX	GOx-catalyzed H_2O_2 generation; Cu^{2+} -mediated GSH depletion; Cu^{+} -mediated •OH generation; DOX-mediated chemotherapy	4T1	[61]
C@G NSs	GOx-catalyzed H_2O_2 generation; Sr ⁺ /Cu ⁺ -mediated •OH generation; SC NSs-mediated photothermal therapy	4T1; 293T	[62]
Cu-Cys NPs	$\mathrm{Cu}^{2+}\text{-}\mathrm{mediated}$ GSH depletion; $\mathrm{Cu}^+\text{-}\mathrm{mediated}$ •OH generation	HeLa; MCF-7; PC-3; hADSCs; hbMSCs; HK-2	[63]
GOD-Fe ₃ O ₄ @DMSNs	GOD-catalyzed H ₂ O ₂ generation; Fe ²⁺ -mediated •OH generation	4T1; U87	[64]

		(Contin	nued)
Material	Functional mechanism	Cell	Ref.
MNS-GOx	GOx-catalyzed H_2O_2 generation; Mn^{2+} -mediated •OH generation	A375	[65]
Fe ₅ C ₂ -GOD@MnO ₂	MnO ₂ -mediated O ₂ supply; GOD-mediated H ₂ O ₂ generation; Fe ²⁺ -mediated •OH generation	HeLa	[66]
PEG-Au/FeMOF@CPT NPs	Au-catalyzed H_2O_2 generation; Fe^{2+} -mediated •OH generation; CPT-mediated chemotherapy	HepG2	[67]
DMSN-Au-Fe ₃ O ₄ -PEG NPs	Au-catalyzed H_2O_2 generation; Fe^{2+} -mediated •OH generation	4T1	[68]
Fe ₃ O ₄ @PEI-Pt(IV)-PEG	SOD-catalyzed H_2O_2 generation; Fe^{2+} -mediated •OH generation; Pt-mediated chemotherapy	A2780; ACP	[69]
PZIF67-AT	As nanozyme, ZIF-67-mediated H ₂ O ₂ generation, •OH generation, and GSH depletion; 3-AT-mediated H ₂ O ₂ elimination inhibition	A549; HeLa; 4T1	[70]
PA/Fc-Micelles	Asc-mediated $\mathrm{H_2O_2}$ generation; $\mathrm{Fe^{2+}}\text{-mediated}$ •OH generation	4T1; MCF-7	[71]
CaP-Fe/RSL3 + Asc	Asc-mediated H_2O_2 generation; Fe^{2+} -mediated •OH generation; RSL3-mediated GPX4 inhibition	4T1	[72]
CaO ₂ -Fe ₃ O ₄ @HA NPs	CaO2-mediated H2O2 generation; Fe2+-mediated •OH generation	4T1; NIH/3T3; LO2; MCF-7	[73]
Nb ₂ C-IO-CaO ₂ -PVP	CaO_2 -mediated H_2O_2 generation; Fe ²⁺ -mediated •OH generation	4T1	[74]
CP nanodots	CP nanodots -mediated H_2O_2 generation and •OH generation	U87MG	[75]
Fe-GA/CaO ₂ @PCM	PCMs-mediated photothermal-responsive gatekeeper; CaO ₂ -mediated H_2O_2 generation; Fe^{2+} -mediated •OH generation	HeLa	[76]
HA-CD/Fc-CA NPs	CA-mediated $\mathrm{H_2O_2}$ generation; $\mathrm{Fe}^{2+}\text{-mediated}$ •OH generation	MCF-7; 4T1; NIH/3T3	[77]
PolyCAFe	CA-mediated H_2O_2 generation; Fe^{2+} -mediated •OH generation S	W620; DU145; HEK293; NIH3T3	[78]
LaCIONPs	La-mediated H_2O_2 generation; Fe^{2+} -mediated •OH generation; CPT-mediated chemotherapy	A549	[79]
PtkDOX-NMs	La-mediated H_2O_2 generation; Fe^{2+} -mediated •OH generation; DOX-mediated chemotherapy	A549	[80]
Fe ₃ O ₄ -HSA@Lapa	La-mediated $\mathrm{H_2O_2}$ generation; $\mathrm{Fe}^{2+}\text{-mediated}$ •OH generation	A549	[81]
$Fe@Fe_{3}O_{4}@Cu_{2\!-\!x}S@La\text{-}PEG$	La-mediated H_2O_2 generation; Fe@Fe ₃ O ₄ @Cu _{2-x} S-PEG-mediated •OH generation	4T1; HUVE	[82]

a) GOD or GOx: glucose oxidase; La: β -lapachone; CA: cinnamaldehyde; CAT: catalase; GPX: glutathione peroxidase; NP: nanoparticle; Fc: ferrocene; DOX: doxorubicin; GSH: glutathione; Asc: ascorbate; GA: gallic acid; PCMs: phase change materials; MOF: metal-organic framework; EGCG: epigallocatechin gallate; ZIF: zeolite imidazole framework; 3-AT: 3-amino-1,2,4-triazole.

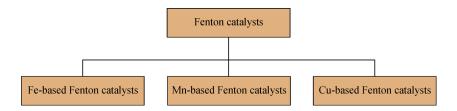


Fig. 2 Three typical metal-based catalysts for the Fenton reaction.

lular glucose to concurrently generate H_2O_2 and H^+ , accelerating the release of Fe²⁺ from Fc. The released Fe²⁺ could catalyze H_2O_2 decomposition into •OH, resulting in the apoptosis of cancer cells. Moreover, the Pt-mediated chemotherapy would enhance the therapeutic effect [46]. This designed therapeutic strategy offered a new angle for the endogenous stimuli-activated nanocarriers to combat multidrug-resistant tumors. In iron-mediated •OH generation, Fe^{2+} exists much better catalytic activity than Fe^{3+} . However, Fe^{2+} is unstable and easily oxidized [88]. Consequently, elevating Fe^{2+} content is a feasible approach to promote •OH generation. Given the effectivity of iron redox cycling, a simultaneous supply of iron ions and some reductants has been received widespread attention, such as tannic acid, EGCG and GA [47–49]. These reductants are mostly

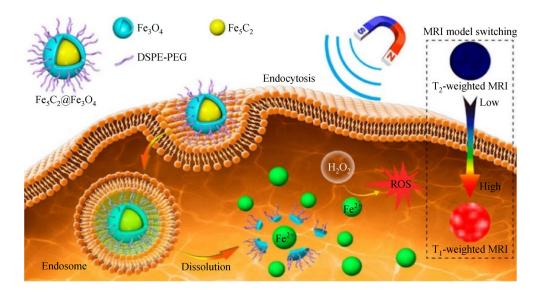


Fig. 3 Schematic diagram of the therapeutic mechanism of $Fe_5C_2@Fe_3O_4$ NPs. Reprinted with permission from ref. [39]. Copyright 2019, American Chemical Society.

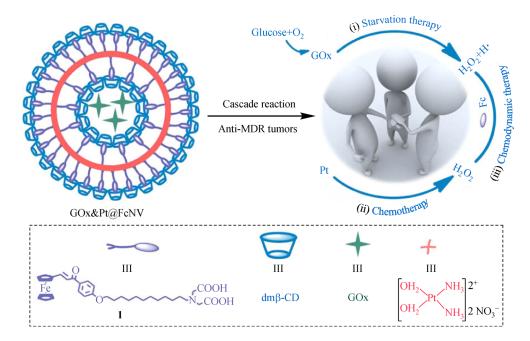
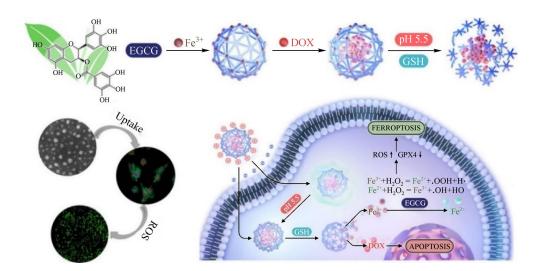



Fig. 4 Schematic illustration of the mechanisms of GOx&Pt@FcNV against tumors. Reprinted with permission from ref. [46]. Copyright 2019, American Chemical Society.

polyphenolic compounds, which can chelate Fe^{3+} to form metal polyphenol network nanocarriers [50]. The formed nanocarriers show excellent aqueous dispersion due to the presence of phenolic hydroxyl groups. The chelation forces between polyphenol and Fe^{3+} can easily break in acidic conditions, resulting in the release of polyphenol and Fe^{3+} . The released Fe^{3+} can be reduced into Fe^{2+} by polyphenol compounds, achieving Fe^{2+} -supply-regeneration cycling [89].

