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Abstract Photocatalysts have attracted great research
interest owing to their excellent properties and potential for
simultaneously addressing challenges related to energy
needs and environmental pollution. Photocatalytic parti-
cles need to be in contact with their respective media to
exhibit efficient photocatalytic performances. However, it
is difficult to separate nanometer-sized photocatalytic
materials from reaction media later, which may lead to
secondary pollution and a poor recycling performance.
Hydrogel photocatalysts with a three-dimensional (3D)
network structures are promising support materials for
photocatalysts based on features such as high specific
surface areas and adsorption capacities and good environ-
mental compatibility. In this review, hydrogel photocata-
lysts are classified into two different categories depending
on their elemental composition and recent progresses in the
methods for preparing hydrogel photocatalysts are sum-
marized. Moreover, current applications of hydrogel
photocatalysts in energy conversion and environmental
remediation are reviewed. Furthermore, a comprehensive
outlook and highlight future challenges in the development
of hydrogel photocatalysts are presented.

Keywords hydrogel, photocatalysts, energy conversion,
environmental treatment

1 Introduction

Environmental remediation and sustainable energy are
pressing issues that require effective, sustainable, and
green solutions [1]. Solar energy offers a plentiful, clean,
and sustainable source of energy, which might be
harnessed to address these issues [2–8]. Photocatalytic
technologies effectively use solar energy for sustainable
energy conversion (such as H2 evolution, CO2 reduction,
and nitrogen fixation) and environmental treatments (such
as conversion of NOx and volatile organic compounds,
removal of heavy metal ions removal, and degradation of
organic pollutants) [9–16]. Therefore, there is an urgent
need for efficient photocatalysts and reliable methods to
meet growing development requirements.
The Fujishima-Honda effect, whereby H2 and O2 are

produced under UV light irradiation of a TiO2 photoelec-
trode, was first reported in 1972 [17]. Numerous novel
materials, such as black TiO2 [18–21], ZnO2 [22–25],
g-C3N4 [26–30], SrTiO3 [31–35], BiVO4 [36–39], ZnInS4
[39,40] and their hybrid materials have been developed for
applications in photocatalytic water splitting and environ-
mental remediation. Many effective strategies have also
been examined to further increase the efficiency of
photocatalysis, including the use of doping, co-catalysts,
defect manipulation, junctions, quantum confinement
effects, and Z-scheme configurations [41–45]. However,
owing to requirements for the material bandgap, specific
surface area, and charge separation, most photocatalytic
materials are applied in the form of nanometer-sized
particles, which are difficult to separate from the reaction
media. Additionally, for materials in this form there is the
possibility of secondary pollution to the environment and
poor recycling performance, which greatly hinders prac-
tical applications. Hence, there is an urgent need to find
suitable substrates to avoid these limitations.
To date, there have been many reports on nanometer-

sized photocatalytic materials loaded into foamed metals,
plastics, hydrogels, and blended with polymers or
adhesives to form thin films [46–50]. Hydrogels have
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also been recognized as potential 3D network supports for
photocatalysis. Hydrogels feature good flexibility, stretch-
ability, ionic conductivity, and environmental compatibil-
ity have high surface areas and adsorption capacities [51–
56]. The strategy of combining photocatalysts and
hydrogels may contribute to more efficient and environ-
mentally friendly energy conversion and environmental
management. Here hydrogel photocatalysts of these new
materials are denoted (Fig. 1). The physical and chemical
properties of hydrogels can also be tuned to enhance the
photocatalytic effect by tailoring of cross-linking points,
changing basic building blocks, surface structure, and
other modifications. Hydrogels provide a suitable platform
for photocatalysts to achieve efficient energy conversion
and environmental regulation (Fig. 1).
In this review, various kinds of hydrogel photocatalysts

and their applications in energy conversion and environ-
mental treatment are focused on. Design and fabrication
methods are described for photocatalyst systems. In
addition, progresses toward hydrogels with different
functionalities constructed based on conventional and
emerging strategies are summarized. Moreover, applica-
tions of these hydrogel photocatalysts related to water
splitting, CO2 conversion, wastewater treatment, air
purification, and their roles in fundamental studies are
highlighted. Furthermore, future challenges and outlook of
hydrogel photocatalysts are discussed. It is believed that
this review will encourage innovation in the field of
hydrogel photocatalysts for energy conversion and envir-
onmental remediation.

