
RESEARCH ARTICLE

Using machine learning models to explore the solution space
of large nonlinear systems underlying flowsheet simulations

with constraints

Patrick Otto Ludl (✉)1, Raoul Heese1, Johannes Höller1, Norbert Asprion2, Michael Bortz1

1 Fraunhofer ITWM Optimization Department, Kaiserslautern 67663, Germany
2 Chemical and Process Engineering BASF SE, Ludwigshafen 67056, Germany

© Higher Education Press 2021

Abstract Flowsheet simulations of chemical processes
on an industrial scale require the solution of large systems
of nonlinear equations, so that solvability becomes a
practical issue. Additional constraints from technical,
economic, environmental, and safety considerations may
further limit the feasible solution space beyond the
convergence requirement. A priori, the design variable
domains for which a simulation converges and fulfills the
imposed constraints are usually unknown and it can
become very time-consuming to distinguish feasible from
infeasible design variable choices by simply running the
simulation for each choice. To support the exploration of
the design variable space for such scenarios, an adaptive
sampling technique based on machine learning models has
recently been proposed. However, that approach only
considers the exploration of the convergent domain and
ignores additional constraints. In this paper, we present an
improvement which particularly takes the fulfillment of
constraints into account. We successfully apply the
proposed algorithm to a toy example in up to 20
dimensions and to an industrially relevant flowsheet
simulation.

Keywords machine learning, flowsheet simulations, con-
straints, exploration

1 Introduction

Flowsheet simulation software is an important tool for
designing new and optimizing existing chemical processes
on an industrial scale. Solving these simulations reliably

and with high computational efficiency is indispensable for
practitioners. However, solution algorithms for these
simulations often suffer from convergence issues, which
eventually means that optimization potentials remain
hidden. In this article, a method to guide and support the
user in setting up convergent simulations is described.
Stationary flowsheet simulations as considered in this

article are based on energy and mass balances as well as on
physical property models like for example thermodynamic
models for the phase equilibria or models for transport
properties. A prototypical example is the equilibrium stage
model. In this model, balance equations for mass and
enthalpy are combined with phase equilibria, leading to a
large, underdetermined system of nonlinear equations
(called MESH equations), which has to be solved for the
complete vector of process variables. To make this system
uniquely solvable, a number of additional independent
equations has to be included. Each of these additional
equations corresponds to fixing a certain design variable of
the simulation to a specified value. These design variables
(also called specifications) are a subset of the process
variables and their choice is responsible for the perfor-
mance of the simulated process. In other words, a process
engineer tunes the design variables until the resulting
process behaves in a desired way.
An automatic tuning using an optimization algorithm to

maximize or minimize an objective is known as process
optimization and might include bounds on the design
variables and additional constraints— like safety limits or
load ranges of apparatuses— as inequality restrictions.
These constraints are usually imposed by a process
engineer based on expert knowledge. During the auto-
matized optimization procedure, the flowsheet simulation
has to be solved multiple times for different values of
design variables until a stopping criterion is met. However,
any flowsheet simulation may fail due to convergence
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problems of the solver, which might be unable to find a
solution (i.e., a complete vector of process variables) for
the given system of equations. Also, only an infeasible
solution might be found which violates the additionally
imposed constraints. Therefore, the crucial question is:
which design variable choices are allowed such that the
complete problem can be solved in the sense that all
equations and all constraints are fulfilled?
In this manuscript, we propose a machine learning

(ML)-based algorithm to help answering this question by
exploring the convergent and feasible solution domain.
Once this domain is known, it can be estimated whether a
particular, user-defined choice of design variables will lead
to a feasible solution without running the actual simulation.
To obtain the corresponding vector of process variables,
the simulation can subsequently be run with a suitable
initialization based on the gathered data. Moreover, after
the algorithm is completed, an efficient process optimiza-
tion can be performed based on the explored feasibility
domain such that infeasible design variable domains are
excluded.
The ML models we use operate on the space of design

variables as inputs and a selected subset of process
variables as outputs. That is, the flowsheet simulation is
treated as a black-box, which is fed with values for the
design variables, and returns (in the case of convergence)
values for the outputs (including the inequality con-
straints). The ML models are therefore also called
surrogate models.
Searching for the feasible domain of a black-box

simulation is a well-known problem [1,2] with many
applications. For the feasibility exploration with surro-
gates, Kriging models [3,4] or radial basis functions [5] are
typically used in combination with an expected improve-
ment function [6] in analogy to Bayes optimization [7]. A
recent summary of different approaches can be found in
ref. [8]. The aforementioned reference emphasizes on
pharmaceutical processes, but most of the reviewed
literature is also applicable to a broader field.
There are various previous works which are closely

related to our method but focus on optimization rather than
generic exploration. For example, Gramacy and Lee
propose a method for optimization under unknown binary
feasibility constraints using a Bayes-like scheme, where
points are placed iteratively according to an expected
improvement maximization [9]. In that work, points
violating the binary feasibility constraint are still valid
for building the surrogate model for the objective function
as is the case for the continuous constraints in our paper.
Similarly, Tran et al. considers a Bayesian optimization
approach under both known and unknown constraints,
including those that arise indirectly from divergent
simulation runs [10]. The focus of that approach lies on
parallelized simulation evaluations (i.e., high performance
computing). In ref. [11], a method for Bayesian optimiza-
tion of problems with continuous constraints is proposed,