As an interesting paradigm, Mu et al. designed and synthesized DOX/Fe³⁺/EGCG NPs using a one-pot green

method. DOX, EGCG and Fe³⁺ could be simultaneously delivered into the tumor sites via the formed nanocarriers. After endocytosis into tumor cells, the DOX/Fe³⁺/EGCG NPs could be degraded and release DOX, EGCG and Fe³⁺ under high GSH and acidic conditions (Fig. 5). The liberated EGCG-mediated Fe²⁺ generation could effectively achieve Fe²⁺-cycling supply. The Fe²⁺-mediated •OH generation via the Fenton reaction could rapidly promote cancer cell death. Moreover, DOX-mediated chemotherapy could enhance the effect of tumor treatment. The experimental results demonstrated that DOX/Fe³⁺/

Fig. 5 Schematic illustration of the synthetic process and the therapeutic mechanism of the DOX/Fe³⁺/EGCG NPs. Reprinted with permission from ref. [51]. Copyright 2020, American Chemical Society.

EGCG NPs had a remarkable antitumor effect [51]. The therapeutic strategy provided new insights into the effective Fe^{2+} supply to tumor sites.

2.2 Mn-based Fenton catalysts

The tumor microenvironment features low pH, overproduced H_2O_2 and a high GSH concentration. The generated •OH can be eliminated by intracellular GSH, significantly reducing the curative effects [90]. Consequently, developing a novel treatment method to enhance •OH accumulation by promoting GSH consumption and increasing •OH generation is necessary. According to literature reports, Mn-based nanomaterials could react with intracellular GSH, promoting GSH depletion and Mn^{2+} generation. The produced Mn^{2+} could catalyze H_2O_2 decomposition into •OH in the presence of HCO_3^- via the Fenton-like reaction. Therefore, Mn-based nanomaterials could induce GSH depletion and enhance •OH accumulation. Given their excellent advantages, Mn-based nanocarriers could be used as Fenton catalysts [52–56,91].

As an example, Lin et al. obtained the MS@MnO₂ NPs by wrapping mesoporous silica on the surface of MnO₂. As depicted in Fig. 6, MnO₂ was easily disintegrated by intracellular GSH, inducing GSH depletion and Mn²⁺ release. The GSH depletion enhanced the accumulation of Mn²⁺-mediated •OH generation. The results *in vitro* and *in vivo* indicated that MS@MnO₂ NPs exhibited significant anticancer efficacy. This work provided a paradigm to design Fenton catalyst-based nanoagents with the ability to deplete intracellular GSH for enhanced •OH accumulation [57]. Mn-based nanocarriers as Fenton catalysts existed excellent antitumor effectiveness, which could attribute to their excellent Mn²⁺ delivery and GSH depletion capabilities, resulting in the •OH accumulation.

2.3 Cu-based Fenton catalysts

The •OH generation is not only restricted by limited catalytic ions and high content of GSH in tumor cells but also restrained by undesirable pH conditions of the Fenton reaction [92,93]. The occurrence of Fenton reaction requires a low pH (3-4). Hence, a slightly acidic tumor microenvironment can limit •OH generation, reducing antitumor effectiveness. Consequently, developing a new Fenton catalyst to generate abundant •OH in a weakly acidic condition is highly desired. Based on the published literature, Cu+ with reductive ability could react with intracellular H₂O₂ to generate •OH in a broad pH range [94]. However, Cu⁺ was unstable and prone to be oxidized into Cu²⁺. Thereby, Cu-based nanocarriers were generally introduced into cells in the form of Cu^{2+} . The introduced Cu^{2+} could be transformed into Cu^{+} in the presence of GSH, which could promote GSH depletion to destroy the intracellular oxidative balance, promoting the accumulation of the generated •OH [95]. Cu-based nanomaterials were constructed to boost •OH generation such as copperbased metal-organic frameworks [58,96], copper sulfides, copper selenium [59,60], and other copper-based nanocarriers [61,62].

As an example, Ma and co-workers designed and synthesized Cu-Cys NPs through the self-assembled copper-amino acid mercaptide for GSH-activated and H_2O_2 -reinforced •OH generation. As shown in Fig. 7, Cu-Cys NPs could react with excess intracellular GSH to induce the depletion of GSH and generation of Cu⁺. Subsequently, the generated Cu⁺ could react with endogenous H_2O_2 to produce highly oxidative •OH with a rapid reaction rate in the faintly acidic microenvironment, efficiently inducing apoptosis of cancer cells. The *in vitro* and *in vivo* results indicated that Cu-Cys NPs exhibited

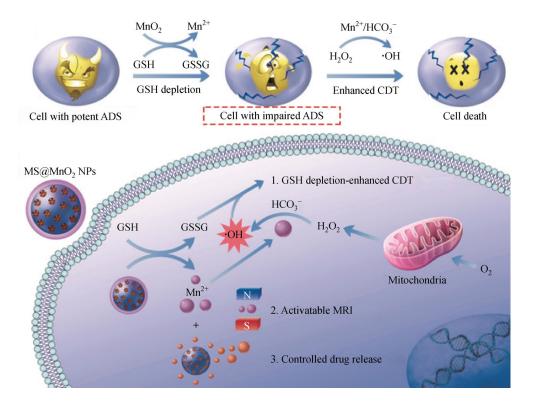


Fig. 6 Schematic illustration of the mechanism of MS@MnO₂ NPs for combination therapy. Reprinted with permission from ref. [57]. Copyright 2018, John Wiley and Sons.

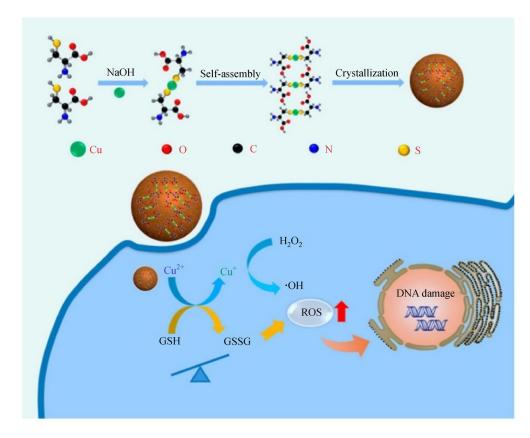


Fig. 7 Schematic illustration of the synthetic process and the therapeutic mechanism of the Cu-Cys NPs. Reprinted with permission from ref. [63]. Copyright 2019, American Chemical Society.

relatively high cytotoxicity to cancer cells, showing efficient tumor growth suppression [63]. The designed nanocarrier that responsive to tumor microenvironment showed potential application in •OH-mediated antitumor therapy. Cu⁺-mediated Fenton reaction could occur in the wide pH range to generate •OH, improving the efficiency of •OH generation and the therapeutic effect.

3 Elevation of H₂O₂ level for enhanced •OH generation

The effective •OH generation relies not only on the supply of Fenton catalysts but also on sufficient H₂O₂ as reaction substrates. Although H₂O₂ is overexpressed in tumor sites, it is still insufficient to generate considerable •OH to achieve satisfying therapeutic performance. Therefore, facilitating H₂O₂ production in the tumor region can address insufficient endogenous H2O2 and promote abundant •OH generation. Plentiful therapeutic strategies have been designed to increase intracellular H₂O₂ levels (Table 1). For instance, GOD can effectively catalyze intracellular glucose oxidation to produce gluconic acid and H_2O_2 [97]. Moreover, as an artificial enzyme, ultrasmall Au NPs can have specific GOD-like catalytic activity, which can also catalyze glucose oxidation to boost H_2O_2 generation [98,99]. Superoxide dismutase (SOD) or SOD-like enzyme can convert intracellular O_2^{-} into H_2O_2 , increasing H₂O₂ amounts [100–102].

Except for the above-mentioned enzymes, Asc [103] and metal peroxides (MO₂) [104,105] have been aroused attention in the ability of H_2O_2 elevation due to their higher stability and lower cost. Organic compounds, including CA and La, can elevate intracellular H_2O_2 content. Based on the mechanism of H_2O_2 generation, strategies for the upregulation of H_2O_2 levels are summarized in Fig. 8.

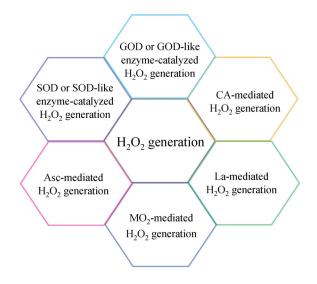


Fig. 8 Schematic illustration of various strategies to boost H_2O_2 generation.

3.1 Glucose oxidase or glucose oxidase-like enzymecatalyzed H_2O_2 generation

As an endogenous oxidoreductase, GOD comprises two identical polypeptide chain subunits and flavin adenine dinucleotide coenzymes, specifically catalyzing intracellular β -D-glucose oxidation to produce gluconic acid and H₂O₂ in the presence of O₂ and H₂O [64,106–109]. The therapeutic strategies based on GOD-mediated H₂O₂ generation have been used in cancer therapy [65,110– 113]. According to the catalytic mechanism, the GODcatalyzed H₂O₂ generation requires the participation of O₂. However, given the hypoxic characteristic of the tumor microenvironment, the efficacy of GOD-catalyzed H₂O₂ generation is significantly hindered. Consequently, increasing intracellular O₂ content is a suitable approach to improve the efficiency of GOD-catalyzed H₂O₂ production.