2 Fabrication of hydrogel photocatalysts

In most cases, hydrogel photocatalysts comprise a
nanometer-sized photocatalyst supported by a cross-linked
hydrogel network. The three-dimensional (3D) hydrogel
network provides a porous skeleton structure that limits

catalyst leakage into the reaction media (air or water) and
facilitates loading of a large amount of catalyst. The
photocatalyst provides active sites for the catalytic
reaction. Existing methods for preparing hydrogel photo-
catalytic materials can be divided into three categories:
embedding of photocatalysts in hydrogel networks, in situ
synthesis of photocatalysts in hydrogel networks, and self-
assembly of hydrogel photocatalysts. The fabrication
processes of hydrogels with photocatalysts are illustrated
in Fig. 2. In the process of fabricating hydrogel photo-
catalysts, photocatalysts materials, such as semiconduc-
tors, g-C3N4, conjugated organic molecules, and their
hybrids have been widely studied. In this section,
fabrication methods frequently used to fabricate hydrogel
photocatalysts are outlined based on different photocata-
lyst materials.

2.1 Inorganic semiconductor-based hydrogel photocatalysts

Inorganic semiconductor photocatalysts (ISPCs) are con-
sidered excellent photocatalysts for H2 evolution and
decomposition of organic compounds in effluents [57–59].
The photocatalytic efficiencies of these materials may be
enhanced by appropriate textural design, doping, and
formation of a semiconductor heterojunction by combina-
tion with metals and/or other semiconductors [60–62].
Generally, there are two main fabrication methods that
have been applied in the development of inorganic
semiconductor-based hydrogels photocatalysts.
One approach is to gel a mixture of ISPCs and

hydrophilic polymers/monomers by self-assembly or
introducing cross-linkable elements, which allow the
ISPCs to be embedded in the hydrogel network [63–66].
For example, a nanocomposite hydrogel of alginate/
carboxymethyl cellulose with encapsulated TiO2 was
successfully synthesized by barium-ion cross linking.
This system exhibited excellent photocatalytic activity
toward degradation of Congo red dye under direct solar

Fig. 1 Hydrogel photocatalysts as an effective strategy for energy conversion and environmental treatment.
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light irradiation (Fig. 3(a)) [67]. In the same way, TiO2 has
been added to a polyaniline (PANI)-phytate hydrogel
system (Fig. 3(b)). Efficient removal of organic pollutants
is achieved through the synergistic effects of absorption of
organic pollutants to the hydrogel and in situ photocata-
lytic degradation by TiO2 [68]. The networks of 3D
hydrogel photocatalysts have also been formed through
self-assembly of TiO2 and reduced graphene oxide (rGO)
[69,70]. As shown in Fig. 3(c), a PANI/TiO2 composite
graphene hydrogel (GH) was successfully prepared by
chemical reduction of graphene oxide (GO) followed by
H-bond and π-π self-assembly. The rGO and PANI acted as
a transmitter for e– and H+ to further enhance the
photocatalytic performance [71]. Graphene is the most
widely used additive for self-assembly of ISPCs to form
hydrogel photocatalysts, whereas other conductive materi-
als, such as carbon nanotubes, polypyrrole, and poly(3,4-
ethylenedioxythiophene) polystyrene sulfonate (PEDOT:
PSS), have also been used as additives to prepare hydrogel
photocatalysts. Figure 3(d) demonstrates hydrogel photo-
catalytic composites based on TiO2(P25) and graphene,
multi-walled carbon nanotubes formed by a simple room
temperature self-assembly [72].
Another method is in situ synthesis of photocatalysts in a

hydrogel network by oxidation, reduction, and sulfuration.
By using this approach, hydrogel photocatalysts with
tunable catalytic activities based on different active species
can be prepared for a variety of applications [73–77].

Recently, a poly 2-hydroxyethyl acrylate (HEA) -co- N-
hydroxymethyl acrylamide (HAM) hydrogel photocata-
lyst, denoted P(HEA-co-HAM)-CdS hydrogel, was fabri-
cated to adsorb and photocatalytically degrade organic
pollutants [76]. A Cd precursor was introduced by swelling
a preformed hydrogel network, synthesized by 60Co-γ
irradiation-induced radical polymerization. The sulfur
precursor was added to enable in situ synthesis of CdS
photocatalysts (Fig. 4(a)). A Bi2WO6 (BWO)/GH photo-
catalyst is an example of a high performance visible-light-
driven photocatalyst with a narrow band gap, which was
fabricated by utilizing a simple one-step hydrothermal
method. The 3D flower-like structures of BWO were
formed in situ by addition of Na2WO4 to a mixture of
Bi(NO3)3 and GO solution (Fig. 4(b)). The solution was
then hydrothermally reduced to self-assemble the hydrogel
through hydrogen bonding and π-π stacking interactions.
The novel structure of the BWO/GH hydrogel photo-
catalyst improved the light utilization efficiency and
absorption of the organic compounds and provided many
effective multidimensional electron transfer channels [77].
This hydrogel photocatalyst effectively decomposed
methylene blue (MB) and 2, 4-dichlorophenol (2, 4-
CDP) under visible light irradiation (l³ 420 nm) in both
static and dynamic systems.
TiO2 is a well-known photocatalytic material in the field

of photocatalysis because of its low cost, low-toxicity,
chemical stability, and high resistance to photocorrosion