but without explicitly taking an additional binary feasi-
bility into account. On the other hand, Griffiths and
Hernández-Lobato study a constrained Bayesian optimiza-
tion approach over the latent space of a variational
autoencoder for automatic chemical design under a binary
constraint without considering additional continuous
constraints [12]. Finally, in ref. [13] the feasible region
of a scheduling process is approximated with a ML model,
which is subsequently transformed into a set of continuous
constraints for a planning problem. In this sense, the
constraint is not explicitly infused but instead extracted
from the problem and further utilized to solve the
combined scheduling and planning problem.
The approach we present in this manuscript is mainly

based on ref. [14], in which a feasibility exploration
method is presented for the case where instead of a
continuous degree of feasibility only a discrete binary
feasibility information (convergent/divergent) can be
obtained from the simulator. Such a binary feasibility
information distinguishes our problem from well-known
approaches like, e.g., in refs. [1,2], where a continuous
degree of feasibility violation is assumed to be known. In
general, Bayesian optimization under constraints is also a
well-known problem, which has been extensively studied
before [15,16]. In this paper, which is inspired by these
previous works, we improve and extend the approach from
ref. [14] to also include continuous inequality constraints
in addition to the binary feasibility. Moreover, we do not
consider feasibility exploration with respect to a specific
optimization goal but instead focus on a general (i.e.,
optimization-independent) feasibility exploration.
As outlined in Fig. 1, the main idea of the original

method [14] is that an iterative design of computer
experiments (i.e., flowsheet simulation runs) is performed
to gather data, which are then used to iteratively improve
ML models for the prediction of the convergence behavior
of the simulation given the design variables. Such or
similar loops are common for feasibility exploration
strategies and are closely related to Bayes optimization
methods [7].
The method we propose in this manuscript extends that

original approach by requiring the fulfillment of additional
continuous inequality constraints imposed on certain
simulated quantities. Such constraints could be, for
example, minimum quality requirements, maximum
power consumption limits, total cost limits or a compli-
cated set of restrictions for safety regulations. Imposing
additional constraints divides the domain of convergent
design variables into two subsets: first, into a feasible
region for which the constraints are fulfilled; second, into
an infeasible region for which they are violated. For
divergent simulation runs, there is no solution, so the
constraints cannot be evaluated. As sketched in Fig. 2, our
improved approach enables us to put a preference on the
exploration of convergent regions where the constraints are
expected to be fulfilled.
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Summarized, in addition to the binary information of
convergence (i.e., divergent/convergent), our algorithm
makes use of the continuous information on the violation
of the constraints within the convergent domain. A point in
the design variable space is feasible if and only if the
simulation converges and the solution fulfills all con-
straints. However, results from convergent simulation runs
which violate the constraints are still used to train ML
models in order to guide the algorithm toward the
convergent feasible region.
Moreover, we propose a refinement of the utility

function of the algorithm of ref. [14], which is maximized
to determine the sampling points, such that it becomes
differentiable in the whole design variable space. This
refinement allows the use of gradient-based solvers for
finding the optimal next sample point and may prove
useful for dealing with high-dimensional design variable
spaces. As already mentioned above, we specifically do not
consider optimization targets in this paper in contrast to ref.
[14] and instead focus on a generalized feasibility
exploration. Our improved framework of adaptive sam-
pling with constraints is outlined in Fig. 2.
In general, the convergence of flowsheet simulations

also depends on a reasonable initial guess for the whole
vector of process variables. In practice, a common method
is to use the result of the simulation of one set of design
variables as an initial guess for the simulation of another
set of design variables. Typically, the new simulation
converges as long as the difference in the calculated design
variables is not too large, but there is no guaranteed
convergence. The proposed algorithm assumes that at least
one convergent (but not necessarily feasible) point in the
design variable space is known initially. This point can
then also provide an initial guess for the whole vector of
process variables. In this sense, the convergent domain
identified by the method is the domain which converges
given a certain initial guess.
The remaining paper is structured as follows. In Section

2, we present our proposed algorithm. We apply it to a toy
example in Section 3 as a proof of concept. Subsequently,
we apply it to a real-world industrial process in Section 4.
For both the toy example and the real-world example, the
new algorithm leads to a clear enhancement of the number
of sampled points fulfilling the constraints in comparison
with a random sampling approach. We conclude with a
brief summary and outlook in Section 5.

Fig. 2 Constrained adaptive sampling: starting from the results of flowsheet simulations, additional constraints can be imposed. Training
ML models using the information how strong the constraints are violated allows to suggest new sampling points which are expected to
fulfil the constraints. Subsequently, these new points xnew are evaluated by solving the system of equations of the flowsheet simulation.

Fig. 1 Outline of the unconstrained adaptive sampling strategy [14].
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2 Outline of the algorithm

In Section 2.1, we briefly summarize the adaptive sampling
algorithm of ref. [14], which we denote as unconstrained
adaptive sampling in the following. For this purpose, we
make use of the notation of the aforementioned paper
wherever possible. Subsequently, in Section 2.2, we
present our extension to this method for adaptive sampling
under additional constraints, which we denote as con-
strained adaptive sampling.

