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Abstract Owing to the outstanding characteristics of
tailorable electronic and optical properties, semiconduct-
ing polymers have attracted considerable attention in
recent years. Among them, organic polymer dots process
large breadth of potential synthetic diversity are the
representative of photocatalysts for hydrogen production,
which presents both an opportunity and a challenge. In this
mini-review, first, the organic polymer photocatalysts were
introduced. Then, recent reports on polymer dots which
showed a superior photocatalytic activity and a robust
stability under visible-light irradiation, for hydrogen
production were summarized. Finally, challenges and
outlook on using organic polymer dots-based photocata-
lysts from hydrogen production were discussed.

Keywords polymer dots (Pdots), photocatalysis, hydro-
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1 Introduction

With the increasing concern over the climate impact of
non-renewable fossil fuels, it is necessary and important to
develop promising approaches to convert solar energy into
chemical energy for future energy production [1]. One
sustainable alternative to fossil fuels is to use hydrogen as
an energy carrier in the future [2]. Fujishima and Honda
reported that hydrogen could be produced over TiO2

photoelectrode via photocatalytic process for the first time
in 1972 [3]. After that, tremendous reports have been

published exploring the performance of TiO2 photocata-
lyst. However, the major bottleneck drawbacks, for
example, the 3.2 eV wide band gap, with which the TiO2

can absorb light only in the UV region impedes the
applications of TiO2 photocatalysts. Moreover, the recom-
bination of photogenerated electrons and holes reduces the
quantum efficiency of TiO2. Therefore, developing
efficient visible-light-driven photocatalytic systems that
generate hydrogen from water attracts great attention
afterwards [4–7]. In other words, the development of
semiconductors that possess visible-light responsive
absorptions and suitable band structures for photocatalytic
water splitting is among the most demanding and long-
standing challenges [8–12]. Up to the present, many efforts
have been made to improve the efficiency, such as
heteroatom doping [13], multicomponent hybridization
[14], fabrication of alternative one-dimensional nanos-
tructures [15], and introducing heterojunction [16], etc.
However, organic semiconductor photocatalysts which
have an appropriate energy level for photocatalytic water
splitting are still less explored compared with inorganic
semiconductor photocatalyst, as the research on the
inorganic semiconductor photocatalysts is started much
earlier than organic semiconductor as photocatalysts [17–
21]. Moreover, organic semiconductors which have some
crucial advantages of being able to tune the structure and
their properties, are easily accessible as well as cost
effective while maintaining an efficient photoactivity.
One of the famous reported organic semiconductor

photocatalysts that attracts significant attention is graphitic
carbon nitride (g-C3N4) [22–30]. However, g-C3N4 and its
derivatives can only offer limited chemical varieties, which
restricts the fine-tuning of their structures and properties.
Additionally, their relatively wide band gaps also limit the
utilization of solar photons in visible light region. Thus,
exploring other organic π-conjugated polymers with the
molecular engineering flexibility and optoelectronic prop-
erties tunability attracts greater attention with the goal to
enhance the performance of photocatalysts [31,32].
Polymer dots (Pdots) are one such application of
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conjugated polymers, which range in size from 1 to 100
nm. Compared with traditional organic small molecules,
semiconductor quantum dots, and inorganic nanomaterials,
Pdots exhibit a higher extinction coefficient and a better
photostability and chemical stability [33]. Additionally,
Pdots surfaces often have different reactive functional
groups that can provide a platform to construct multi-
functional and hybrid nanomaterials when conjugated with
different chemical and biological molecules [34].
This mini review will look at the advances in research by

dividing them into three sections starting from a brief
introduction of semiconducting polymers to an overview
of the current trends in Pdots research, concluding with a
section looking at possible future trends.