Fig. 2 Schematic illustrations of the fabrication process of hydrogel photocatalysts.
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[78–87]. Therefore, many hydrogel photocatalytic mate-
rials based on TiO2 have been reported [65,88–91]. In
addition to the above-mentioned general preparation
strategies, several novel methods have been developed to
prepare hydrogel photocatalysts. For example, TiO2 can be

used to induce radical formation under light irradiation to
trigger the polymerization reaction. The TiO2 also acts as a
crosslinking site to induce gelling of the solution [92]. In
this system, the gelling water provides a source of radicals
and the TiO2 nanosheets act as a stable photocatalysis to

Fig. 3 Inorganic semiconductor photocatalysts embedded in hydrogel network.
(a) and (b) TiO2 embedded in hydrogel network (adapted with permission from Refs. [67,68]); (c) and (d) TiO2 hydrogel formation through graphene self-
assembly (adapted with permission from Refs. [71,72]).

Fig. 4 In situ synthesized hydrogel photocatalysts.
(a) P(HEA-co-HAM)-CdS hydrogel (adapted with permission from Ref. [76]); (b) BWO/GH (adapted with permission from Ref. [77]).
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support the formation of the hydrogels. Microfluidics have
also been used to prepare hydrogel microspheres for
various applications. Very recently, a glass capillary-based
microfluidic technique was used for highly efficient
encapsulation of photocatalytic nanoparticles in a thin
shell of hydrogel microcapsules (Fig. 5). An aqueous
dispersion of photocatalytic nanoparticles and methacrylic
anhydride formed the core and shell of the double
emulsion drops, respectively [93]. The hydrogel micro-
capsules containing photocatalytic nanoparticles were
gelatinized by external photopolymerization. These thin
shell hydrogel microcapsules with photocatalytic nanopar-
ticle cores more effectively promoted the photocatalytic
reaction, absorption, diffusion, and separation of molecular
species when compared with the performance of bulk
hydrogels.
However, the inherent wide bandgap (3.0–3.2 eV) and

low quantum efficiency of TiO2 materials owing to rapid

recombination of photogenerated electrons and holes,
limits their practical applications [94–97]. Considerable
efforts have been made to develop alternative photocata-
lysts to overcome these problems and improve the
photocatalytic activities. These efforts have focused on
new semiconductor photocatalysts that have a strong
absorption of visible light. Hydrogel photocatalysts have
also been investigated for applications ins degradation of
pollutants driven by solar energy [98–103]. For example,
β-FeOOH/cellulose composite hydrogels (TCH-Fe) were
fabricated from a cellulose solution by regeneration in
ethanol and in situ synthesis of β-FeOOH nanoparticles
(Fig. 6(a)). The photocatalytic degradation of MB over
TCH-Fe was as high as 99.89% within 30 min under
visible-light irradiation [99]. The performance remained at
about 98% after treatment for 8 h, indicating a highly
efficient and stable photodegradation of MB. The layered
structure of MoS2 has a strong absorption in the solar

Fig. 5 Preparation of hydrogel photocatalyst microspheres by microfluidic process (adapted with permission from Ref. [93]).
(a) Schematic diagram of preparation of hydrogel photocatalyst; (b) optical picture of the device; (c) glass microfluidic devices producing microcapsules;
(d) photopolymeric monomers producing core-shell hydrogel capsules.
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spectrum region owing to its narrow band gap of
approximately 1.8 eV. Hence, this material has also been
embedded into hydrogels to degrade pollutants. As shown
in Fig. 6(b), a MoS2-rGO composite hydrogel was
fabricated through a one-step hydrothermal method of
mixing a solution of GO and exfoliated MoS2 nanosheets
[100]. Furthermore, Mu and coworkers reported a silver
phosphate/Gh (Ag3PO4/GH) that efficiently degraded
bisphenol A (BPA) through a synergy of adsorption and
photocatalysis [101]. Owing to the high quantum yield
under visible light of Ag3PO4, this composite hydrogel
photocatalyst achieved 100% removal of BPA in a
continuous flow reaction system. In addition, hydrogels
can also be used to prepare composite structures for
photocatalytic materials. Core-shell Fe3O4-CuO at carbon
hollow spheres have been assembled from metal organic
framework (MOF) composite hydrogels through a combi-
nation of chemical vapor deposition (CVD) and pyrolysis
(Fig. 6(d)) [102]. This work also provides a new route to
develop highly active and stable bimetallic hydrogel
photocatalysts.