2.1 Unconstrained adaptive sampling

This section is meant as a brief review of the method [14]
for the sake of completeness. The goal of the unconstrained
adaptive sampling algorithm is the exploration of a hitherto
unknown design variable space underlying a simulation as
outlined in Fig. 1. The method relies on iterative
improvement of the classification of the design variable
space into a divergent and a convergent domain. This
improvement is achieved by, in each step, optimizing a
utility function estimating the “most useful” next point in
the design variable space to be simulated. We show the
main steps in algorithm 1.
The algorithm presumes a flowsheet simulation which

can be described as a mapping S from a design variable
space χ � ℝn to a result space η � τ in the sense of

S :   χ↕ ↓η� τ

x 7!ðy,tÞ:
(1)

The result space consists of the convergence space η =
{convergent, divergent} and the optimization target space
τ � ℝ. Specifically, the convergence flag y 2 η indicates
whether the simulation converges, whereas the optimiza-
tion target t 2 τ denotes an outcome (objective) from the
simulation that a process engineer wants to optimize. As
shown in algorithm 1, starting with an initial set Dinit of
data points ðx,y,tÞ the algorithm suggests N new points by
iteratively maximizing the utility function

UðDexpl,x,wÞ

¼ wsUsðDexpl,xÞ þ woUoðDexpl,xÞ þ wrUrðDexpl,xÞ
ws þ wo þ wr

,

(2)

with respect to the design variables x to determine the next
sampling point

xnew ¼ argmaxxUðDexpl,x,wÞ: (3)

In each iteration loop as sketched in Fig. 1, the
optimization problem, Eq. (3), is solved globally to
provide a suggestion for a new design variable (i.e.,

sampling point) xnew. The results of this simulation are then
added to the data set of already sampled points. In the
following iteration, the augmented data set is used to re-
train the ML models (which takes place in lines 13 and 14
of algorithm 1). It is important to emphasize that for
practical purposes it is not necessary to find the exact
solution of Eq. (3), but only a sufficiently good
approximation. In fact, there might also be more than
one solution to the problem, in which case it is sufficient to
find an approximation to one of them.
The utility function U in Eq. (2) is by definition a map

χ↕ ↓½0,1�, which consists of a weighted sum of three utility
components. Each of the three components reflects a
different sampling behavior:
(1) Us is the “border-finding term” which leads to a

sampling at the border between convergent and divergent
regions as given by y. It is defined as

Us � UsðDexpl,xÞ

¼
pðxÞlnpðxÞ þ

�
1 – pðxÞ

�
ln
�
1 – pðxÞ

�

ln2
, (4)

using an information entropic approach, where pðxÞ �
p
�
CðDexplÞ,x

�
is the probability of convergence predicted

by the classification model C. By definition, Us becomes 1
on the border and reduces down to 0 further away from it
such that Us 2 ½0,1�. Here, Dexpl denotes the set of already
known data points ðx,y,tÞ.
(2) Uo is the “optimization term” which leads to a

sampling of design points for which the optimization target
t improves. By definition, Uo 2 ½0,1�, where a higher value
corresponds to a more optimal and a lower value to a less
optimal target. For a detailed definition of Uo we refer the
reader to ref. [14]. We do not use this term in our approach,
which we explain in more detail further below.
(3) Ur is the “exploration term” which leads to a

sampling of design points in yet unsampled regions. It is
defined as

Ur � UrðDexpl,xÞ ¼ 1 – exp –g min
x# 2Dexpl

jjx – x#jj2
 !

, (5)

based on the distance to already sampled points. In analogy
to the previous two terms, Ur 2 ½0,1� with low values for
design points with a close-by nearest neighbor and high
values for design points with a far-away nearest neighbor
in the set of already explored points.
By tuning the (nonnegative) weights ws, wo and wr, the

preference for the sampling behavior can be controlled
according to the three criteria explained above: the higher
the weight, the more emphasized the corresponding
strategy.
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2.2 Constrained adaptive sampling

For our proposed algorithm, we take the framework from
the unconstrained adaptive sampling algorithm from
Section 2.1 and propose the following changes of the
utility function (Eq. (2)): 1) The utility function is extended
by an additional term that encourages the fulfillment of
user-defined constraints; 2) The border-finding term is
adapted to a new classifier; 3) The optimization term is
removed; 4) The exploration term is refined to be
differentiable in the whole design variable space.
We outline the new method in Fig. 2 and algorithm 2,

which are based on Fig. 1 and algorithm 1, respectively. In
the following, we describe the changes of the utility
function in more detail.
For our method, we presume flowsheet simulations of

the form

S :   χ↕ ↓η� φ

x 7!ðy,f Þ
, (6)

with p-dimensional simulation outcomes f 2 φ � ℝp

instead of scalar outcomes as in Eq. (1). We furthermore
presume that constraints

f 2 Df � φ, (7)

can be imposed on these simulation outcomes. Hence, we
call f the constraint function values.

In addition to the classification of convergent and
divergent results, our extended approach allows us to also
classify simulation results according to feasible (con-
straints fulfilled) and infeasible (constraints not fulfilled)
simulations. Mathematically, we describe this by assigning
three elements to the classification space

η ¼ fdivergent,  feasible,  infeasibleg, (8)

where,

y ¼
feasible if   convergent  and  f ðxÞ 2 Df

infeasible if   convergent  and  f ðxÞ =2Df

divergent otherwise

8><
>:

, (9)

based on the constraint function values f . The probability
pðxÞ in the border-finding term Us of Eq. (4) thus needs to
be replaced by the probability of convergence, where
feasible/infeasible are treated as one single class “con-
vergent”. The border-finding term thus has its maximum
value 1 at the border divergent/convergent (irrespective
whether it is feasible or not). In order to guarantee
differentiability of Us, pðxÞ must be differentiable.
Since we consider a generalized, optimization-free

feasibility exploration and therefore do not take optimiza-
tion goals into account for the sampling strategy, we
remove the optimization term Uo from the utility function
(Eq. (2)). We remark, however, that it would in principle
also be possible to keep Uo if it is provided in the form of a
differentiable function like a differentiable prediction of a
surrogate model for the optimization target.
Instead of the optimization target, we take constraints

into account for the sampling. For this purpose, we include
the additional term

Uc : χ↕ ↓½0,1�, (10)

with weight wc into Eq. (2). The purpose of Uc is to drive
the suggested new points toward the region where the
constraints are expected to be fulfilled. A suitable utility
measure Uc for this purpose can be constructed as follows.
In each loop iteration of the algorithm, we train a
regression model Rf (in addition to the classifier C),
which provides probability distributions for the values of f
at x, i.e.,

