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Abstract The conceptual process design of novel
bioprocesses in biorefinery setups is an important task,
which remains yet challenging due to several limitations.
We propose a novel framework incorporating super-
structure optimization and simulation-based optimization
synergistically. In this context, several approaches for
superstructure optimization based on different surrogate
models can be deployed. By means of a case study, the
framework is introduced and validated, and the different
superstructure optimization approaches are benchmarked.
The results indicate that even though surrogate-based
optimization approaches alleviate the underlying computa-
tional issues, there remains a potential issue regarding their
validation. The development of appropriate surrogate
models, comprising the selection of surrogate type,
sampling type, and size for training and cross-validation
sets, are essential factors. Regarding this aspect, satisfac-
tory validation metrics do not ensure a successful outcome
from its embedded use in an optimization problem.
Furthermore, the framework’s synergistic effects by
sequentially performing superstructure optimization to
determine candidate process topologies and simulation-
based optimization to consolidate the process design under
uncertainty offer an alternative and promising approach.
These findings invite for a critical assessment of surrogate-
based optimization approaches and point out the necessity
of benchmarking to ensure consistency and quality of
optimized solutions.

Keywords biotechnology, surrogate modelling, super-
structure optimization, simulation-based optimization, pro-
cess design

1 Introduction

The global necessity of novel process solutions to meet the
demands of a growing society and find adequate solutions,
matching the increasing need for sustainable process
solutions, is high [1]. In general, biotechnological process
solutions are deemed to be conceptually more sustainable
[2]. Recent developments in synthetic biology allow for
producing a vast palette of biofuels, chemicals, foods, and
even pharmaceutical ingredients in cell factories. The
global biofoundry initiative aims at accelerating the
acquisition of knowledge, the integration of data, and the
development of new cell factories [3,4].
On the other side, the implementation of biorefinery

concepts that incorporate these chemicals’ sustainable
production from sustainable feedstocks, as, e.g., lignocel-
lulosic biomass or other residues or dedicated crop plants is
dramatically low. Up to the current date, a total number of
less than 100 active lignocellulosic biorefineries are
operated around the world [5]. This is mainly due to
these biorefinery concepts’ critical economic robustness,
as the operative margins for most products are narrow and
chemical processes are competitive [6]. Despite several
ideas of designing these biorefineries and improving their
economic robustness by mass and heat integration or
producing several products simultaneously in a so-called
multi-product biorefinery, a conceptual design strategy that
significantly promotes the implementation of these bior-
efineries is still an active area of research [7–10]. Current
research directions span from the integration and expan-
sion of established approaches [11,12], over the use of
novel approaches and models [13,14], up to the inclusion
of further economic, environmental, and sustainability
factors in particular [15–19], as well as the accommodation
of specificities for fermentation-based processes [20]. The
vast majority of these studies primarily follow three
approaches for conceptual process design that are briefly
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introduced in the following paragraphs.
Classically, process design for biorefineries is performed

by so-called hierarchical decomposition and involves
domain knowledge from different expert areas to yield a
consolidated solution [21]. However, this methodology has
several shortcomings as it usually involves several
iterations, which results in a long idea-to-process time,
and does not necessarily yield an optimal solution for the
process design, especially considering that biotechnologi-
cal processes suffer from issues with the scale-up from
laboratory scale to production scale [3,22].
A computational and more conceptual approach to

process design is superstructure optimization (SSO) [23].
Out of all possible process options provided in a super-
structure, the optimal configuration is chosen through
mathematical optimization. In comparison to the previous
alternative, the resulting process design is globally
optimal. However, the methodology is initially limited
by the number of alternatives that are included in the
superstructure. Furthermore, the resulting optimization
problem can become very large even though a considerable
number of possible solutions can be infeasible a priori.
Also, the use of high-fidelity models is limited in this
approach as this can be computationally challenging to
solve. Lastly, the incorporation of uncertainty increases the
complexity of formulating the optimization problem
through stochastic or robust optimization [24]. SSO has
been successfully performed for several chemical produc-
tion processes; however, the design of biotechnological
processes comprises several new challenges and uncer-
tainties which are difficult to address [25].
A second, more recent approach to process design is