As an example, Lin's group synthesized multifunctional nanocarriers using Fe₅C₂-GOD as the core and pHresponsive MnO₂ as the outer shell to form Fe₅C₂-GOD@MnO₂ (Fig. 9). Upon entering tumor cells, the acidic microenvironment could decompose the MnO₂ to generate O₂, simultaneously inducing the GOD release and the Fe^{2+} release from Fe_5C_2 NPs. The generated O_2 would promote GOD-catalyzed glucose oxidation to enhance H₂O₂ generation and decrease intracellular pH. Decreasing pH and generating H_2O_2 would speed up Fe^{2+} -catalyzed •OH generation, further triggering cancer cell death. The experimental results suggested that Fe₅C₂-GOD@MnO₂ exhibited an excellent antitumor effect due to the MnO2mediated O₂ supply and GOD-activated H₂O₂ production for reinforced Fe²⁺-mediated •OH generation [66]. The designed Fe₅C₂-GOD@MnO₂ nanocarriers provided a potential strategy to improve tumor-specific •OH production and minimize side effects on normal tissues.

However, as a natural enzyme, GOD can be easily inactivated under severe conditions, restricting its application. The ultrasmall Au NPs as an artificial nanozyme have attracted attention by virtue of their specific GOD-like catalytic activity, high stability, and significant catalytic activity against harsh conditions [67,114-117]. As an example, Gao et al. designed and synthesized the cascade catalytic nanoplatform by integrating 1.5 nm Au NPs and ultrasmall Fe₃O₄ NPs into DMSN NPs with large pore channels to construct DMSN-Au-Fe₃O₄ NPs. The PEG was further modified on the surface of DMSN-Au-Fe₃O₄ NPs to improve the stability (Fig. 10). The formed DMSN-Au-Fe₃O₄-PEG NPs could trigger intracellular cascade catalytic reaction under the tumor microenvironment. Au NPs as a GOD-like nanozyme could catalyze intracellular glucose oxidation to generate gluconic acid and H₂O₂. The decrease in pH would promote •OH generation via the Fenton reaction between ultrasmall Fe_3O_4 NPs and H_2O_2 , triggering tumor cell death. Extensive evaluations in vitro and in vivo demonstrated that the DMSN-Au-Fe₃O₄-PEG

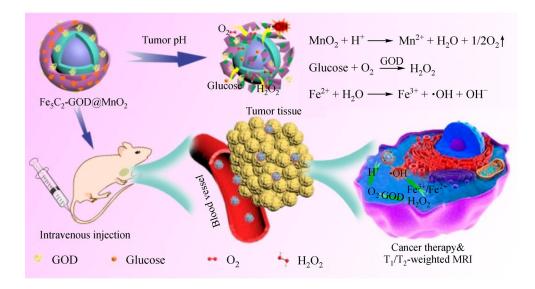


Fig. 9 Schematic diagram of the therapeutic mechanism of Fe_5C_2 -GOD@MnO₂ nanocarriers. Reprinted with permission from ref. [66]. Copyright 2018, American Chemical Society.

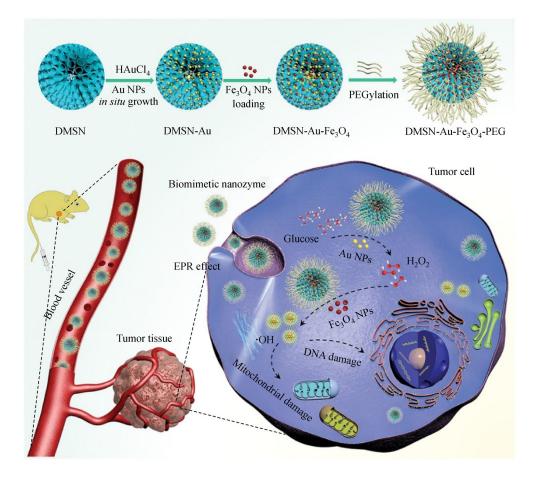


Fig. 10 Schematic illustration of the synthetic process and the therapeutic mechanism of the DMSN-Au-Fe₃O₄-PEG NPs. Reprinted with permission from ref. [68]. Copyright 2019, John Wiley and Sons.

NPs showed excellent therapeutic effects with a tumor suppression rate of 69.08% and without additional side effects [68]. Therefore, tumor microenvironment-triggered nanocarrier not only provided a "toxic-drug-free" therapeutic strategy but also stimulated the development of tumor-specific therapies.

3.2 SOD or SOD-like enzyme-catalyzed H₂O₂ generation

Intracellular O_2^{-} can react with H⁺ to form H₂O₂ during the catalysis of SOD [118]. Hence, SOD or SOD-like enzyme can increase the intracellular H₂O₂ concentration [119,120]. Inspired by this principle of H_2O_2 formation, Ma et al. constructed the Fe₃O₄@PEI-Pt(IV)-PEG (FePt-NP2) nanocarrier with a hydrodynamic size of 252 nm. As depicted in Fig. 11, once injected into cancer tissues, FePt-NP2 could be decomposed in an acidic microenvironment, liberating iron ions and Pt. The liberated Pt-mediated O₂. generation and chemotherapy could enhance antitumor efficacy. The formed O_2 could be converted into H_2O_2 under the catalysis of SOD. The up-regulation of H_2O_2 content could accelerate the •OH generation between the released iron ions and H2O2, inducing tumor cell death. The synthesized sequential drug delivery nanocarriers could achieve tumor site-specific ROS generation utilizing the supply of iron ions and the elevation of H₂O₂ content, enhancing anticancer effect. The in vitro and in vivo results demonstrated that FePt-NP2 showed outstanding antitumor outcomes and potential application in cancer therapy [69]. This work provided a promising delivery method for synergistic therapy. Besides SOD enzyme, the SOD-like enzyme could catalyze O_2 to form H_2O_2 , elevating intracellular H₂O₂ content. For example, Sang et al. synthesized ZIF-67 NPs with SOD-like activity and Fenton-like catalytic activity. As shown in Fig. 12, the synthesized ZIF-67 could catalyze intracellular O2⁻ to

generate H_2O_2 . Moreover, the elevated H_2O_2 could be sequentially converted into •OH in the presence of ZIF-67. To improve the therapeutic effect and increase the stability, 3-AT and PEG were modified on the surface of ZIF-67 (named PZIF67-AT). On one hand, 3-AT as the CAT inhibitor could suppress H_2O_2 decomposition. On the other hand, PZIF67-AT-mediated GSH depletion could also prohibit H_2O_2 clearance [70]. The inhibition of H_2O_2 clearance had been proven to significantly increase •OH generation, achieving better therapeutical effects. This work provided new insights into the design of H_2O_2 supplementing strategies.

3.3 Ascorbate-mediated H₂O₂ generation

Ascorbate (Asc) has been frequently utilized to elevate intracellular H₂O₂ levels. According to existing research reports, in extracellular fluid, Asc at the pharmacologic concentration could lose one electron and form Asc-; cellular O_2 could obtain an electron from Mⁿ to form O_2^{-} ; M^n could simultaneously be reduced to M^{n-1} during this process; the intracellular H⁺ subsequently could react with O₂⁻ to produce H₂O₂ and O₂ [71,121–126]. Asc-mediated H₂O₂ generation has received great attention due to its biosafety. Based on this mechanism, An and co-workers synthesized the hybrid nanocarriers by physically encapsulating polar ferric ammonium citrate and nonpolar RSL3 into the lipid-coated calcium phosphate (CaP) core and shell, respectively. The formed nanocarrier with a suitable particle size was named CaP-Fe/RSL3. As shown in Fig. 13, the hybrid nanocarriers could be quickly degraded in an acidic environment. Asc-induced selective enrichment of H₂O₂ coupled with Fe³⁺ co-delivery could boost the •OH levels in tumor sites. Simultaneous liberation of RSL3 as a GPX4 inhibitor could result in the accumulation of lipid peroxides, enhancing treatment efficacy. The in vitro

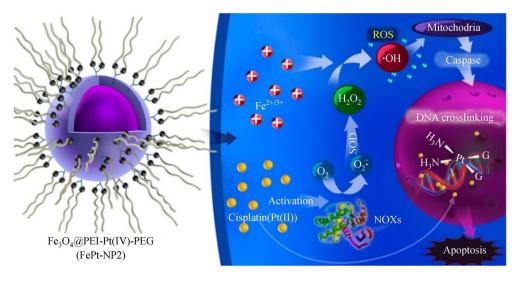


Fig. 11 Schematic diagram of the therapeutic mechanism of FePt-NP2 for synergistic actions. Reprinted with permission from ref. [69]. Copyright 2017, American Chemical Society.