2.2 Organic semiconductor-based hydrogel photocatalysts

Compared with the extensive development of ISPCs, the
progress related to organic semiconductor photocatalysts
(OSPCs) has been more gradual. However, OSPCs have
been intensively examined for heterogeneous photocata-
lysis under visible light illumination and offer advantages
in terms of structural designability and stability over
conventional molecular photocatalysts [104–109]. Cur-
rently, there are two main classes of polymer-semiconduc-
tor photocatalysts, graphitic carbon nitride (g-C3N4) and
chromophore amphiphiles (based on conjugated mole-
cules), that have been studied for water splitting and
aqueous pollutant remediation.
As a metal-free polymer n-type semiconductor, C3N4

has shown great promise in the field of photocatalysis since
Wang and coworkers first reported photocatalytic H2 and
O2 evolution over C3N4 in 2009 [110]. The methods used
to prepare C3N4-based hydrogel photocatalysts are similar
to the aforementioned techniques. The preparation of

Fig. 6 Narrow bandgap semiconductor-based hydrogel photocatalysts.
(a) TCH-Fe (adapted with permission from Ref. [99]); (b) MoS2-rGO composite hydrogel (adapted with permission from Ref. [100]); (c) Ag3PO4/GH
(adapted with permission from Ref. [101]); (d) preparation of hydrogel-assisted composite photocatalytic materials (adapted with permission from Ref.
[102]).
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graphitic carbon nitride-based hydrogels as photocatalysts
has also been reviewed [111,112]. Therefore, detailed
synthesis will be omitted. Instead, some of the latest
outstanding developments of C3N4-based hydrogel photo-
catalysts are presented. Li and coworkers reported a 3D-
2D-3D BiOI/porous g-C3N4/GH (BPG) composite photo-
catalyst based on a two-step hydrothermal method
(Fig. 7(a)). The 3D GH had a high absorption capacity.
The excellent photocatalytic properties of the heterojunc-
tion between the 3D BiOI, which had a flower-like
structure, contributed to effective adsorption-photocataly-
sis and effective degradation of MB and levofloxacin
hydrochloride compared with that of BiOI [113]. Co-
doping of g-C3N4 with non-metal ions can also improve
the effectiveness of pure g-C3N4. Chu et al. reported the
use of P, S, and O co-doped g-C3N4 to produce
photocatalyst hydrogels. A combination of theoretical
calculations and experimental analyses of the P, S, and O
doping indicated that rapid charge separation of photo-
excited electrons took place across the heptazine rings,
which enhanced the photocatalytic activity of doped
g-C3N4. This doped g-C3N4 hydrogel photocatalyst
exhibited a high photocatalytic activity for MB removal
under simulated solar irradiation and could be easily
separated and cleaned for reuse (Fig. 7(b)) [114]. In
addition, C3N4-based hydrogel photocatalysts, such as
g-C3N4 at ppy-rGO [115], Fe-g-C3N4 graphene [116], and
N-isopropyl acrylamide/high-substituted hydroxypropyl
cellulose/g-C3N4 hydrogels [117], were reported for
efficient catalytic removal of heavy metal ions and
degradation of organic pollutants.
Supramolecular assemblies of chromophore molecules

benefit from their good environmental stability, strong
visible-light absorption, and tunable redox potentials
(molecular orbital energy levels) arising from variable
structural functionalization. Hence, these systems have

been recognized as promising materials for photocatalytic
reactions [118–121]. The n-type organic perylene imides,
including perylenediimides (PDIs), perylenemonoimides
(PMIs), and their oligomers and analogs, have been proven
to have excellent photocatalytic properties [122–124].
Recently, Zhang and coworkers reported a urea-linked PDI
polymer photocatalyst (Urea-PDI). Based on the energy
band structure, excellent crystallization, and the large
molecular dipole of Urea-PDI, the photocatalyst has a
highest oxygen evolution rate of 3223.9 μmol/(g‧h) with
100 h of stable performance under visible light irradiation
without a cocatalyst [125]. Several reports of PMI-based
hydrogel photocatalysts from Stupp and coworkers have
inspired many related studies [126–128].
A photocatalyst-embedded hydrogel was reported in