simulation-based optimization (SBO). The methodology
builds upon the evaluation of process simulations where
high-fidelity models are used [26]. Furthermore, uncer-
tainties can be easily included in a Monte Carlo-based
approach [27]. Several proposed frameworks utilize
machine learning surrogate models as, e.g., stochastic
kriging (SK), coupled with a Bayesian optimization
approach to iteratively improve the objective function
results, leading to an optimal process design [27,28].
Despite this approach being able to incorporate complex
physiological models of cell factories and processes, it is
heavily limited by available computational power. The
number of simulations can get very high for several
alternative process configurations, which constrains this
approach severely to a small design space.
After elucidating the challenges within the process

design of novel bioprocesses in biorefinery setups, it
becomes evident that novel solutions are required, which
incorporate knowledge from different fields and approach
the problem in an interdisciplinary manner. Hence, we
propose a novel synergistic optimization framework for the
conceptual process design of biorefineries, based on a
hybrid approach integrating surrogate-based SSO with
SBO. It harnesses both the power of the SSO for process

synthesis and the potential of SBO for detailed design
optimization. The framework itself capitalizes biotechno-
logical knowledge to guide decisions in a bottom-up
strategy for both SSO and SBO, which finally yields a
consolidated process design.
The remainder of the paper is structured as follows: The

used surrogate models for the superstructure are introduced
in section 2.1 and the methods of performing SSO in
section 2.2, and the SBO in section 2.3. The detailed
components of the proposed framework and the applied
workflow are introduced in section 2.5. For the application
of the framework, a case study is introduced in section 3.1.
The corresponding high-fidelity models for the specific
case study are introduced in appendix A.1 (cf. Electronic
Supplementary Material, ESM), including the correspond-
ing methodology for uncertainty and sensitivity analysis in
appendix A.2 (cf. ESM). The evaluation of the frame-
work’s SSO step is presented in section 3.2 and the SBO
step in section 3.3. Conclusions and an outlook on future
research work are given in section 4.

2 Theoretical background

2.1 Surrogate models

Surrogate models describe various types of models, which
mimic the behavior of original first-principle models. The
primary reason for developing and using a surrogate
model, described by McBride and Sundmacher, is the
reduction of computational costs for model evaluations,
which is an inherent part of the SSO, as explained in
section 2.2. This comes at the cost of a certain error in the
surrogate model’s predictions due to imperfect resem-
blance. The applied technique for creating a surrogate
model highly depends on the computational constraints
regarding the original and the surrogate model, as well as
the type of application of the surrogate model [29]. The
simplest model types are linear, piecewise linear, or
polynomial functions, which are fitted to the original
data [30,31]. However, the majority of the used surrogate
models are based on machine learning techniques, among
others radial basis functions, Gaussian process regressors,
and at the higher end artificial neural networks (ANNs) and
even deep neural networks [29,32]. The following
subsections describe first the development procedure for
these model types and subsequently four different
surrogate model types which are used in this framework,
one based on algebraic equations, one piecewise linear
model, and two machine learning models.
The development procedure for surrogate models—

independent of the model type is similar and commonly
starts with sampling the model input space by, e.g., Latin
hypercube (LHS) or Sobol sampling. To ensure a space-
filling sampling for a sufficient interpolative quality of the
model, the choice of an adequate sampling technique is
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crucial [33]. Subsequently, the surrogate model is fitted to a
part of the data, dependent on the chosen validation
strategy.
A standard method, which is also applied in this

framework, is called k -fold cross-validation: the sampled
dataset is divided into k equally sized subsets. In a routine,
each subset is once used to validate the surrogate model,
and the remaining k – 1 subsets are used for the fitting of
the model. The total validation error is calculated by the
average error of the k validation folds [34].

2.1.1 Automated learning of algebraic models

The automated learning for algebraic models (ALAMO)
toolbox was developed to create algebraic models for
applications like SSO [35,36]. As described in Wilson’s
and Sahinidis’ work, the ALAMO toolbox first fits simple,
algebraic models, consisting of several nonlinear terms and
their linear combinations to the points in the input space.
Then, by employing derivative-free optimization, the best
suitable combination of terms is determined through error
maximization sampling. Further constraints on the model
outputs can be imposed, and the possibility to perform
adaptive sampling to increase the number of points in the
input space at specific locations [35]. Especially for
process design purposes, the ALAMO toolbox has been
applied widely as a surrogate modeling technique with
promising results [22,37,38].