2 Semiconducting polymers

Most organic polymers without π-conjugated structures are
insulators. However, when π-conjugated structures exist,
the overlaps in π-electron clouds can allow the electrons to
move along the polymer backbone through by hopping,
tunneling, and related mechanisms [35,36]. In general,
these π-conjugated polymers are so-called semiconducting
polymers, since they are wide-band-gap semiconductors in
their pristine states. In the 1970s, organic conjugated
polymers and oligomers were discovered to be metallic
upon heavy doping [37,38], a term derived from inorganic
semiconductor chemistry, where the π electronic system
was either oxidized (p-type doping) or reduced (n-type
doping) [39]. Conjugated polymers became particularly
attractive because they promised to achieve a new
generation of polymeric materials which exhibited the
tunable electrical and optical properties of metals or
semiconductors while retaining the attractive mechanical
properties and processing advantages of polymers. More-
over, the band gap could be tuned by altering the molecular
structure of the polymer. Indeed, they were widely

demonstrated as active materials for a broad range of
optoelectronic devices, including flat panel displays with
organic light-emitting diodes [40–43], solar energy con-
version photovoltaic devices [44,45], and thin-film tran-
sistors [46–48].
Figure 1(a) shows the processes of photocatalytic water

splitting in semiconductor photocatalysts. Step (1) is to
absorb the solar light and generate electron-hole pairs. In
Step (2), those electrons and holes will separate and
migrate to the reaction sites to produce H2 or O2. However,
some electrons and holes may recombine, as shown in Step
(3). The working principle is demonstrated in Fig. 2(b).
Under irradiation at an energy equal to or larger than the
band gap of the semiconductor, valence band electrons are
excited and jump into the conduction band. Holes are left
in the valence band. These electrons and holes participate
in reduction and oxidation reaction to achieve products,
respectively. Furthermore, when comparing semiconduct-
ing polymers with inorganic semiconductors, one can see
that organic polymers can be prepared over a continuous
range of monomer compositions, by which the physical
properties can be systematically controlled [49,50], while
the crystalline inorganic semiconductors exist as discrete
phases with specific physical properties [51].
In 1985, linear poly(p-phenylene)s were first reported

being used as an organic photocatalyst for hydrogen
production. An apparent quantum efficiency (AQE) of
0.006% under UV-light irradiation (l> 366 nm) was
reported [54]. Up to date, various organic semiconducting
polymers have been investigated as potential photocata-
lysts for hydrogen production, such as polyazomethine
[55], poly(p-phenylene) [54,56], polytriazine [57], poly
(2,2′-bipyridine) [58,59], polypyrene [51], polyheptazine
[60,61], polybenzothiadiazoles [62], polyhydrazine [63],
and poly[(9H-carbazole-2,7-diyl)-1,4-phenylene] [18].
Since then, owing to their tailorable electronic and optical
properties, conjugated organic polymer (COPs) with
diverse synthetic modularity have been emerging as an

Fig. 1 Process and principle of photocatalytic H2 production.
(a) Processes; (b) principle of photocatalytic water splitting in semiconductor photocatalysts (adapted with permission from Ref. [52]).
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intriguing class of photocatalysts [64–68]. More and more
attentions have been paid to COPs in the field of
photocatalysis. For example, Kosco and coworkers used
conjugated polymer photocatalysts F8BT as the model
system to study the effect of palladium content (residues)
on hydrogen production activity [53,69]. F8BT was
synthesized by following Suzuki polymerization. Tris
(dibenzylideneacetone)dipalladium(0) (Pd2(dba)3) was
used as the Pd catalyst (Fig. 2(a)). The residual Pd
originally comes from the polymerization reactions when
synthesizing PFBT or F8BT. Transient absorption spectro-
scopy (TAS) measurement were conducted to further
investigate the influence of residual Pd. Figure 2(b)
exhibits the emergence of a long-lived excited state
absorption in the presence of DEA. Moreover, an
increasing signal amplitude with a decreasing Pd content
can be observed in Fig. 2(c). The resulting polymers
exhibited the minimal amount of Pd under visible light and
without Pt or Rh as a cocatalyst [70]. In addition, they had

important features such as solution processability, struc-
tural tunability, and high dispersion stability of nearly two
months.
Very recently, Cooper and coworkers reported a series of

tunable organic photocatalysts for visible light-driven
hydrogen production that successfully avoided the use of
platinum as a cocatalyst [51]. Fifteen polymer networks
were synthesized using Pd(0)-catalyzed Suzuki–Miyaura
polycondensation [71] of 1,4-benzene diboronic acid (1)
and/or 1,3,6,8-tetraboronic pinacol ester of pyrene (3) and/
or 1,2,4,5-tetrabromobenzene (2) and/or 1,3,6,8-tetrabro-
mopyrene (4) (Fig. 3(a)). The optical properties of these 15
polymer networks can be fine-tuned over a broad range by
adjusting the molar ratio of the monomers (Fig. 3(b)). The
UV-visible reflectance spectra (Fig. 3(c)) manifest a
redshift in the optical absorption onset from 420 to 640
nm with an increase of pyrene content. Similarly, the
photoluminescence spectrum also shows a gradual redshift
(Fig. 3(d)). Subsequent work investigated the much better