2020 (Fig. 8(a)), which featured a PMI photocatalyst
embedded in a polyelectrolyte hydrogel network. The
catalyst-loaded hybrid PMI/polyelectrolyte hydrogel was
used in photocatalytic hydrogen production and could be
reused over multiple cycles as a photosensitizer [128]. To
further enhance the performance of hydrogel photocata-
lysts, a conjugated polymer hydrogel photocatalyst which
expanded in water to expose more active sites was reported
by Byun and coworkers [129]. This system could also be
recovered by solvent exchange. The stable polymer ionic
complexation between a benzothiadiazole-based polymer
containing cationic side chains as the polycation and poly
(acrylic acid) as the polyanion, exhibited a good water
compatibility, absorbing up to 470 times of its weight in
deionized water (Fig. 8(b)). The excellent swelling
performance greatly expanded the availability of active
sites and enhanced the photocatalytic activity of the
hydrogel photocatalyst. The effectiveness of this material
was demonstrated by its application to photodegradation of
organic dyes and the formation of the enzyme cofactor
nicotinamide adenine dinucleotide by photo-oxidation in

Fig. 7 g-C3N4 based hydrogel photocatalysts.
(a) 3D-2D-3D BiOI/porous g-C3N4/GH composite photocatalyst (adapted with permission from Ref. [113]); (b) P, S, O-co-doped g-C3N4 hydrogel
photocatalyst (adapted with permission from Ref. [114]).
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water. Furthermore, this hydrogel photocatalyst could be
regenerated by a simple solvent exchange with methanol
after the reaction.

3 Applications of hydrogel photocatalysts

In this section, current progresses in the application of
hydrogel photocatalysts in energy conversion and envir-
onmental treatments are highlighted, focusing primarily on
hydrogen evolution and CO2 reduction in Section 3.1, and
organic pollutant degradation and removal of metal ions in
Section 3.2. In Section 3.3, emerging applications of
hydrogel photocatalysts for synergistic water evaporation
and energy conversion are introduced.

3.1 Energy conversion

3.1.1 Photocatalytic hydrogen evolution

Hydrogen (H2) is considered to be an ideal energy storage
media due to its high energy capacity and environmental
compatibility. The generation of H2 induced by water
splitting over photocatalysts is regarded as a promising
strategy for achieving a H2-based economy. Owing to the
inherent water absorption capacity of hydrogels, hydrogel
photocatalysts act as reaction centers for hydrogen
production by photocatalysis. Li and coworkers reported
in situ growth of CdS hydrogels (CdS/HGel) for photo-
catalytic hydrogen generation [130]. Owing to the high
dispersibility of CdS nanoparticles in the hydrogels, high
hydrophilic and swelling ability of the hydrogel, and high
diffusion rate of reactants, CdS/HGelPDMA2 had the best
photocatalytic hydrogen production rate of 51.75 μmol/h
(based on 5 mg catalyst powder) and allowed for easy

recovery (Fig. 9(a)). The suppression of charge recombi-
nation at the catalyst interface is important for improving
photocatalytic efficiency. Cocatalyst deposition is an
effective strategy that can improve the activity, stability,
and selectivity of primary catalysts in a catalytic reaction.
A co-assembled aerogel of spherical Au, Pd, and PdAu
with TiO2 nanoparticles was prepared by light-induced
gelation of a hydrogel-precursor (Fig. 9(b1)) [131]. PdAu-
TiO2 aerogels were the most efficient photocatalysts,
followed by Pd-TiO2 and Au-TiO2, demonstrating that
enhanced hot-electron transfer and near-field electromag-
netic effects contribute to H2 formation (Fig. 9(b3)). The
efficient reagent mass transport and light-harvesting of the
monolithic porous networks also promoted photocatalysis.
As an inspiration for rational design of multicomponent

hydrogel photocatalysts for photocatalytic hydrogen
evolution, a CdS and ZnS containing hydrogel was
obtained by a modified gel crystal growth method [132].
The hydrogel (HR) framework inhibited the agglomeration
of the CdS and ZnS nanoparticles. Owing to the synergistic
effects of the quantum dots and hydrogel, the composite
hydrogel photocatalyst exhibited high rates of H2 evolution
compared with those of non-supported nanoparticles
(Fig. 10(a)).
Chromophore-amphiphile conjugated PMI hydrogel

photocatalysts also play an important role in photocatalytic
hydrogen generation. Weingarten et al. fabricated a
hydrogel skeleton based on PMI and a cationic analog
with an outer ligand sphere functionalized with primary
amines as a supramolecular self-assembly for photocata-
lytic hydrogen production [127]. The highest catalytic
turnover number (TON) of this PMI-based hydrogel
photocatalyst was approximately 340 under different
charge-screening conditions with poly(diallyldimethylam-

Fig. 8 Chromophore amphiphile conjugated polymer hydrogel photocatalyst.
(a) PMI-based photocatalyst-embedded hydrogel (adapted with permission from Ref. [128]); (b) polymer ionic complexation hydrogel photocatalyst
(adapted with permission from Ref. [129]).
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monium) chloride (PDDA) (Fig. 10). The gel catalyst
could also be cast on glass slides for H2 generation.