2.1.2 Delaunay triangulation regression (DTR)

The second surrogate model is based on the concept of
regression by a piecewise linear functional relationship. In
the case of a one-dimensional input space, the piecewise
linear functional relationship is a set of composed line
segments. For a general definition of this piecewise linear
functional relationship, be P � ℝn�r a set of points in the
n� r -dimensional space and a subset of real numbers. All
elements p 2 P are considered vectors in the Euclidean
vector space over ℝn�r and consist of two elements
p ¼ fpx,pzg. All elements px and pz are respectively
elements of the sets Px � P and Pz � P, both subsets of P.
Furthermore, be X � ℝn the input space and Z � ℝr the
output space of our functional relationship with all
elements x 2 X and z 2 Z and P � X � Z.
Defining the input space X as n -manifold with

boundary, the triangulation TX of X is a homogeneous
simplicial k -complex Σ, being homeomorphic to X and
k ¼ n, referring to that the S consists only of n -simplices.
An n -simplex � is the special form of an n -polytope and
consists of exactly nþ 1 vertices v, so fv1,:::,vnþ1g � �
2 Σ. For illustrative purposes, for n ¼ 2 the 2-simplex is a
triangle. Hence the n -simplex is the equivalent to a triangle
in any dimension n. At this point, we define the set of
vertices V and every vertex v 2 V as the element px of the

point p. Furthermore, an important property of an
n-simplex � is it being an affine and hence convex space,
which allows any point x* inside the simplex to be
described as a linear combination of the vertices with the
coefficients αi < 1:

x* ¼
Xnþ1

i¼1
αi$vi ¼

Xnþ1

i¼1
αi$p

x
i 8 vi, p

x
i 2 �: (1)

Furthermore, the functional relationship of the surrogate
model f is defined as:

f :
ℝn

↕ ↓ℝr

x↦z

�
: (2)

The set of real numbers is denoted as ℝ. Given this, the
conclusion for the surrogate model is that any point z* can
also be described by a linear combination of elements pz of
the point p by Eq. (1), which is equivalent to the concept of
regression. In conclusion, the triangulation of the input
space TX with the functional relationship to the output
space Z ¼ f ðTX Þ represents the surrogate model based on
the described regression concept.
Reconsidering the one-dimensional case, a 1-simplex,

also called edge, is nothing else than a line segment; the
one 1-simplicial complex corresponds to the set of
composed line segments, where each point on any line
segment can be described as a linear combination of the
two vertices or endpoints of the line segment it lies on.
Lastly, the functional relationship describes the functional
value of the point of the line segment by a linear
combination of the vertices’ functional values.
A prominent type of triangulation is the so-called

Delaunay triangulation, which imposes the criterion that
the circumcircle or its higher-dimensional equivalent, its
n-hypersphere of the vertices of the simplex cannot contain
another vertex [39]. There exist published algorithms to
create a DTR for a given set of points [40,41].

2.1.3 Gaussian process regression (GPR)

The third surrogate model is based on the concept of
regression by a stochastic process— the eponymous GPR
and particular kernel functions to determine parameters of
the following functional relationship:

f :
ℝn

↕ ↓ℝ

x↦z

�
, (3)

with the expression, as explained by Al et al.:

z ¼ �GPðxÞ þ �2
GP$F ðx,ωÞ,  �GPðxÞ ¼ �$βðxÞ, (4)

where, �GPðxÞ denotes the mean value of the Gaussian
process and �2

GP its variance. For the mean value �GPðxÞ, �
are estimated parameters from the input data, as well as the
variance �2

GP and βðxÞ relate to a group of basis functions.
Furthermore, F ðx,ωÞ describes a zero mean unit variance
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stochastic process. The correlation or kernel functions ω
are used to correlate any point in the input space x* with
existing points x [42]. There are various available kernel
functions; hence, the reader is referred to the book by
Rasmussen [43]. A couple of remarks on GPR as a
surrogate model shall be made: it is very well capable of
displaying highly nonfunctional relationships, and the
amount of data necessary to obtain a good surrogate model
is relatively low and favorably low-dimensional [29]. GPR
surrogate models have seen a wide range of applications in
machine learning, particularly also in different process
design tasks [44–46].

2.1.4 ANN

The last type of surrogate model is the class of ANNs.
ANNs are used in a plethora of applications, especially
complex machine learning tasks as image and voice
recognition, natural language processing, and artificial
intelligence. Al et al. give the following description: in
general, neural networks consist of at least three layers, one
input, one hidden, and one output layer. This case is
considered as a shallow neural network and, in particular, a
multi-layer perceptron. Each layer contains a certain
number of nodes that relate their inputs to their outputs
with a so-called transfer or activation function of a specific
type. When several hidden layers are added to the network,
it is referred to as a deep neural network [42]. Due to their
flexible architecture and possibilities in terms of compos-
ing and learning a network, neural networks are an ideal
candidate for the use as a surrogate model in process
design tasks and have seen a widespread application in the
area of process systems engineering [29,47–49].