Rf : x7!πf ðf jxÞ, (11)

such that the predicted expectation value f̂ of f is given by

f̂ ¼ !
φ
f πf ðf jxÞdf : (12)

We can then compute the predicted probability

pðf 2 Df jxÞ ¼ !
Df

πðf jxÞdf , (13)

that the constraints are fulfilled at x. If f 2 Df can be
reformulated in terms of inequality constraints and πðf jxÞ

Algorithm 1 Outline of the unconstrained adaptive sampling algorithm
from ref. [14].
1. function EXPLORATIONðDinit,χ,Nmax,wÞ
2. Dexpl←Dinit

3. N←sizeðDexplÞ
4. while N < Nmax do

5. xnew← SUGGESTIONUNCONSTRAINEDðDexpl,χ,wÞ
6. Dexpl←Dexpl [  f SIMULATIONðxnewÞg
7. N←N þ 1

8. end while

9. return Dexpl

10. end function

11.

12. function SUGGESTIONUNCONSTRAINEDðDexpl,χ,wÞ
13 C←TRAINCLASSIFIERðDexplÞ
14. Rt←TRAINREGRESSORðDexplÞ
15. function UTILITYðx,Dexpl,C,Rt ,wÞ
16. u←

�
UsðC,xÞ,UoðRt ,xÞ,UrðDexpl,xÞ

�T

17. return wTu=jjwjj1
18. end function

19. return argmaxx2χ UTILITYðx,Dexpl,C,Rt ,wÞ
20. end function
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is a multivariate Gaussian distribution, the integral in
Eq. (13) can be evaluated explicitly as shown in Appendix
A (cf. Electronic Supplementary Material, ESM). In all
examples presented in this paper, we use GPR (Gaussian
process regression) [17] as the regression modelRf . In this
case, πðf jxÞ is a Gaussian distribution and we use the result
of Appendix A for all of our applications. Otherwise, a
numerical approximation might be necessary to solve the
integral. Note that GPR is another name for Kriging
models, which have already been successfully used in
previous feasibility exploration approaches [3,4].
Since pðf 2 Df jxÞ 2 ½0,1� quantifies the expectation that

the constraints will be fulfilled at x, we define

Uc � UcðDexpl,xÞ � pðf 2 Df jxÞ, (14)

as the utility measure of exploring feasible domains.
Similar expressions are also used in Bayesian optimization
with inequality constraints [18]. For the case of GPR, as
used throughout this paper, pðf 2 Df jxÞ is differentiable
with respect to x.
One key element of the presented algorithm is the

optimization of the utility function in the sense of Eq. (3).
For best results, we apply global optimization techniques
to solve this nonlinear optimization problem. However, to
provide the optimizer with a function that is as well-
behaved as possible locally, we propose a refined
exploration term in the utility function, which is differenti-
able in the whole design variable space. For this purpose,
we reconsider the originally proposed exploration term
[14,19] of Eq. (5), which, due to the local non-
differentiability of the distance jjx – x0jj of the design
point x to its nearest neighbor x0, violates the differentia-
bility requirement. To overcome this problem, we replace it
by the product

U
0
r � U

0
rðDexpl,xÞ

¼ ∏
x# 2Dexpl

1 – expð –gjjx – xíjjr½0,1�Þ, (15)

with an exponent r≥2 and γ> 0. Note that with the norm
jj:jj½0,1� we do not denote the usual Euclidean norm, but the
Euclidean norm in a space where all entries in the x0 2
Dexpl have been linearly rescaled and shifted to the interval
½0,1�. The maximal distance between two points in x0 2
Dexpl is then

ffiffiffiffiffiffiffiffiffiffiffiffi
dim  χ

p ¼ ffiffiffi
n

p
. The parameter γ has the

dimension of an inverse length to the power r (we choose
r ¼ 2 in all of our examples). In order for Ur

0 2 ½0,1� to not
converge to an almost constant function for a large number
of sampled points (large set Dexpl), g has to be adapted to
the number N ¼ jDexplj of sampled points. We choose this
adaptive value as follows. Suppose all N sampled points
have the same distance d from the test point x and we want
the repulsion term Ur

0 at this point to have the value Ur
0 .

(Recall that we only consider distances in the rescaled

input space. The chosen value of d has thus to be
compared to the maximal distance

ffiffiffi
n

p
between two

already known points.) To achieve this, we set

g ¼ –
1

d
r   ln 1 –Ur

01=N
� �

: (16)

We defineUr
0 ¼ 1=2 as the value exactly in the center of

the range of Ur
0. Moreover, we allow for an overall factor

g0 to allow a user to choose more or less dense
explorations. Thus,

g � gðNÞ ¼   –
g0

d
r   lnð1 – 1=21=N Þ: (17)

The length scale d and the dimensionless factor g0 are
parameters of the algorithm which can be selected by the
user. For g0 ¼ 1, d is the distance which fulfills

jjx – x0jj½0,1�³d       8x0 2 Dexpl ) Ur
0ðxÞ>1=2: (18)

Summarized, the new utility function reads

UðDexpl,x,wÞ

¼ wsUsðDexpl,xÞ þ wrUr
0ðDexpl,xÞ þ wcUcðDexpl,xÞ

ws þ wr þ wc
,

(19)

with the border-finding term Us (Eq. (4)), the refined
exploration term Ur

0 (Eq. (15)) and the constraint term Uc
(Eq. (14)). According to this utility function, algorithm 2
samples points where the border between convergent and
divergent regions is expected to be, no design points have
been evaluated before and the constraints are fulfilled.
All three goals are assessed by the corresponding

functions and weighted by the corresponding weights
such that a single scalarized utility goal arises.