3.1.2 Photocatalytic CO2 conversion

Photocatalytic conversion of CO2 into renewable fuels
driven by sunlight is considered as an ideal scenario for
reducing the concentration of carbon dioxide in the
atmosphere while also generating energy [133–137].
However, because of the inherent high-water content of
hydrogel photocatalysts, there is a possibility that an
excess of carbon dioxide may dissolve, reducing the
conversion. Therefore, much research on CO2 conversion
is based on aerogels, which are mostly derived from freeze-
drying and supercritical drying of hydrogels. Layers of
MoS2 on a hierarchical porous structure of mesoporous
TiO2 and macroporous 3D graphene aerogel (TGM)
photocatalysts have been fabricated by freeze-drying gel
composites (Fig. 11(a)) [138]. The morphologies of the
mesopores and macropores that contribute to the high
photocatalytic catalyst performance, can be regulated by
adjusting the relative amounts of each component and the
configuration of the composite. The TGM photocatalyst
has a higher CO photoconversion rate (92.33 μmol
CO/(g$h)) and is more stable (i.e., maintains its original
conversion rate of over 15 cycles) than other composite
combinations. Niederberger’s group reported several
studies on the preparation of aerogel photocatalysts
based on supercritical drying of hydrogel precursors.

Figure 11(b1, b2) shows TiO2-Au composite aerogel
samples before and after photocatalytic reduction of CO2

with water to methanol with high selectivity and
reproducibility [139]. Niederberger’s group also found
that translucent nanoparticle-based aerogel monoliths were
promising photocatalysts for gas phase reactions such as
CO2 reduction.

3.2 Environmental treatment

3.2.1 Organic pollutant degradation

Owing to their high degree of swelling and adsorption
capacity, hydrogels have drawn research interest for
applications to adsorption of dyes, metal cations, and
other pollutants. Although great progress has been made,
many different materials accumulate in hydrogels, making
it difficult to selectively target specific contaminants [140–
142]. Hydrogel photocatalysts promote synergistic absorp-
tion and in situ photocatalytic degradation of pollutants,
which is important for environmental treatments, espe-
cially wastewater treatments. Zhang et al. prepared
dynamic systems for total organic carbon (TOC) removal
based on graphitic carbon nitride/SiO2 (C3N4/SiO2) hybrid
hydrogels with 3D network structures (Fig. 12(a)) [143].
The hybrid C3N4 /SiO2 hydrogel photocatalyst had
excellent cyclic stability and removal abilities for phenol
and MB, with performances 3.1 and 6 times as great as
those of pure g-C3N4, respectively. The C3N4/SiO2 hybrid

Fig. 9 Hydrogel photocatalysts for hydrogen generation.
(a) In situ growth of CdS/HGel for photocatalytic hydrogen generation (adapted with permission from Ref. [130]; (b) co-assembled spherical Au, Pd, and
PdAu with TiO2 nanoparticles aerogels for photocatalytic hydrogen generation (adapted with permission from Ref. [131]).
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hydrogel photocatalyst could be used continuously without
adsorption saturation or separation from water, avoiding
aggregation and secondary pollution of the photocatalysts.
Similarly, agar-C3N4 hybrid hydrogel photocatalysts have
been prepared by a simple heating-cooling polymerization
process. These catalysts exhibit excellent performances in
photocatalytic degradation of MB and cyclic stability
under visible light [144].

In addition to common colored pollutants, some color-
less pollutants can also be degraded using hydrogel
photocatalysts, e.g., BPA [63,76,101], phenol [116,144],
and sulfonamide antibiotics (SAs). Yang et al. used
irradiation polymerization and in situ precipitation meth-
ods to form a novel hydrogel photocatalyst [p(HEA/
NMMA)-CuS] for efficient photocatalytic sulfamethox-
azole (SMX) degradation [145]. The mechanism is detailed

Fig. 10 Multicomponent (individual CdS and ZnS nanocrystals) hydrogel photocatalysts for photocatalytic hydrogen generation
(adapted with permission from Ref. [132]).