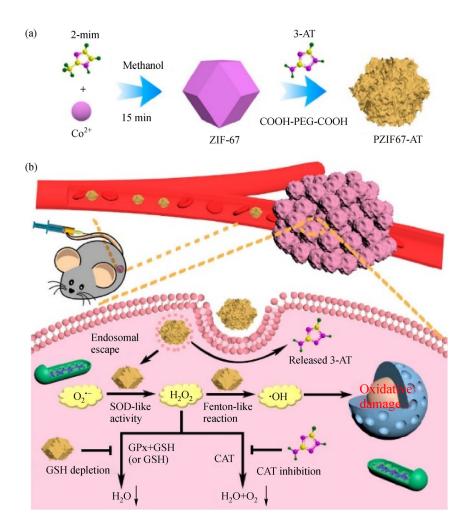


Fig. 12 Schematic representation of (a) the synthesis of PZIF67-AT NPs and (b) PZIF67-AT NPs-mediated intensive •OH production. Reprinted with permission from ref. [70]. Copyright 2020, American Chemical Society.

and *in vivo* results showed that Fe^{3+} delivery coupled with intraperitoneal administration of Asc had an excellent antitumor performance [72]. The combinational approach produced significantly elevated •OH levels, offering a new therapeutic method for enhancing therapeutic performance.

3.4 Metal peroxide-mediated H₂O₂ generation

The above-mentioned GOD or GOD-like enzyme, SOD or SOD-like enzyme, and Asc can promote H_2O_2 production, but these catalytic reactions severely depend on the cellular O_2 concentration [73,127–129]. However, hypoxia is regarded as a major feature of cancer cells, affecting the efficiency of H_2O_2 generation and reducing the therapeutic effect. Therefore, developing new therapeutic methods to overcome the hypoxic environment and increase H_2O_2 content is of importance. MO_2 are composed of O_2^- and metal ions, which have been widely used to increase intracellular H_2O_2 content without the assistance of O_2 . The MO_2 can be dissociated to release metal ions and O_2^- in acidic conditions. The released O_2 - can react with H⁺ to produce H₂O₂. The MO₂-based nanocarriers have been extensively used as H₂O₂ generators because of their simple preparation, low cost, and high stability [74,75,130]. Based on this, Zhang et al. fabricated Fe-GA/CaO₂@PCM nanocarriers with thermal responsiveness and self-sufficient H₂O₂ by utilizing organic PCMs to encapsulate Fe-GA NPs and ultra-small CaO₂ (Fig. 14). The thermally responsive PCMs melted with the increase of temperature, inducing the release of internal Fe-GA and CaO₂. The liberated CaO₂-mediated self-produced H₂O₂ would be transformed into •OH by reacting with Fe-GA to increase •OH levels, improving the antitumor effect. In addition, the Ca²⁺-mediated mitochondrial damage could enhance the apoptosis of cancer cells. Due to the thermalresponsive feature, the designed Fe-GA/CaO2@PCM could specifically release the inner drugs in tumor sites, avoiding the serious damage on normal cells [76]. Thus, MO₂-based nanocarriers provided a new therapeutical strategy, specifically boosting H₂O₂ generation to improve the efficiency of •OH generation at hypoxic conditions.

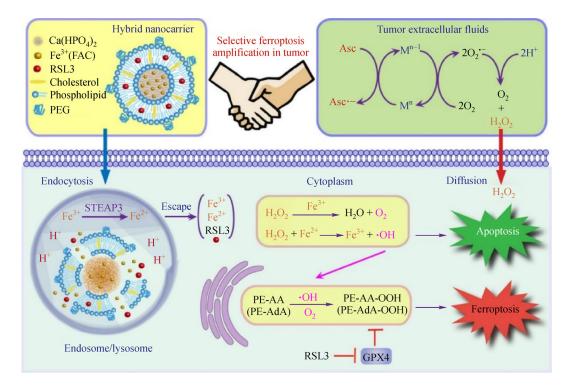


Fig. 13 Schematic illustration of the therapeutic mechanism of CaP-Fe/RSL3 + Asc. Reprinted with permission from ref. [72]. Copyright 2019, American Chemical Society.

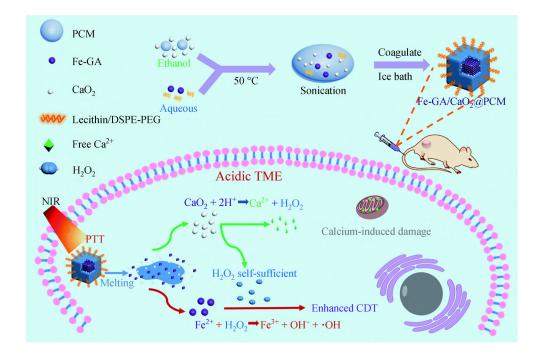


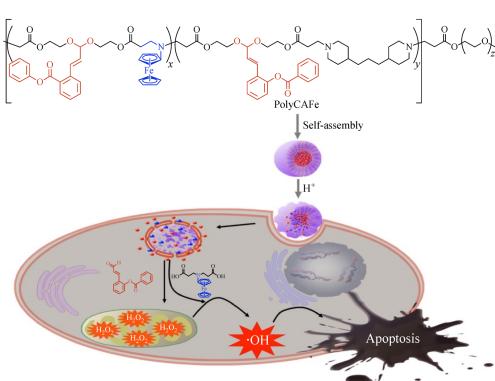
Fig. 14 Schematic illustration of the synthetic process and the therapeutic mechanism of Fe-GA/CaO₂@PCM. Reprinted with permission from ref. [76]. Copyright 2020, The Royal Society of Chemistry.

3.5 CA-mediated H₂O₂ generation

CA as a primary active ingredient of cinnamon, has been widely used as a food additive approved by Food and Drug

Administration. CA and its derivatives have been proven effective in boosting H_2O_2 generation, amplifying tumor H_2O_2 levels to increase •OH generation. Numerous strategies based on CA-mediated H_2O_2 generation have

been used to amplify intracellular oxidative stress for triggered the death of cancer cells [77,131–133]. As an example, Kwon et al. skillfully synthesized dual acidsensitive PolyCAFe micelles, which could concurrently deliver H₂O₂ generator benzoyloxycinnamaldehyde (BCA) and Fenton catalyst Fc into the tumor site, escalating intracellular oxidative stress for preferentially triggered cancer cell death. As shown in Fig. 15, after entering the weakly acidic tumor microenvironment, PolyCAFe micelles would release the BCA and Fc due to the cleavage of the acid-sensitive bond. BCA-mediated H₂O₂ generation could elevate H₂O₂ levels to reinforce Fcmediated •OH generation. The in vitro and in vivo results verified that PolyCAFe micelles existed excellent therapeutic performance and favorable biocompatibility [78]. This study provided an innovative strategy for exploiting new therapeutic nanoplatforms, simultaneously amplifying tumor H₂O₂ levels and enhancing •OH generation for specifically triggered cancer cell death with remarkable biosafety.


3.6 La-mediated H₂O₂ generation

La as a special H_2O_2 -producing agent could generate O_2^{-1} and H_2O_2 . After entering cancer cells, La can selectively increase the content of H_2O_2 in tumor sites under the action of overexpressed quinone oxidoreductase 1 (NQO1). Lamediated H_2O_2 generation has been reported and used to improve therapeutical performance in cancers [79–81]. As a paradigm, Li et al. constructed the self-supply H_2O_2 nanoplatform via loading La into Fe@Fe3O4@Cu2-xS-PEG to form Fe@Fe₃O₄@Cu_{2-x}S@La-PEG. As depicted in Fig. 16, La released from Fe@Fe₃O₄@Cu_{2-r}S@La-PEG could selectively boost tumor site-specific H_2O_2 generation under the catalysis of NQO1. Subsequently, the iron and copper ions released from the Fe@Fe₃O₄@Cu_{2-r}S in the acidic environment could convert H_2O_2 into highly toxic •OH via Fenton reactions, dramatically improving •OH generation with minimal systemic toxicity due to low NQO1 expression in normal tissues. The in vivo results demonstrated that the Fe@Fe₃O₄@Cu_{2-x}S@La-PEG significantly inhibited tumor growth [82]. The therapeutical strategy based on La-mediated H₂O₂ generation provided new insight into the enhancement of tumor-selective •OH generation, significantly promoting NQO1-overexpressing tumor-cell apoptosis with minimal side effects on normal cells.