3 Application to a toy example

As a proof of principle, we demonstrate the performance of
our method, algorithm 2, on a simple toy example in n

Algorithm 2 Outline of our proposed constrained adaptive sampling
algorithm. The new function SUGGESTIONCONSTRAINED replaces SUG-
GESTIONUNCONSTRAINED in Line 5 of Algorithm 1.
1: function SUGGESTIONCONSTRAINEDðDexpl,χ,Df ,wÞ
2: C←TRAINCLASSIFIERðDexplÞ
3: Rf←TRAINREGRESSORðDexplÞ
4: function UTILITYðx,Dexpl,C,Rf ,Df ,wÞ
5: u←

�
UsðC,xÞ,U

0
rðDexpl,xÞ,UcðRf ,Df ,xÞ

�T

6: return wTu=jjwjj1
7: end function

8: return argmaxx2χ UTILITYðx,Dexpl,C,Rf ,Df ,wÞ
9: end function
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dimensions. First, we define the toy example. Subse-
quently, we discuss the performance of the algorithm for
n≥2.
In all examples presented in this paper, we use GPR [17]

as the regression model Rf . As the classification model C
we use the recently developed CASIMAC approach [20].
For global optimization of the utility function, we use the
stochastic differential evolution method with the limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm
with box constraints (L-BFGS-B) [21,22] to further refine
(“polish”) the results. In this polishing step, explicit
gradients of the utility function are provided to the L-
BFGS-B algorithm. We realize our numerical experiments
using Python with the help of SciPy [23], scikit-learn [24],
and GPy [25].

3.1 Definition of the toy example

We consider an example on the design variable space χ ¼
½ – 2,2�n with n³2 and define the simulation outputs Sn,
see Eq. (6), as

Sn :   χ↕ ↓η� φ

x 7!ðy,f Þ,   where
f ðxÞ � x1x2:

(20)

The feasibility flags are assigned as

y ¼
feasible if   jjxjj22£1  and  f ðxÞ > 0:1,

infeasible if   jjxjj22£1  and  f ðxÞ£0:1,

divergent if   jjxjj22 > 1:

8>><
>>:

(21)

Summarized, the convergent domain is the unit sphere
centered at the origin and we divide the convergent domain
into a feasible and an infeasible space by imposing the
constraint

f ðxÞ ¼ x1x2 2 Df � ½0:1,1Þ, (22)

i.e., f(x)≥0.1. Figure 3 shows the design variable space χ
for n = 2 dimensions. Note that the feasible domain is not
connected, which imposes an additional challenge to the
exploration.

3.2 Two-dimensional adaptive sampling

To illustrate the qualitative behavior of the algorithm, we
use the n ¼ 2 toy example and generate a uniformly
distributed random initial configurationDinit of 15 points in
the lower left quadrant. We then adaptively sample points
with different choices of the weights w ¼ ws,wr,wcð Þ of
the three terms Us, Ur

0 and Uc of the utility function. The
parameters of the exploration term Ur

0 were chosen as
g0 ¼ 10, r ¼ 2 and d ¼ 1=4. The utility function was
maximized using differential evolution with a population

size of 128 and maximal number of iterations of 1024.
We emphasize that the problem of finding a sufficient

number of non-divergent (in the sense of Eqs. (9) and (21))
initial points inDinit is not solved by algorithm 2. If random
sampling does not yield non-divergent simulation runs, the
user must provide at least one non-divergent initial point
(irrespective whether feasible or infeasible) to enable
training of the necessary ML models. However, we can
straightforwardly provide suitable initial configurations for
this toy example.
The results of our experiments are shown in Fig. 4. The

first column corresponds to algorithm 2 with inactive
constraint term Uc (i.e., wc ¼ 0). The remaining three
columns are generated with nonzero constraint weight wc

leading to preferred sampling of points in the feasible
region. Note, however, that the border-finding term is
constructed such that the border between the divergent and
convergent region (irrespective whether feasible or
infeasible) is sampled. Therefore, even for nonzero wc,
the algorithm does not search for the border between the
feasible and infeasible region. This can be seen best from
the plot in the last row of column three in Fig. 4. The
border of the feasible domain there is sampled well only in
the part where it overlaps with the border to the divergent
domain. The algorithm could straightforwardly be adapted
to fully explore the border between the feasible and
infeasible domain by training the classifier C on the two
classes “feasible” and “infeasible/divergent” instead of
“feasible/infeasible” and “divergent”. In the fourth col-
umn, the exploration term has highest weight. This leads to
sampling of a large part of the design variable space while
showing a preference toward the feasible (green) region.