Fig. 2 Structure and transient absorption measurements of F8BT.
(a) Structure and synthesis method of F8BT via Suzuki polymerization; (b) transient spectrum of unpurified F8BT (1170 ppm Pd) at 1 ms, both in pure
H2O and in an aqueous suspension containing 30% diethylamine (DEA); (c) transient kinetics probed at 750 nm for different Pd concentrations in an
aqueous suspension containing 30% DEA (adapted with permission from Ref. [53]).
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photocatalysts for hydrogen evolution, i.e., the planarized
conjugated polymers [72]. However, it is more challenging
to process these materials into functional composites due
to the insolubility of organic polymers. Moreover, the
photocatalytic activity may be lost due to the sedimenta-
tion, that is the reason for the fact that the photocatalysts
are typically kept in suspension by stirring [73]. The same
group reported a solution-processable organic polymer (in
powder or thin film) as a good photocatalyst for hydrogen
production from water (Fig. 4) [18]. Furthermore, co-
polymerisation for a family of 1,4-phenylene/2,5-thio-
phene [74] and the introduction of nitrogen into poly(p-
phenylene) type materials could also affect their ability to
be sued as hydrogen production photocatalysts [75]. As a
short conclusion, under visible-light irradiation, the COPs
can catalyze the photocatalytic hydrogen production
efficiently without using any cocatalysts. The future
directions in developing organic semiconductors for
hydrogen production are to improve the performance,
remove the organic solvent phase, increase surface areas
and dispersibility in water, etc [74–78].

3 Conjugated Pdots

3.1 Properties of Pdots

Compared with traditional organic small molecules,
semiconductor quantum dots, and inorganic nanomaterials,
Pdots exhibit a higher extinction coefficient, a better
photostability, and a chemical stability [33]. Additionally,
Pdots surfaces often have different reactive functional
groups that can provide a platform to construct multi-
functional and hybrid nanomaterials when conjugated with

different chemical and biological molecules [34]. Impor-
tantly, due to the hydrophobic π-conjugate backbone and
amphiphilic polymer matrixes, Pdots are biocompatible
compared with inorganic nanoparticles of heavy metals
and semiconductors [34,79]. Other features of Pdots
include tunable optical gaps by molecular dopants,
relatively long excited state lifetimes, effective synthetic
methods, and tunable particle size and surface hydro-
philicity [80]. As a result, Pdots show a great potential in
various applications such as sensing [81,82], phototherapy
[83,84], labeling [85], bioimaging [86], drug delivery and
theranostics [87], and excellent biocompatibility and
flexibility in surface modification [85]. Thus far, several
reviews have been published discussing different aspects
of Pdots, i.e., biology and medicine [39], and imaging of
microvasculature [88]. Furthermore, Pdots process an
excellent water dispersibility that eliminates the organic
solvent, highly efficient hydrogen production rates, tunable
semiconductor properties that is suitable for visible-light
driven processes, and facile structural modification, which
are considered to be particularly attractive as photocata-
lysts [89,90]. Thus, Pdots have been reported as an
alternative to inorganic semiconductors (TiO2, etc.)
photocatalysts for hydrogen production [70,91–93]. How-
ever, there is no systematic report that reviews and
summarizes the recent advances in π-conjugated Pdots
for hydrogen production.

3.2 Preparation of Pdots

There are various methods to synthesize Pdots, including
nanoprecipitation, mini-emulsion, and self-assembly [85].
The nanoprecipitation method uses miscible organic
solvents, whereas the mini-emulsion method employs

Fig. 3 Structure and optical properties of conjugated copolymer photocatalysts.
(a) Synthesis of conjugated copolymer photocatalysts; (b) photographs of the 15 copolymers (CP-CMP1–15), imaged under irradiation with UV light
(lexcitation = 365 nm); (c) UV–visible absorption spectra of the copolymers measured in the solid state (intensities normalized); (d) photoluminescence
spectra of the copolymers (adapted with permission from Ref. [51]).
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immiscible organic solvents. Notably, the physical size of
Pdots depends on the methods used to prepare them [36].