(a) Mechanism of growth of photocatalysts; (b) hydrogen evolution performance of hydrogel photocatalyst in 16 h; (c) photocatalytic H2 evolution
process of CdS and ZnS hydrogel photocatalyst.

Fig. 11 Gel-based photocatalyst for CO2 conversion.
(a) TGM photocatalyst for CO2 conversion to CO (adapted with permission from Ref. [138]); (b) TiO2-Au composite aerogel for CO2 reduction (adapted
with permission from Ref. [139]).
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in Fig. 12(b). First, the [p(HEA/NMMA)-CuS] hydrogel
photocatalyst adsorbed SMX through a process similar to
Langmuir monolayer adsorption that followed a pseudo
second-order rate equation. Thereafter, a photocatalytic
decomposition process of SMX, which followed pseudo-
first-order kinetics, was promoted by CuS under visible
light irradiation. Theoretical calculations of the frontier
electron densities and their degradation pathways sup-
ported this mechanism.

3.2.2 Removal of metal ions

Toxic metal ions such as copper (Cu2+), arsenic (As), zinc
(Zn2+), cobalt (Co2+), nickel (Ni2+), lead (Pb2+), cadmium
(Cd2+), and chromium (Cr6+) cause serious damage to
human health and the environment [146–148]. Among
these, Cr(VI), a common heavy metal contaminate, is a
threat to human health because of its carcinogenic and bio-
accumulative properties. The photocatalytic removal of

cadmium ions has received extensive attention owing to its
potential for treatment with high efficiency, low energy
consumption, and mild reaction conditions. Li et al.
fabricated a novel TiO2 and rGH by π-π conjugation
induced overlapping and coalescence among the graphene
sheets (Fig. 12(c)) [149]. The TiO2-rGH 3D structure had
an excellent adsorption-photocatalysis performance for
removal of Cr(VI) from aqueous solutions. The synergis-
tically enhanced photo-induced charge separation, non-
porous surface, and π-π interactions contributed to a
removal rate of Cr (VI) from a solution of 100%.
Furthermore, using a continuous flow system, the removal
rate of cadmium was maintained at 100% over a long time.

3.3 Synergistic water evaporation and energy conversion

In recent years, there has been a great interest in obtaining
clean water through solar evaporation. In particular, some
hydrogel-based photothermal evaporation materials have

Fig. 12 Removal of metal ions using hydrogel photocatalyst.
(a) Hybrid C3N4 /SiO2 hydrogel photocatalyst for TOC removal based on a continuously dynamic system (adapted with permission from Ref. [143]);
(b) [p(HEA/NMMA)-CuS] hydrogel photocatalyst for photocatalytic SMX degradation (adapted with permission from Ref. [145]); (c) adsorption-
photocatalysis for removal of Cr (VI) with TiO2-rGH (adapted with permission from Ref. [149]).
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shown great potential for solar evaporation [150–154]. On
this basis, many photothermal materials are embedded in
hydrogels to efficiently absorb sunlight for photothermal
evaporation. Photothermal materials, such as plasmonic
absorbers, semiconductors, carbon-based materials, and
conductive polymers can be embedded in hydrogels to
efficiently absorb sunlight for photothermal evaporation.
Gao et al. structured a photothermal catalytic (PTC) gel

with a hydrophobic membrane to realize a H2O-H2

cogeneration system (HCS) for concurrent photothermal-
enhanced solar desalination and hydrogen generation
[155]. The PTC gel comprised photothermal and photo-
catalytic TiO2/Ag nanofibers and a strong water-absorbing
chitosan polymer (Fig. 13(a)). The photocatalytic hydro-
gen production was enhanced by efficient light absorption
of the gel interface with a 3D structure. Furthermore, the
porous structure of the array provided effective confine-
ment, interfacial heating, and thermal conductivity. A

Fig. 13 Synergistic water evaporation and H2 generation.
(a) H2O-H2 co-generation system (HCS) for concurrent photothermal-enhanced solar desalination and hydrogen generation based on PTC gel (adapted
with permission from Ref. [155]; (b) photograph of custom-made device used in HCS for parallel freshwater production and hydrogen energy generation
(adapted with permission from Ref. [155]).
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custom-made device was used in the HCS for parallel
freshwater production and hydrogen energy generation.
The amount of condensate collected and hydrogen gas
generated from the water and seawater sources were
both increased (Fig. 13(b3)). Later, the same group
developed a defective semiconductor nanosheet aerogel
that contained oxygen vacancy defect-rich HNb3O8

nanosheets (D-HNb3O8) and a polymeric polyacrylamide
(PAM) network [156]. The hybrid defective HNb3O8

aerogel had a high-performance for photothermal water
evaporation and photochemical degradation (photocataly-
tic degradation of Rhodamine B) driven by light over the
entire solar spectrum. These developments have broadened
applications of hydrogel photocatalysts and inspired future
research into hydrogel photocatalysts.