Fig. 3 The divergent (red), convergent feasible (green) and
convergent infeasible (blue) regions of the design variable space χ
of the toy example for n = 2 dimensions.
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Fig. 4 An illustration of the behavior of the algorithm for the n = 2 toy example. As initial state Dinit, we use 15 randomly generated
points in the lower left quadrant. Each column of the above matrix of plots corresponds to one run of the sampling algorithm. The column
titles show the chosen weights w ¼ ðws,wr,wcÞ: The different rows show the generated points at different stages, the total number of
sampled points (including the 15 initial points) being shown on the very left of the figure. The three different types of points are plotted as
red triangles (divergent), blue squares (convergent but infeasible) and green circles (convergent and feasible), respectively. The black
dashed lines show the boundaries of the regions.
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To quantitatively evaluate the performance of the
algorithm, we additionally perform 50 runs of the
algorithm with different random initial configurations.
For each run, we record the numbers of divergent, feasible
and infeasible points at all stages of sampling. Averages
over multiple runs are considered to reduce the dependence
on the initial data set. The initial configurations are chosen
as 15 random points (different for each of the 50 runs)
uniformly distributed in the lower left quadrant
χinit ¼ ½ – 2,0�2. The restriction of the initial configuration
lower left quadrant is done in order to demonstrate the
ability of the algorithm to nevertheless sample the border
of the whole non-divergent region. For each of these 50
initial configurations 100 points are sampled adaptively,
the results are shown in Fig. 5.
While for ðws,wr,wcÞ ¼ ð1,1,0Þ the number of sampled

infeasible points is higher than the number of feasible
points, this behavior changes for wc = 1 and wc = 5, where
the number of feasible points exceeds the number of
infeasible ones for sufficiently large total point numbers.
For wc = 5 after about 10 adaptive sampling steps no
infeasible points are sampled anymore, while the number
of feasible points increases approximately linearly.

3.3 Higher-dimensional adaptive sampling

In this section, we investigate the ability of algorithm 2 to
sample the border divergent/convergent and the effect of
the constraint driving term Uc on the number of sampled
feasible points in high dimensions. For this purpose, we
compare runs of the algorithm with ðws,wr,wcÞ ¼ ð1,1,0Þ
and ðws,wr,wcÞ ¼ ð1,1,1Þ for different dimensions n of the
design variable space χ.
Random sampling in n dimensions would give a chance

of hitting a non-divergent point of

Volðunit  sphereÞ
VolðχÞ ¼ Volðunit sphereÞ

Volð½ – 2,2�nÞ

¼ π
n
2

4nΓ 1þ n

2

� � , (23)

which is 0.20 for n = 2, 2.43 � 10–6 for n = 10 and 2.35 �
10–14 for n = 20. Due to the low probabilities for large n,
and since the algorithm needs at least one non-divergent
point in Dinit, we have to make the regions χinit ⊆ χ (from
which the initial configurations Dinit are drawn randomly)
sufficiently small. For each of the 50 runs we thus take a
different random initial configuration Dinit consisting of 30
points in a region χinit ⊆ χ as shown in Table 1.
We then adaptively sample 100 points according to

algorithm 2 with ðws,wr,wcÞ ¼ ð1,1,0Þ. The parameters of
the exploration term Ur

0 are chosen as g0 ¼ 10, r ¼ 2 and
d ¼ 1=4: We use differential evolution to optimize the

Fig. 5 The number of divergent (red), convergent feasible
(green) and convergent infeasible (blue) points as a function of
the total number of sampled points for the n = 2 toy example. For a
fixed w ¼ ðws,wr,wcÞ, we perform 50 runs of algorithm 2 with
different random initial configurations Dinit consisting of 15 points
each. The lines are the averages of the 50 runs and the shaded
regions are the 1σ-error bands. The results for w ¼ ð1,1,0Þ,ð1,1,1Þ
and ð1,1,5Þ are shown in plots (a), (b) and (c), respectively.
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utility function with a population size of 512 and a maximal
number of iterations of 2048. For each choice of dimension,
we compute average and variance of the number of non-
divergent sampled points as a function of the total number
of sampled points based on 50 runs. The results are shown
in Figs. 6 and 7. We find that even for dimensions as high as
n = 20 the algorithm is capable of finding non-divergent
points. However, without the constraint term, the number of
found feasible points is very low for n ¼ 10 and almost
zero for n ¼ 20, see Fig. 7. Repeating the same analysis
with active constraint term using ðws,wr,wcÞ ¼ ð1,1,1Þ
leads to the results shown in Fig. 8. From this figure we see
that also in n ¼ 20 dimensions the algorithm is capable of
finding feasible points.

4 Application to a pressure swing distilla-
tion

In this section, we apply algorithm 2 to a real-world,
industrially relevant flowsheet simulation. We specifically
consider the well-known pressure swing distillation of a
mixture of chloroform and acetone, which has already been
discussed in ref. [14]. In the following, we briefly
summarize this chemical process and describe the
corresponding simulation. We subsequently show exemp-
lary results of applying algorithm 2 to the presented

scenario. Finally, we perform a statistical analysis of the
number of feasible and infeasible points sampled for this
example for different weights ðws,wr,wcÞ of the utility
function.

Table 1 The regions χinit � χ from which the initial configurations Dinit for the tests of the n-dimensional toy example are drawn randomly

Toy example n = 2 n = 3 n = 5 n = 10 n = 20

χinit [–2,2]2 [–1.5,1.5]3 [–0.8,0.8]5 [–0.6,0.6]10 [–0.4,0.4]20

Fig. 6 Mean number of non-divergent (feasible+ infeasible)
points with 1σ-error bands for the dimensions n = 2, n = 10 and n =
20 of the toy example. The subsets χinit � χ of the design variable
space from which the initial configurations are drawn randomly
(see Table 1) are chosen in such a way that a comparable number of
non-divergent points in Dinit is achieved for all dimensions n (The
curves for n = 3 and n = 5 are not shown for the sake of clarity.
They run between those for n = 2 and n = 10, as expected).