3.3 Pdots as photocatalysts

Because pristine organic semiconducting polymers are
generally insoluble in water, in order to increase their
dispersibility in the reaction phase, organic solvents are
usually used. This problem can be solved by incorporating
Pdots. In 2016, the first application of Pdot-based
photocatalysts for enhanced H2 production using visible
light in an ascorbic acid (0.2 mol/L) solution under metal-
free conditions was reported made by Tian and coworkers
(Fig. 5(a)) [92]. As shown in Fig. 5(b), the team reported a
significant improvement over pristine polymers poly[(9,9′-
dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1′,3} thiadia-
zole)] (PFBT) Pdots without using any noble metal
cocatalysts. The results showed a high HER of

8.3 mmol/(h$g) at l> 420 nm [92]. Oxygen is an inhibitor
to proton reduction reaction [94]. Thus, oxygen is an
inevitable byproduct in the hydrogen production from
photocatalytic water splitting process. Therefore, one of
the key features for a good photocatalyst is the oxygen-
resistance. One thing to note is that PFBT Pdots process a
good resistant to oxygen. Subsequently, the same group
synthesized the PFODTBT Pdots and explored their
photocatalytic activity. An impressive HER of
50.0 mmol/(h$g) (six times higher than that of the
previously reported PFBT Pdots) was reported [93].
However, these Pdots can only be stable for a maximum
of 4 h with a high roll-off efficiency. Two years later, the
group prepared the hollow structured Pdots by using
copolymers of PFODTBT and 8-hydroxypyrene-1,3,6-
trisulfonic acid trisodium salt (HTPS) for hydrogen
production [95]. The results suggest that the reduced
particle size (from 90 to 50 nm) is the main reason for the

Fig. 4 Structure and properties of semiconducting polymers.
(a) Structures of P4, P8, and P9; (b) photograph of P8-s as a powder and as a thin film; (c) UV-vis absorption; (d) photoluminescence (lexc = 360 nm)
spectra of P8-s (adapted with permission from Ref. [18]).
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performance enhancement. The authors concluded that the
nature-mimicking hollow Pdots with porous shells can be
used as alternative photocatalysts in solar energy conver-
sion and storage applications.
A few other Pdots have been recently reported for

photocatalytic hydrogen evolution. Although there is not
much progress noticed in terms of quantum yield of
hydrogen, Pdots are an important inclusion in the family of
metal-free photocatalyst with much promise. One common
feature of all these reported Pdots is their effective
extended absorption edge beyond 500 nm. This is highly
desirable for harvesting low energy photons. Some Pdots
are even active in harvesting photons up to 700 nm [96],
and can produce hydrogen in the absence of any organic
solvent or co-catalyst.
In 2018, Chou and coworkers developed new types of

Pdot-based platforms to enhance their efficiency and long
photocatalytic function [91]. In their report, a Pt complex
was introduced into the semiconducting polymer backbone
through covalent bonding. The cycloplatinated Pdots
(Fig. 6(a)) were then obtained by transforming these Pt-
based semiconducting polymers. The obtained cycloplati-
nated Pdots after optimizing the Pt complexes ratio, had an
impressive hydrogen production rate compared with the
pristine PFTFQ Pdots and the Pt-complex-blended-coun-
terpart Pdots, which were prepared under otherwise
identical conditions (Fig. 6(b)). The enhanced performance
was mainly caused by the molecular design strategy. The
reported Pdots also had an excellent stability of 12 h with a
low roll-off efficiency (Fig. 6(c)). Figure 6(d) indicates that
the PtPy-blended counterpart PFTFQ Pdots have a higher
HER than that of the PFTFQ Pdots alone. Figure 6(e)
shows the time-resolved transient photoluminescence

decay spectra, in which the lifetime is shown for the
cycloplatinated complex units containing Pdots. This
suggests that the cycloplatinated complex units can be
used as a cocatalyst to enhance the process of charge
transfer. Very recently, a library of polymers was created
by the same group. In the report, the importance of
acceptor comonomers of pristine Pdots and cycloplatinated
Pdots was also investigated for the first time [97].
The results show that in a solution without methanol and
under visible light irritation, the PFTBTA-PtPy Pdots
provide the very good hydrogen production rates of
7.34�0.82 mmol/(h$g). The authors also employed the
MTT assay experiments to confirm that the cycloplatinated
Pdots can minimize the toxicity compared with the
conventional approach that directly adding Pt into a
solution system.
Conjugated polymers are unique and promising photo-