4 Summary and outlook

Through ongoing efforts, many photocatalytic materials
have been developed, including single ISPCs, composite
nanostructured hybrid photocatalysts, Z-scheme photoca-
talytic materials, and organic semiconductor photocatalytic
materials. The photocatalytic properties of these systems

have contributed to major breakthroughs in energy
conversion and environmental treatment. However, the
problems of secondary pollution and poor recycling
performance are related to the difficulty in separating
nanometer-sized photocatalytic materials from their reac-
tion media in practical applications. The emergence of
hydrogel photocatalysts offers a good solution to these
problems. Many hydrogel photocatalysts have shown an
excellent photocatalytic performance and cycling stability.
In this review, different approaches to synthesizing

different kinds of hydrogel photocatalyst materials were
summarized. Those hydrogel photocatalysts have been
developed by incorporating various photocatalysts, such as
TiO2, C3N4, CdS, CuS, PMI, and graphene hybrid
complexes. In addition, two main applications of hydrogel
photocatalysts in energy conversion and environmental
treatments were discussed in detail. Recent progresses in
hydrogel photocatalysts for various applications were
summarized in Table 1. From Table 1, it can be observed
that based on the synergistic absorption and catalysis of
hydrogel photocatalytic materials, they are found to show
great advantages in environmental treatment, especially for
water environment. At the same time, the hydrogel
contains a large amount of water, which makes it

Table 1 Summary of various types of hydrogel photocatalysts employed for different applications

Applications Materials References

H2 evolution CdS/HGel [130]

PdAu-TiO2 aerogels [131]

CdS and ZnS containing hydrogel [132]

PMI-based hydrogel [119,126–128]

CO2 conversion Macroporous 3D TGM [138]

TiO2-Au composite aerogel [139]

Organic pollutant
degradation

GH-AgBr at rGO [63]

ZnO/rGO-rGH hydrogel [64]

TiO2 based hydrogel [65,67–72,88–91,93]

Fe0 at Guar gum-crosslinked-soya lecithin nanocomposite hydrogel [66]

CdS based hydrogel [73,75,76]

Chitosan-Gelatin based hydrogels [74]

Bi2WO6/GH [77]

β-FeOOH at tunicate cellulose nanocomposite hydrogels [99]

MoS2-rGO composite hydrogel [100]

Ag3PO4/rGH hydrogel [101]

AgCl/ZnO nanocomposites hydrogel [103]

C3N4 based hydrogel [113–117,143,144]

polymer ionic complexation hydrogel photocatalyst [129]

p(HEA/NMMA)-CuS hydrogel [145]

Removal of metal ions TiO2-rGH 3D structure hydrogel [149]

Photothermal evaporation TiO2/Ag nanofibers gel
D-HNb3O8 and a PAM network

[155]
[156]
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unfavorable for pollutant gas treatment. It is anticipated
that this review could provide new insights into the design
and fabrication of advanced hydrogel photocatalyst
materials for highly efficient photocatalysis.
Despite some achievements in terms of component and

structural design of hydrogel photocatalysts in recent
years, this field is still in its early stage of development and
many challenges remain to improve photocatalytic effi-
ciency and stability to satisfy the demands of practical
applications. To address these challenges, efforts are
needed in the following aspects:
Current research on hydrogel photocatalysts focuses on

random co-mingling of photocatalysts and gel networks,
which can limit exposure of photocatalytically active sites.
Granular dry gels can result, which can complicate the
operation and lead to difficult separation and secondary
contamination because of photocatalyst leakage, and poor
recyclability.
Research has focused mainly on the design and

modification of photocatalysts. However, there have been
fewer studies of the intrinsic properties of the hydrogel
components. Regulation of the gel network structure and
swelling properties and adsorption properties of the gel
also synergistically contributes to photocatalyst perfor-
mance and require further investigation.
To further expand the catalytic performance of hydrogel

photocatalytic materials, interfacial modification of hydro-
gel monomers and photocatalysts together with modula-
tion of the gel network will be likely to offer an effective
strategy for achieving efficient and sustainable recycling of
photocatalytic gels to overcome the drawbacks of existing
hydrogel photocatalysts.
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