4 Conclusions and prospect

The •OH production is generally considered as H_2O_2 decomposition in the presence of Fenton catalysts via Fenton or Fenton-like reactions. The generated •OH can induce tumor cell death by attacking and oxidizing intracellular biomolecules, such as DNA, proteins, and polyunsaturated fatty acids. However, the efficacy of •OH generation is severely hindered by insufficient intracellular

Fig. 15 Schematic diagram of the PolyCAFe-triggered cancer apoptosis via boosting H_2O_2 generation and •OH generation. Reprinted with permission from ref. [78]. Copyright 2016, American Chemical Society.

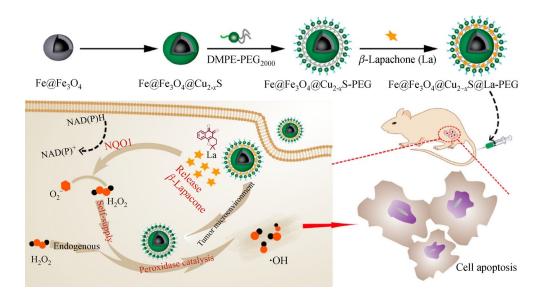


Fig. 16 Illustration of the synthetic process and therapeutic mechanism of $Fe@Fe_3O_4@Cu_{2-x}S@La-PEG$. Reprinted with permission from ref. [82]. Copyright 2020, American Chemical Society.

 H_2O_2 contents and limited Fenton catalysts. Therefore, various strategies have been widely used to improve •OH generation. This review mainly summarizes current developments of hydroxyl radical-based cancer therapy, including effective supply of typical metal-based Fenton catalysts and up-regulation of H_2O_2 levels in tumor sites. These strategies remarkably enhance the efficacy of •OH generation, increasing the therapeutic performance.

However, the hydroxyl radical-based cancer therapy still exists the following four problems that need to be further studied and optimized. 1) The excess metal ions introduced into cells can cause severe damages to human health and limit further clinical translation. Therefore, detecting or controlling the amount of metal ion introduction is an effective strategy to avoid damage on normal cells or tissues. 2) The nanocarriers that are used to deliver Fenton catalysts lack tumor-specific target, which may cause damage on normal cells with adverse effects. Consequently, exploiting tumor-target nanocarriers to specifically target tumor cells is an effective strategy to solve this problem. 3) The •OH generation via the Fenton reaction needs low pH conditions, ranging from 2 to 4. However, the pH of the tumor microenvironment predominantly ranges from 6.5 to 7, the pH of endosomes is approximately 5.0, and the pH of lysosomes is about 4.5. Therefore, decreasing the pH of the tumor microenvironment or delivering nanocarriers to endosomes or lysosomes is an effective approach to enhance the efficiency of •OH generation. 4) GSH serves as an important antioxidant substance, eliminating the generated ROS to maintain intracellular redox balance. Compared with normal tissues, tumor tissues are mainly characterized by higher GSH content (2 to 10 mmol \cdot L⁻¹). The therapeutic efficiency of •OH-based cancer therapy will be limited because of GSH

elimination. Therefore, simultaneously promoting intracellular GSH depletion and increasing ROS generation will enhance the efficiency of •OH generation. Although there are still some problems required to be further solved and optimized, hydroxyl radical-involved cancer therapy shows high prospect.

Acknowledgements The authors acknowledge the financial support from the Tianjin Science and Technology Committee (Grant No. 19JCYBJC28400), the Basic Research General Program of Shenzhen Science and Technology Innovation Commission in 2020 (Grant No. JCYJ20190806162412752).

References

- Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5): 646–674
- Liou G Y, Storz P. Reactive oxygen species in cancer. Free Radical Research, 2010, 44(5): 479–496
- Fridovich I. Superoxide anion radical (O₂[•]), superoxide dismutases, and related matters. Journal of Biological Chemistry, 1997, 272(30): 18515–18517
- Mi P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 2020, 10(10): 4557–4588
- Gligorovski S, Strekowski R, Barbati S, Vione D. Environmental implications of hydroxyl radicals (•OH). Chemical Reviews, 2015, 115(24): 13051–13092
- Yang B, Ding L, Yao H, Chen Y, Shi J. A metal-organic framework (MOF) Fenton nanoagent-enabled nanocatalytic cancer therapy in synergy with autophagy inhibition. Advanced Materials, 2020, 32 (12): 1907152–1907164
- 7. Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional

nanomaterials for phototherapies of cancer. Chemical Reviews, 2014, 114(21): 10869–10939

- Begg A C, Stewart F A, Vens C. Strategies to improve radiotherapy with targeted drugs. Nature Reviews. Cancer, 2011, 11(4): 239– 253
- Pan X, Bai L, Wang H, Wu Q, Wang H, Liu S, Xu B, Shi X, Liu H. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Advanced Materials, 2018, 30(23): 1800180–1800189
- Tang Z, Liu Y, He M, Bu W. Chemodynamic therapy: tumour microenvironment-mediated Fenton and Fenton-like reactions. Angewandte Chemie International Edition, 2019, 58(4): 946–956
- Kim J, Cho H C, Jeon H, Kim D, Song C, Lee N, Choi S H, Hyeon T. Continuous O₂-evolving MnFe₂O₄ nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. Journal of the American Chemical Society, 2017, 139(32): 10992–10995
- Wang J, Zhang Y, Archibong E, Ligler F S, Gu Z. Leveraging H₂O₂ levels for biomedical applications. Advanced Biosystems, 2017, 1(9): 1700084–1700099
- Devine P J, Perreault S D, Luderer U. Roles of reactive oxygen species and antioxidants in ovarian toxicity. Biology of Reproduction, 2012, 86(2): 27
- 14. Zhang C, Bu W, Ni D, Zhang S, Li Q, Yao Z, Zhang J, Yao H, Wang Z, Shi J. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angewandte Chemie International Edition, 2016, 55(6): 2101– 2106
- Liu X, Jin Y, Liu T, Yang S, Zhou M, Wang W, Yu H. Iron-based theranostic nanoplatform for improving chemodynamic therapy of cancer. ACS Biomaterials Science & Engineering, 2020, 6(9): 4834–4845
- Ranji-Burachaloo H, Gurr P A, Dunstan D E, Qiao G G. Cancer treatment through nanoparticle-facilitated Fenton reaction. ACS Nano, 2018, 12(12): 11819–11837
- Gao Z, He T, Zhang P, Li X, Zhang Y, Lin J, Hao J, Huang P, Cui J. Polypeptide-based theranostics with tumor-microenvironment-activatable cascade reaction for chemo-ferroptosis combination therapy. ACS Applied Materials & Interfaces, 2020, 12(18): 20271–20280
- Hentze M W, Muckenthaler M U, Andrews N C. Balancing acts: molecular control of mammalian iron metabolism. Cell, 2004, 30(3): 285–297
- Dong S, Dong Y, Jia T, Zhang F, Wang Z, Feng L, Sun Q, Gai S, Yang P. Sequential catalytic, magnetic targeting nanoplatform for synergistic photothermal and NIR-enhanced chemodynamic therapy. Chemistry of Materials, 2020, 32(23): 9868–9881
- 20. Chen G, Yang Y, Xu Q, Ling M, Lin H, Ma M, Sun R, Xu Y, Liu X, Li N, et al. Self-amplification of tumor oxidative stress with degradable metallic complexes for synergistic cascade tumor therapy. Nano Letters, 2020, 20(11): 8141–8150
- Hou H, Huang X, Wei G, Xu F, Wang Y, Zhou S. Fenton reactionassisted photodynamic therapy for cancer with multifunctional magnetic nanoparticles. ACS Applied Materials & Interfaces, 2019, 11(33): 29579–29592
- 22. Zhang Y, Lin L, Liu L, Liu F, Sheng S, Tian H, Chen X. Positive

feedback nanoamplifier responded to tumor microenvironments for self-enhanced tumor imaging and therapy. Biomaterials, 2019, 216: 119255–119264