Fig. 7 Mean number of feasible points with 1σ-error bands for
the dimensions n = 2, n = 10 and n = 20 of the toy example. The
subsets χinit � χ of the design variable space from which the initial
configurations are drawn randomly (see Table 1) are chosen in
such a way that a comparable number of non-divergent points in
Dinit is achieved for all dimensions n (The curves for n = 3 and n =
5 run between those for n = 2 and n = 10 and are not shown for the
sake of clarity).

Fig. 8 Mean number of feasible points for the analysis with
nonzero constraint weight with 1σ-error bands for the dimensions
n = 2, n = 10 and n = 20 of the toy example. The subsets χinit � χ of
the design variable space from which the initial configurations are
drawn randomly (see Table 1) are chosen in such a way that a
comparable number of non-divergent points in Dinit is achieved for
all dimensions n. The curves for n = 3 and n = 5 are very similar to
the one for n = 2 and are therefore not shown for the sake of clarity.
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4.1 The pressure swing distillation

A binary mixture of acetone and chloroform exhibits a
pressure dependent azeotropic point: as soon as this point
is reached, such a mixture cannot be separated by
distillation anymore (at the azeotropic point the concentra-
tions of acetone and chloroform are equal in the liquid and
vapor phase, respectively). Pressure swing distillation
makes use of the pressure dependency of the azeotropic
point (the higher the pressure, the higher the chloroform
concentration in the azeotrope) to circumvent this limita-
tion. The schematic sketch (flowsheet) of a plant for our
example is shown in Fig. 9. We start on the very left of the
flowsheet with the feed, a mixture of chloroform and
acetone, which contains more chloroform than the
azeotrope at the pressure p = 1 bar. This mixture, being
mixed with a recycle stream from column C2, enters the
first distillation column C1 operating at 1 bar. There
chloroform will enrich in the vapor phase and can be
collected in the top (distillate) stream of C1. The bottom
liquid (sump) stream of C1 has a composition close to the
azeotropic point at 1 bar. This stream is fed into the second
column C2 at a higher pressure of 10 bar. Since the input
stream of C2 contains less chloroform (and thus more
acetone) than at the azeotropic point at 10 bar, in C2
chloroform will enrich in the liquid phase and the product
(distillate) stream will be rich in acetone. Finally, the
bottom (sump) stream of C2, which has a composition
close to the azeotropic point at 10 bar, is recycled by
combining it with the feed mixture.

4.2 Simulation of the pressure swing distillation

In the flowsheet simulation each of the two columns of
Fig. 9 is modeled with an equilibrium stage model [26]

with 28 stages, the feed stage being stage 14. For
describing the interaction between acetone and chloroform
we use the non-random two-liquid model [27] with the
model parameters given in ref. [28]. The complete process
simulation involves the solution of about 400 coupled
nonlinear equations. The simulations are carried out using
the BASF in-house flowsheet simulator Chemasim. As
inputs of the simulation, we use the purities (mass
fractions) mac and mcl of the acetone (column C2) and
chloroform (column C1) distillate (product) streams as
indicated in Fig. 9 as well as the reflux ratios r1, and r2 of
C1 and C2, respectively:

x ¼
mac

mcl

r1
r2

0
BBB@

1
CCCA: (24)

As the design variable space we choose

χ ¼ ½0:1,  1:0� � ½0:8,  1:0� � ½5,  35� � ½5,  35�: (25)

The mass flow of the feed stream of the plant (which is
combined with the recycle stream before it enters column
C1) is set to 1250 kg$h–1 and has a constant composition of
86 mass percent chloroform and 14 mass percent acetone.
We consider a simulation result of Chemasim as

convergent if the simulation numerically converges to a
physically feasible point and as divergent otherwise.
Extending the analysis of [14], we impose an additional
constraint. One important result of the simulation—
beyond the information whether it was successful and
lead to a physically feasible result— is the total heat duty
_Q needed to operate the plant in a stationary state.
Therefore, we impose the constraint _Q£ 1500 kW on the
total heat duty, i.e.,

f ðxÞ � _QðxÞ 2 Df ¼ ½0,  1500  kW�: (26)

4.3 Adaptive sampling of the flowsheet simulation

In the following, we apply algorithm 2 to a simulation of
the pressure swing distillation under constraints. The
parameters of the exploration term Ur

0 are chosen as
g0 ¼ 1, r ¼ 2 and d ¼ 1=4. The optimizer used for
maximizing the utility function is differential evolution
with a population size of 15 and a maximal number of 100
iterations.
A qualitative illustration of the application of algorithm

2 to the pressure swing distillation can be found in Fig. 10.
As initial state, we use 10 uniformly distributed random
points in the design variable space given by Eq. (25). The
first column corresponds to algorithm 2 with inactive
constraint term (i.e., wc ¼ 0Þ. The other two columns are
generated with nonzero constraint weight wc leading to
preferred sampling of points in the region fulfilling the

Fig. 9 Simplified flowsheet for the pressure swing distillation of
a mixture of chloroform and acetone. A mixture containing 86
mass percent chloroform and 14 mass percent acetone is fed into
the column C1 operating at 1 bar. Since the feed contains more
chloroform than the azeotropic point at 1 bar, chloroform will
enrich in the top (distillate) stream. The bottom liquid (sump)
stream of C1 is fed into column C2 operating at 10 bar. The
distillate stream of C2 is rich in acetone. The bottom liquid stream
of C2 is recycled by combining it with the input mixture stream.
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constraint Eq. (26) on the total heat duty. To quantitatively
investigate the performance of the algorithm, we apply
algorithm 2 for 50 different initial random configurations
Dinit of 10 data points each. We adaptively sample 100
points for each of these initial configurations. For eachDinit

we extract the numbers of divergent, convergent feasible
and convergent infeasible points as a function of the total
number of points. Finally, we compute the mean and
variance of the three resulting curves based on the 50 initial
random configurations. The results are shown in Fig. 11.