catalysts for visible-light-driven hydrogen production, but
understanding their photocatalytic efficiencies in aqueous
solutions is still very challenging. Recently, Hu et al. first
demonstrated a highly efficient strategy to boost the
photocatalytic hydrogen evolution of conjugated polymers
by functionalizing conjugated backbones with hydrophilic
oligo (ethylene glycol) monomethyl ether (OEG) side
chains [98]. Figure 7 displays the chemical structures and
basic properties of conjugated polymers. The OEG side-
chain-functionalized conjugated polymers can render a 90-
fold improvement compared with alkyl-functionalized
conjugated polymers as photocatalysts. Due to the robust
interaction between the OEG side chains with the Pt co-
catalysts, the charge transfer from the polymer to the Pt co-
catalysts has been improved. Recently, the same group also
prepared the novel conjugated polyelectrolytes (CPEs)

Fig. 5 Preparation and performance of Pdots.
(a) Preparation process of PFBT Pdots and light-driven hydrogen generation diagram; (b) visible-light-driven hydrogen generation from water at room
temperature (adapted with permission from Ref. [92]).
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coordinating with a metal cocatalyst for hydrogen produc-
tion under visible light [99,100]. Similar to the previous
report, the counterions and the interaction of the CPE side
chains with Pt cocatalysts are the determining factors for
the photocatalytic performance. As a result of the robust
interactions with Pt, the cationic CPE (PFN-Br) exhibited a
higher hydrogen production rate than that of the anionic
CPE (PFS-Na). Table 1 summarizes the state-of-the-art
progress in Pdots as photocatalysts for hydrogen produc-
tion.

4 Outlook

Although Pdots have several advantages to be used as
photocatalysts for hydrogen production, such as a high

extinction coefficient, a good photostability and chemical
stability, the tunability in optical gaps, a tunable particle
size and a surface hydrophilicity, and a relatively long
excited state lifetime, there are challenges need to be
overcome. It is believed that the challenges include the
further enhancement of its performance and a better
understanding of its mechanism. It is expected that the
research in the Pdots field will continue to inspire the
chemistry community make new discoveries and resolve
challenges. It is envisioned that the exploration of new
Pdots species with improved performance and stability and
well-controlled surface properties will be the main focus of
the field in the future. Through the optimization of
photophysical properties, including visible region light
harvesting, alignment of band gap, and photogenerated
charge generation and transportation, etc., the Pdot

Fig. 6 Structure and performance of Pdots.
(a) Structure and preparation process of PFTFQ-PtPy- and PFTFQ-PtIq-based Pdots and visible light-driven hydrogen production diagram; (b) time
course of produced H2 for PFTFQ Pdots, and the cycloplatinated Pdots; (c) time course of produced H2 for PFTFQ-PtPy15 and PFTFQ-PtIq15 Pdots for
12 h; (d) comparison of hydrogen generation of chemically linked PFTFQ-PtPy15 pdots and physically PtPy-blendedcounterpart PFTFQ Pdots; (e) time-
resolved fluorescence decay of IRF (black solid line), the PFTFQ Pdots and cycloplatinated Pdots (adapted with permission from Ref. [91]).

Table 1 Recent progress in Pdots for hydrogen production under visible light irradiation

Pdots HER/(mmol$(g$h)–1) at > 420 nm AQE/% Ref.

Hyperbranched 0.84 0.9 at 500 nm [70]

Cycloplatinized 12.7 0.4 at 515 nm [91]

PFBT 8.3 0.5 at 445 nm [92]

PFODTBT 50.0 0.6 at 550 nm [93]

PFODTBT/HTPS 22.6 – [95]

F8T2/g-C3N4 0.93 5.7 [101]

PBDTBT-7EO 18.03 0.3 (600nm) [98]

PFNDPP-Br 11.16 0.4 (600nm) [100]

HD-Br 1.08 – [99]
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technology is expected to have a broad and lasting impact
on photocatalysis. Moreover, linear conjugated polymers,
2D covalent organic frameworks, and 3D conjugated
porous polymers will be of great interests. Furthermore,
through multiple modification strategies, including doping
(S-doped, P-doped), hybridization, and copolymerization,
highlight efficient organic photocatalysts can be realized.
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