- 23. Wang D, Wu H, Wang C, Gu L, Chen H, Jana D, Feng L, Liu J, Wang X, Xu P, et al. Self-assembled single-site nanozyme for tumor-specific amplified cascade enzymatic therapy. Angewandte Chemie International Edition, 2021, 60(6): 3001–3007
- Liu X, Jin Y, Liu T, Yang S, Zhou M, Wang W, Yu H. Iron-based theranostic nanoplatform for improving chemodynamic therapy of cancer. ACS Biomaterials Science & Engineering, 2020, 6(9): 4834–4845
- 25. Jiang F, Ding B, Liang S, Zhao Y, Cheng Z, Xing B, Ma P, Lin J. Intelligent MoS₂-CuO heterostructures with multiplexed imaging and remarkably enhanced antitumor efficacy via synergetic photothermal therapy/chemodynamic therapy/immunotherapy. Biomaterials, 2021, 268: 120545–120557
- Cao S, Fan J, Sun W, Li F, Li K, Tai X, Peng X. A novel Mn-Cu bimetallic complex for enhanced chemodynamic therapy with simultaneous glutathione depletion. Chemical Communications, 2019, 55(86): 12956–12959
- Wang C, Yang J, Dong C, Shi S. Glucose oxidase-related cancer therapies. Advanced Therapeutics, 2020, 3(10): 2000110–2000139
- Lou-Franco J, Das B, Elliott C, Cao C. Gold nanozymes: from concept to biomedical applications. Nano-Micro Letters, 2021, 13(1): 10–46
- Chen Y, Deng J, Liu F, Dai P, An Y, Wang Z, Zhao Y. Energyfree, singlet oxygen-based chemodynamic therapy for selective tumor treatment without dark toxicity. Advanced Healthcare Materials, 2019, 8(18): 1900366–1900376
- Sullivan L B, Chandel N S. Mitochondrial reactive oxygen species and cancer. Cancer & Metabolism, 2014, 2(1): 17–29
- Hu H, Yu L, Qian X, Chen Y, Chen B, Li Y. Chemoreactive nanotherapeutics by metal peroxide based nanomedicine. Advancement of Science, 2020, 8(1): 2000494–2000511
- 32. Ka H, Park H J, Jung H J, Choi J W, Cho K S, Ha J, Lee K T. Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Letters, 2003, 196(2): 143–152
- Ahn K J, Lee H S, Bai S K, Song C W. Enhancement of radiation effect using beta-lapachone and underlying mechanism. Radiation Oncology Journal, 2013, 31(2): 57–65
- Huang C, Liao Z, Lu H, Pan W, Wan W, Chen C, Sung H. Cellular organelle-dependent cytotoxicity of iron oxide nanoparticles and its implications for cancer diagnosis and treatment: a mechanistic investigation. Chemistry of Materials, 2016, 28(24): 9017–9025
- 35. Zhang Y, Wan Y, Liao Y, Hu Y, Jiang T, He T, Bi W, Lin J, Gong P, Tang L, et al. Janus γ-Fe₂O₃/SiO₂-based nanotheranostics for dual-modal imaging and enhanced synergistic cancer starvation/ chemodynamic therapy. Science Bulletin, 2020, 65(7): 564–572
- 36. Liu Z, Li T, Han F, Wang Y, Gan Y, Shi J, Wang T, Akhtarc M L, Li Y. A cascade-reaction enabled synergistic cancer starvation/ ROS-mediated/chemo-therapy with an enzyme modified Fe-based MOF. Biomaterials Science, 2019, 7(9): 3683–3692
- Wang L, Huo M, Chen Y, Shi J. Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for tumor-specific therapy. Biomaterials, 2018, 163: 1–13

- He T, Yuan Y, Jiang C, Blum N T, He J, Huang P, Lin J. Lighttriggered transformable ferrous ion delivery system for photothermal primed chemodynamic therapy. Angewandte Chemie International Edition, 2021, 60(11): 6047–6054
- 39. Yu J, Zhao F, Gao W, Yang X, Ju Y, Zhao L, Guo W, Xie J, Liang X, Tao X, et al. Magnetic reactive oxygen species nanoreactor for switchable magnetic resonance imaging guided cancer therapy based on pH-sensitive Fe₅C₂@Fe₃O₄ nanoparticles. ACS Nano, 2019, 13(9): 10002–10014
- 40. Yao Z, Zhang B, Liang T, Ding J, Min Q, Zhu J. Promoting oxidative stress in cancer starvation therapy by site-specific startup of hyaluronic acid-enveloped dual-catalytic nanoreactors. ACS Applied Materials & Interfaces, 2019, 11(21): 18995–19005
- Gao F, Wang F, Nie X, Zhang Z, Chen G, Xia L, Wang L, Wang C, Hao Z, Zhang W, et al. Mitochondria-targeted delivery and light controlled release of iron prodrug and CO to enhance cancer therapy by ferroptosis. New Journal of Chemistry, 2020, 44(8): 3478–3486
- 42. Nie X, Xia L, Wang H, Chen G, Wu B, Zeng T, Hong C, Wang L, You Y. Photothermal therapy nanomaterials boosting transformation of Fe(III) into Fe(II) in tumor cells for highly improving chemodynamic therapy. ACS Applied Materials & Interfaces, 2019, 11(35): 31735–31742
- Fang C, Deng Z, Cao G, Chu Q, Wu Y, Li X, Peng X, Han G. Coferrocene MOF/glucose oxidase as cascade nanozyme for effective tumor therapy. Advanced Functional Materials, 2020, 30(16): 1910085–1910094
- 44. Deng Z, Fang C, Ma X, Li X, Zeng Y J, Peng X. One stone two birds: Zr-Fc metal-organic framework nanosheet for synergistic photothermal and chemodynamic cancer therapy. ACS Applied Materials & Interfaces, 2020, 12(18): 20321–20330
- 45. Na Y, Woo J, Choi W I, Sung D. Novel carboxylated ferrocene polymer nanocapsule with high reactive oxygen species sensitivity and on-demand drug release for effective cancer therapy. Colloids and Surfaces. B, Biointerfaces, 2021, 200: 111566–111572
- 46. Chen Y, Yao Y, Zhou X, Liao C, Dai X, Liu J, Yu Y, Zhang S. Cascade-reaction-based nanodrug for combined chemo/starvation/ chemodynamic therapy against multidrug-resistant tumors. ACS Applied Materials & Interfaces, 2019, 11(49): 46112–46123
- Zhang L, Wan S, Li C, Xu L, Cheng H, Zhang X. An adenosine triphosphate-responsive autocatalytic Fenton nanoparticle for tumor ablation with self-supplied H₂O₂ and acceleration of Fe (III)/Fe(II) conversion. Nano Letters, 2018, 18(12): 7609–7618
- 48. Dong Z, Feng L, Chao Y, Hao Y, Chen M, Gong F, Han X, Zhang R, Cheng L, Liu Z. Amplification of tumor oxidative stresses with liposomal Fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Letters, 2019, 19(2): 805–815
- Liu T, Liu W, Zhang M, Yu W, Gao F, Li C, Wang S, Feng J, Zhang X. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis in combination with imaging-guided photodynamic therapy. ACS Nano, 2018, 12(12): 12181–12192
- 50. Shan L, Gao G, Wang W, Tang W, Wang Z, Yang Z, Fan W, Zhu G, Zhai K, Jacobson O, et al. Self-assembled green tea polyphenol-based coordination nanomaterials to improve chemotherapy efficacy by inhibition of carbonyl reductase 1. Biomaterials,

2019, 210: 62–69

- 51. Mu M, Wang Y, Zhao S, Li X, Fan R, Mei L, Wu M, Zou B, Zhao N, Han B, Guo G. Engineering a pH/glutathione-responsive tea polyphenol nanodevice as an apoptosis/ferroptosis-inducing agent. ACS Applied Bio Materials, 2020, 3(7): 4128–4138
- He T, Qin X, Jiang C, Jiang D, Lei S, Lin J, Zhu W G, Qu J, Huang P. Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy. Theranostics, 2020, 10(6): 2453–2462
- 53. Fu L H, Hu Y R, Qi C, He T, Jiang S, Jiang C, He J, Qu J, Lin J, Huang P. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced antitumor therapy. ACS Nano, 2019, 13(12): 13985–13994
- 54. He T, Jiang C, He J, Zhang Y, He G, Wu J, Lin J, Zhou X, Huang P. Manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex-imaging-guided NIR-II photothermal-chemodynamic therapy. Advanced Materials, 2021, 33(13): 2008540–2008550
- 55. Qi C, He J, Fu L H, He T, Blum N T, Yao X, Lin J, Huang P. Tumor-specific activatable nanocarriers with gas-generation and signal amplification capabilities for tumor theranostics. ACS Nano, 2021, 15(1): 1627–1639
- 56. Fu L H, Wan Y, Li C, Qi C, He T, Yang C, Zhang Y, Lin J, Huang P. Biodegradable calcium phosphate nanotheranostics with tumor-specific activatable cascade catalytic reactions-augmented photo-dynamic therapy. Advanced Functional Materials, 2021, 31(14): 2009848–2009859
- 57. Lin L S, Song J, Song L, Ke K, Liu Y, Zhou Z, Shen Z, Li J, Yang Z, Tang W, et al. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO₂-based nanoagent to enhance chemodynamic therapy. Angewandte Chemie International Edition, 2018, 57(18): 4902–4906
- 58. Wang Z, Liu B, Sun Q, Dong S, Kuang Y, Dong Y, He F, Gai S, Yang P. Fusiform-like copper(II)-based metal-organic framework through relief hypoxia and GSH-depletion Co-enhanced starvation and chemodynamic synergetic cancer therapy. ACS Applied Materials & Interfaces, 2020, 12(15): 17254–17267
- Hu R, Fang Y, Huo M, Ya H, Wang C, Chen Y, Wu R. Ultrasmall Cu_{2-x}S nanodots as photothermal-enhanced Fenton nanocatalysts for synergistic tumor therapy at NIR-II biowindow. Biomaterials, 2019, 206: 101–114
- Wang X, Zhong X, Lei H, Geng Y, Zhao Q, Gong F, Yang Z, Dong Z, Liu Z, Cheng L. Hollow Cu₂Se nanozymes for tumor photothermal-catalytic therapy. Chemistry of Materials, 2019, 31(16): 6174–6186
- 61. Fu L H, Wan Y, Qi C, He J, Li C, Yang C, Xu H, Lin J, Huang P. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Advanced Materials, 2021, 33(7): 2006892–2006903
- 62. Yang C, Younis M R, Zhang J, Qu J, Lin J, Huang P. Programmable NIR-II photothermal-enhanced starvation-primed chemodynamic therapy using glucose oxidase-functionalized ancient pigment nanosheets. Small, 2020, 16(25): 2001518– 2001528
- Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, et al. Self-assembled copper-amino acid nanoparticles

for *in situ* glutathione "and" H_2O_2 sequentially triggered chemodynamic therapy. Journal of the American Chemical Society, 2019, 141(2): 849–857