Fig. 10 An illustration of the behavior of the algorithm for the chloroform/acetone pressure swing distillation. As initial state Dinit we
use 10 randomly generated points in the four-dimensional design space χ. The plots themselves show projections into the ðmac,mclÞ -plane.
Each column of the above matrix of plots corresponds to one run of the sampling algorithm. The column title shows the chosen weights
w ¼ ðws,wr ,wcÞ. The different rows show the generated points at different stages, the total number of sampled points (including the 10
initial points) being shown on the very left of the figure. The three different types of points are plotted as red triangles (divergent), blue
squares (convergent but infeasible) and green circles (convergent and feasible), respectively.

194 Front. Chem. Sci. Eng. 2022, 16(2): 183–197



As can be seen from the plots there, all three point numbers
increase more or less linearly. Subsequently turning on the
constraint weight from wc ¼ 0 to wc ¼ 1 and wc ¼ 5
increases the slope of the green (feasible) curve at the cost
of the blue (infeasible) one.
Additionally, we compare our sampling approach to a

random sampling strategy. With the same 50 initial random
seeds as before we now randomly sample in the four-
dimensional design variable space χ and compute the
means of the three curves, which in the limit of infinitely
many experiments would be linear.
This comparison is shown in Fig. 12 for the feasible and

infeasible points up to a total point number of 200. As can
be seen from this figure, already for ðws,wr,wcÞ ¼ ð1,1,0Þ,
which corresponds to algorithm 2 with inactive constraint
term, the numbers of feasible and infeasible (i.e., the non-
divergent) points is higher than for mere random sampling.
Turning on the constraint weight wc strongly enhances the
sampling rate of convergent feasible (green) points. While
random sampling on average needs more than 150 samples
to find 10 convergent feasible points, algorithm 2 with
ðws,wr,wcÞ ¼ ð1,1,1Þ on average needs only about 50
samples. These results demonstrate the ability of our
algorithm to enhance the sampling rate of points fulfilling a
constraint on one of the simulation outputs in a real-world
industrial example.

5 Conclusions and outlook

We have presented an adaptive sampling strategy based on
MLmodels to explore the convergent and feasible domains
of design variables in flowsheet simulations with (user-
defined) inequality constraints. Our work is an extension of
a recently published adaptive sampling algorithm which
does not consider constraints. The behavior of our
algorithm can be tuned to the use case at hand, for
example as a space-filling exploration or as a reliable
exploration of the border separating the convergent and
divergent regions. The performance of our method has
been compared to random sampling schemes, which were
found to be significantly inferior.
We remark that the trained classification model can be

used to estimate, for each point in the design space,
whether a corresponding simulation is expected to be
convergent or not without actually running the simulation.
After the adaptive sampling has been performed, random
or space filling samplings (for example using Sobol
sequences or Latin hypercubes) can consequently be
performed in regions where convergence is expected
based on the trained classifier. With such an approach, the
expected convergent region can be sampled in more detail
using the information gathered from the adaptive sampling
strategy.
A prospective application of the presented algorithm is

the improvement of the convergence behavior of flowsheet

Fig. 11 The number of divergent (red), convergent feasible
(green) and convergent infeasible (blue) points as a function of the
total number of sampled points for the pressure swing distillation
example. For a fixed w ¼ ðws,wr,wcÞ, we  perform 50 runs of
algorithm 2 with different random initial configurations Dinit

consisting of 10 points each. The lines are the averages of the 50
runs and the shaded regions represent the 1σ-error bands. The
results for w ¼ ð1,1,0Þ,  ð1,1,1Þ and ð1,1,5Þ are shown in plots (a),
(b) and (c), respectively.
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simulations under constraints. For this purpose, the
database of convergent simulation runs aggregated during
the sampling process may be used to suggest better starting
values for the complete vector of process variables. In
particular, better starting values can help the solver to more
easily converge to a solution. As a consequence, design
variables that have formerly led to a divergent simulation
run, can lead to a convergent simulation run for different
starting values. An extension of our algorithm which takes
the solver configuration and possible restarts of the
simulation into account could serve as a promising point
of origin for further studies.
As mentioned in the introduction, the proposed algo-

rithm assumes that at least one convergent point is known
initially and the explored convergent domain is the domain
which converges given this initial guess. However, the
convergent domain can possibly be enlarged by using not
one but several initial guesses from the already obtained
database of convergent design points (for example, the n
nearest neighbors of the currently evaluated design point).
The downside of this approach is that the time for “true”
divergent points (i.e., design points which are divergent
independent of the choice of the starting values) increases
and there is a certain influence of the order in which points
are found. However, such a “multi-start” approach could
serve as the basis for an improved feasibility exploration
strategy.
Another possible extension of the proposed method

consists in the consideration of dynamic processes. In this
case, the feasible region becomes a function of time and the
constant design variables are complemented by time-
dependent recipes. We expect that various modifications of
our algorithm might be necessary to apply it to such a
dynamic scenario, but consider it a valuable research
direction.
Finally, there is an alternative version of our proposed

algorithm, which is briefly outlined in Appendix B (cf.
ESM). The main idea is to directly include the inequality
constraints in the optimization problem of the utility
function instead of introducing a new utility measure for
feasibility. It remains an open question in which scenario
or use case one of the two versions of our algorithm is
superior to the other.
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