- Huo M, Wang L, Chen Y, Shi J. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nature Communications, 2017, 8(1): 357–369
- He T, Xu H, Zhang Y, Yi S, Cui R, Xing S, Wei C, Lin J, Huang P. Glucose oxidase-instructed traceable self-oxygenation/hyperthermia dually enhanced cancer starvation therapy. Theranostics, 2020, 10(4): 1544–1554
- 66. Feng L, Xie R, Wang C, Gai S, He F, Yang D, Yang P, Lin J. Magnetic targeting, tumor microenvironment responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano, 2018, 12(11): 11000–11012
- 67. Ding Y, Xu H, Xu C, Tong Z, Zhang S, Bai Y, Chen Y, Xu Q, Zhou L, Ding H, et al. A nanomedicine fabricated from gold nanoparticles-decorated metal-organic framework for cascade chemo/chemodynamic cancer therapy. Advancement of Science, 2020, 7(17): 2001060–2001070
- Gao S, Lin H, Zhang H, Yao H, Chen Y, Shi J. Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Advancement of Science, 2019, 6(3): 1801733–1801745
- Ma P, Xiao H, Yu C, Liu J, Cheng Z, Song H, Zhang X, Li C, Wang J, Gu Z, et al. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Letters, 2017, 17(2): 928–937
- 70. Sang Y, Cao F, Li W, Zhang L, You Y, Deng Q, Dong K, Ren J, Qu X. Bioinspired construction of a nanozyme-based H₂O₂ homeostasis disruptor for intensive chemodynamic therapy. Journal of the American Chemical Society, 2020, 142(11): 5177– 5183
- Wang Y, Yin W, Ke W, Chen W, He C, Ge Z. Multifunctional polymeric micelles with amplified Fenton reaction for tumor ablation. Biomacromolecules, 2018, 19(6): 1990–1998
- An Y, Zhu J, Liu F, Deng J, Meng X, Liu G, Wu H, Fan A, Wang Z, Zhao Y. Boosting the ferroptotic antitumor efficacy via site-specific amplification of tailored lipid peroxidation. ACS Applied Materials & Interfaces, 2019, 11(33): 29655–29666
- Han Y, Ouyang J, Li Y, Wang F, Jiang J H. Engineering H₂O₂ selfsupplying nanotheranostic platform for targeted and imagingguided chemodynamic therapy. ACS Applied Materials & Interfaces, 2020, 12(1): 288–297
- 74. Gao S, Lu X, Zhu P, Lin H, Yu L, Yao H, Wei C, Chen Y, Shi J. Self-evolved hydrogen peroxide boosts photothermal-promoted tumor-specific nanocatalytic therapy. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2019, 7(22): 3599– 3609
- 75. Lin L, Huang T, Song J, Ou X, Wang Z, Deng H, Tian R, Liu Y, Wang J, Liu Y, et al. Synthesis of copper peroxide nanodots for H₂O₂ self-supplying chemodynamic therapy. Journal of the American Chemical Society, 2019, 141(25): 9937–9945
- 76. Zhang S, Cao C, Lv X, Dai H, Zhong Z, Liang C, Wang W, Huang W, Song X, Dong X A. H₂O₂ self-sufficient nanoplatform with domino effects for thermal-responsive enhanced chemodynamic therapy. Chemical Science (Cambridge), 2020, 11(7): 1926–1934
- 77. Xu X, Zeng Z, Chen J, Huang B, Guan Z, Huang Y, Huang Z,

Zhao C. Tumor-targeted supramolecular catalytic nanoreactor for synergistic chemo/chemodynamic therapy via oxidative stress amplification and cascaded Fenton reaction. Chemical Engineering Journal, 2020, 390: 124628–124644

- Kwon B, Han E, Yang W, Cho W, Yoo W, Hwang J, Kwon B M, Lee D. Nano-Fenton reactors as a new class of oxidative stress amplifying anticancer therapeutic agents. ACS Applied Materials & Interfaces, 2016, 8(9): 5887–5897
- Wang S, Wang Z, Yu G, Zhou Z, Jacobson O, Liu Y, Ma Y, Zhang F, Chen Z Y, Chen X. Tumor-specific drug release and reactive oxygen species generation for cancer chemo/chemodynamic combination therapy. Advancement of Science, 2019, 6(5): 1801986–1801993
- Wang S, Yu G, Wang Z, Jacobson O, Lin L S, Yang W, Deng H, He Z, Liu Y, Chen Z Y, et al. Enhanced antitumor efficacy by a cascade of reactive oxygen species generation and drug release. Angewandte Chemie International Edition, 2019, 58(41): 14758–14763
- Chen Q, Zhou J, Chen Z, Luo Q, Xu J, Song G. Tumor-specific expansion of oxidative stress by glutathione depletion and use of a Fenton nanoagent for enhanced chemodynamic therapy. ACS Applied Materials & Interfaces, 2019, 11(34): 30551–30565
- Li X, Zhao C, Deng G, Liu W, Shao J, Zhou Z, Liu F, Yang H, Yang S. Nanozyme-augmented tumor catalytic therapy by selfsupplied H₂O₂ generation. ACS Applied Bio Materials, 2020, 3(3): 1769–1778
- Attia M F, Anton N, Wallyn J, Omran Z, Vandamme T F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. Journal of Pharmacy and Pharmacology, 2019, 71(8): 1185–1198
- Din F U, Aman W, Ullah I, Qureshi O S, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. International Journal of Nanomedicine, 2017, 12: 7291–7309
- Khodabandehloo H, Zahednasab H, Hafez A A. Nanocarriers usage for drug delivery in cancer therapy. Iranian Journal of Cancer Prevention, 2016, 9(2): 3966–3973
- Sutrisno L, Hu Y, Hou Y, Cai K, Li M, Luo Z. Progress of ironbased nanozymes for antitumor therapy. Frontiers in Chemistry, 2020, 8: 680–689
- Hagen H, Marzenell P, Jentzsch E, Wenz F, Veldwijk M R, Mokhir A. Aminoferrocene-based prodrugs activated by reactive oxygen species. Journal of Medicinal Chemistry, 2012, 55(2): 924–934
- Hu M, Ju Y, Liang K, Suma T, Cui J, Caruso F. Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Advanced Functional Materials, 2016, 26(32): 5827–5834
- Yang W, Sousa A M M, Thomas-Gahring A, Fan X, Jin T, Li X, Tomasula P M, Liu L. Electrospun polymer nanofibers reinforced by tannic acid/Fe⁺⁺⁺ complex. Materials (Basel), 2016, 9(9): 757–769
- Lu S C. Regulation of glutathione synthesis. Molecular Aspects of Medicine, 2009, 30(1-2): 42–59
- Wan S S, Cheng Q, Zeng X, Zhang X Z A. Mn(III)-sealed metalorganic-framework nanosystem for redox-unlocked tumor theranostics. ACS Nano, 2019, 13(6): 6561–6571

- 92. Zhao H, Wang Y, Wang Y, Cao T, Zhao G. Electro-Fenton oxidation of pesticides with a novel Fe₃O₄@Fe₂O₃/activated carbon aerogel cathode: high activity, wide pH range and catalytic mechanism. Applied Catalysis B: Environmental, 2012, 125: 120– 127
- Masomboon N, Ratanatamskul C, Lu M C. Chemical oxidation of 2, 6-dimethylaniline in the Fenton process. Environmental Science & Technology, 2009, 43(22): 8629–8634
- 94. Brillas E, Banos M A, Camps S, Arias C, Cabot P L, Garrido J A, Rodriguez R M. Catalytic effect of Fe²⁺, Cu²⁺ and UVA light on the electrochemical degradation of nitrobenzene using an oxygendiffusion cathode. New Journal of Chemistry, 2004, 28(2): 314– 322
- Li T, Zhou J, Wang L, Zhang H, Song C, Fuente J M, Pan Y, Song J, Zhang C, Cui D. Photo-Fenton-like metal-protein self-assemblies as multifunctional tumor theranostic agent. Advanced Healthcare Materials, 2019, 8(15): 1900192–1900204
- 96. Zhang W, Lu J, Gao X, Li P, Zhang W, Ma Y, Wang H, Tang B. Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with Cu(II) as the active center. Angewandte Chemie International Edition, 2018, 57(18): 4891–4896
- Fu L H, Qi C, Hu Y R, Lin J, Huang P. Glucose oxidase-instructed multimodal synergistic cancer therapy. Advanced Materials, 2019, 31(21): 1808325–1808339
- Zheng X, Liu Q, Jing C, Li Y, Li D, Luo W, Wen Y, He Y, Huang Q, Long Y T, et al. Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angewandte Chemie International Edition, 2011, 50(50): 12200–12204
- Zhang J, Mou L, Jiang X. Surface chemistry of gold nanoparticles for healthrelated applications. Chemical Science (Cambridge), 2020, 11(4): 923–936
- 100. Ighodaro O M, Akinloye O A. First line defence antioxidantssuperoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 2018, 54(4): 287– 293
- Singh S. Nanomaterials exhibiting enzyme-like properties (nanozymes): current advances and future perspectives. Frontiers in Chemistry, 2019, 7: 46–56
- 102. Kim Y S, Vallur P G, Phaëton R, Mythreye K, Hempel N. Insights into the dichotomous regulation of SOD2 in cancer. Antioxidants, 2017, 6(4): 86–111
- 103. Wang X, Chen N, Liu X, Shi Y, Ling C, Zhang L. Ascorbate guided conversion of hydrogen peroxide to hydroxyl radical on goethite. Applied Catalysis B: Environmental, 2021, 282: 119558– 119565
- 104. Gao S, Jin Y, Ge K, Li Z, Liu H, Dai X, Zhang Y, Chen S, Liang X, Zhang J. Self-supply of O₂ and H₂O₂ by a nanocatalytic medicine to enhance combined chemo/chemodynamic therapy. Advancement of Science, 2019, 6(24): 1902137–1902146
- 105. He C, Zhang X, Xiang G. Nanoparticle facilitated delivery of peroxides for effective cancer treatments. Biomaterials Science, 2020, 8(20): 5574–5582
- 106. Golikova E P, Lakina N V, Grebennikova O V, Matveeva V G, Sulman E M. A study of biocatalysts based on glucose oxidase.

Faraday Discussions, 2017, 202: 303-314

- 107. Bankar S B, Bule M V, Singhal R S, Ananthanarayan L. Glucose oxidase—an overview. Biotechnology Advances, 2009, 27(4): 489–501
- 108. Zhao L, Wang L, Zhang Y, Xiao S, Bi F, Zhao J, Gai G, Ding J. Glucose oxidase-based glucose-sensitive drug delivery for diabetes treatment. Polymers, 2017, 9(7): 255–276
- 109. Karunwi O, Guiseppi-Elie A. Supramolecular glucose oxidase-SWNT conjugates formed by ultrasonication: effect of tube length, functionalization and processing time. Journal of Nanobiotechnology, 2013, 11(1): 6–22
- Zeng L, Huang K, Wan Y, Zhang J, Yao X, Jiang C, Lin J, Huang P. Programmable starving-photodynamic synergistic cancer therapy. Science China Materials, 2020, 63(4): 611–619
- 111. Zhang Y, Yang Y, Jiang S, Li F, Lin J, Wang T, Huang P. Degradable silver-based nanoplatform for synergistic cancer starving-like/metal ion therapy. Materials Horizons, 2019, 6(1): 169–175
- 112. Fu L H, Qi C, Lin J, Huang P. Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chemical Society Reviews, 2018, 47(17): 6454–6472
- 113. Fan W, Lu N, Huang P, Liu Y, Yang Z, Wang S, Yu G, Liu Y, Hu J, He Q, et al. Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy. Angewandte Chemie International Edition, 2017, 56(5): 1229–1233
- 114. Comotti M, Pina C D, Matarrese R, Rossi M. The catalytic activity of "naked" gold particles. Angewandte Chemie International Edition, 2004, 43(43): 5812–5815
- 115. Comotti M, Pina C D, Falletta E, Rossi M. Aerobic oxidation of glucose with gold catalyst: hydrogen peroxide as intermediate and reagent. Advanced Synthesis & Catalysis, 2006, 348(3): 313–316
- 116. Mu J, He L, Fan W, Tang W, Wang Z, Jiang C, Zhang D, Liu Y, Deng H, Zou J, et al. Cascade reactions catalyzed by planar metalorganic framework hybrid architecture for combined cancer therapy. Small, 2020, 16(42): 2004016–2004024
- 117. Jiang D, Ni D, Rosenkrans Z T, Huang P, Yan X, Cai W. Nanozyme: new horizons for responsive biomedical applications. Chemical Society Reviews, 2019, 48(14): 3683–3704
- 118. Malik A, Sultana M, Qazi A, Qazi M H, Parveen G, Waquar S, Ashraf A B, Rasool M. Role of natural radiosensitizers and cancer cell radioresistance: an update. Analytical Cellular Pathology, 2016, 2016: 2016–2021
- Nedeljkovic Z S, Gokce N, Loscalzo J. Mechanisms of oxidative stress and vascular dysfunction. Postgraduate Medical Journal, 2003, 79(930): 195–200
- Pandey K B, Rizvi S I. Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxidative Medicine and Cellular Longevity, 2010, 3(1): 2–12
- 121. Ohno S, Ohno Y, Suzuki N, Soma G I, Inoue M. High-dose vitamin C (ascorbic acid) therapy in the treatment of patients with advanced cancer. Anticancer Research, 2009, 29(3): 809–815
- 122. Chen Q, Espey M G, Sun A Y, Lee J H, Krishna M C, Shacter E, Choyke P L, Pooput C, Kirk K L, Buettner G R, et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid *in vivo*.

Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(21): 8749–8754

- 123. Chen Q, Espey M G, Krishna M C, Mitchell J B, Corpe C P, Buettner G R, Shacter E, Levine M. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102 (38): 13604–13609
- 124. Chen Q, Espey M G, Sun A Y, Pooput C, Kirk K L, Krishna M C, Khosh D B, Drisko J, Levine M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(32): 11105– 11109
- 125. Ma Y, Chapman J, Levine M, Polireddy K, Drisko J, Chen Q. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Science Translational Medicine, 2014, 6(222): 222ra18
- 126. Yun J, Mullarky E, Lu C, Bosch K N, Kavalier A, Rivera K, Roper J, Chio I I C, Giannopoulou E G, Rago C, et al. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science, 2015, 350(6266): 1391–1396
- 127. Li X, Du Y, Wang H, Ma H, Wu D, Ren X, Wei Q, Xu J J. Selfsupply of H₂O₂ and O₂ by hydrolyzing CaO₂ to enhance the electrochemiluminescence of luminol based on a closed bipolar

electrode. Analytical Chemistry, 2020, 92(18): 12693-12699

- 128. Huang C C, Chia W T, Chung M F, Lin K J, Hsiao C W, Jin C, Lim W H, Chen C C, Sung H W. An implantable depot that can generate oxygen *in situ* for overcoming hypoxia-induced resistance to anticancer drugs in chemotherapy. Journal of the American Chemical Society, 2016, 138(16): 5222–5225
- 129. Lin L S, Wang J F, Song J, Liu Y, Zhu G, Dai Y, Shen Z, Tian R, Song J, Wang Z, et al. Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy. Theranostics, 2019, 9(24): 7200–7209
- 130. Yan Z, Bing W, Ding C, Dong K, Ren J, Qu X A. H₂O₂-free depot for treating bacterial infection: localized cascade reactions to eradicate biofilms *in vivo*. Nanoscale, 2018, 10(37): 17656–17662
- 131. Kim B, Lee E, Kim Y, Park S, Khang G, Lee D. Dual acidresponsive micelle-forming anticancer polymers as new anticancer therapeutics. Advanced Functional Materials, 2013, 23(40): 5091– 5097
- 132. Noh J, Kwon B, Han E, Park M, Yang W, Cho W, Yoo W, Khang G, Lee D. Amplification of oxidative stress by a dual stimuliresponsive hybrid drug enhances cancer cell death. Nature Communications, 2015, 20(6): 6907–6916
- Cionti C, Taroni T, Sabatini V, Meroni D. Nanostructured oxidebased systems for the pH-triggered release of cinnamaldehyde. Materials (Basel), 2021, 14(6): 1536–1548