2.2 SSO

SSO as a method for process synthesis and design is a
computational method based on mathematical optimiza-
tion. Following Chen and Grossmann’s elaboration, SSO
involves three steps, namely (1) the definition of a set of
process alternatives in a superstructure representation, (2)
the formulation of the corresponding optimization pro-
blem, and (3) solving the optimization problem with an
adequate solver in order to obtain the optimal process
design. The primary limitations remain firstly with the
initial definition of the design space, implying that only
solutions can be found that are initially considered;
secondly, these limitations are also fueled by the assump-
tions taken for the models and the capabilities of the
employed solver for the optimization problem [23].
Moreover, a capital restriction is the inability to account
for uncertainty in deterministic optimization approaches
such as SSO [24].
The superstructure itself can be postulated in various

ways. One of the most common superstructure formula-

tions is a state-task-network, in which each unit operation
model forms a task in the network, the flows are described
as states, and both are connected via nodes that correspond
to mixers or splitters. This composition highly resembles
an actual process flowsheet, with the main difference being
that the nodes represent binary decisions on whether a
process path exists [50]. For the interested reader, a
description of other existing superstructure formulations
can be found in a recent review by Mencarelli et al. [51].
As described by Chen and Grossman, the resulting

optimization problem is a mixed-integer program (MIP) of
the form:

MIP :

min z ¼ f ðx,yÞ
s:t:  hðx,yÞ ¼ 0

gðx,yÞ£0

x 2 X , y 2 ½0,1�

8>>>><
>>>>:

, (5)

with a defined objective function z ¼ f ðx,yÞ, referring to a
certain metric, e.g., product purity, a key performance
indicator or sustainability measures, and subject to equality
and inequality constraints hðx,yÞ and gðx,yÞ, describing
physical constraints, system and equipment specifications
and their limits, as well as other process constraints, e.g.,
product purity. The continuous variables x 2 X denote
process variables as states, mass and energy flows, and
design parameters, all within a specific input space X � ℝ.
The binary variables y denote the mentioned decisions on
the existence of equipment or process paths. Depending on
the underlying physical system, both the objective function
f and the constraints can be nonlinear; hence the
optimization problem is a mixed-integer nonlinear pro-
gram (MINLP).
The objective function evaluation can be theoretically

calculated based on the unit operation models and
additional equations. However, the complexity of the
formulation and the computational cost of evaluating high-
fidelity models commonly makes the solution of the
optimization problem by currently available solvers
complicated or even intractable [49,51]. Consequently,
there have been various research efforts in surmounting
these hurdles in SSO, e.g., linearization of the objective
function, surrogate model-assisted SSO, or decomposition
algorithms [50,51]. Especially the capacity of surrogate
model-assisted SSO alleviating the computational burden
has been exploited in various studies [49,52,53]. This
allows for an elegant solution to integrate complex high-
fidelity models from different platforms indirectly via their
surrogates into a simple superstructure formulation,
compared to extensive equation-based approaches as,
e.g., generalized disjunctive programming [49,51].
In the following section, four different superstructure

formulations with respectively one of the introduced
surrogate models in section 2.1 are introduced. The
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benchmark of all four approaches is part of sections 3.2.2
and 3.2.3.

2.2.1 Surrogate-assisted MINLP

The first option under investigation are ALAMO surrogate
models in an MINLP and no reformulation of the actual
optimization problem. The resulting algebraic model
equations from the ALAMO surrogate models can be
introduced as the function for the objective function f ðx,yÞ
and the equality constraints hðx,yÞ in the MINLP
formulation described in Eq. (5), the problem can be
solved with an adequate solver. As the ALAMO surrogates
are fitted from flowsheet simulations, a binary variable ym
for all flowsheet options m 2 IM is introduced, as well as
an SOS1 constraint, indicating that the optimal solution
can only lie in one flowsheet:

X
m2 IM

ym ¼ 1: (6)

2.2.2 Surrogate-assisted mixed-integer linear program
(MILP)

The second option for the SSO suggested here involves
developing a superstructure based on DTR surrogate
models and the reformulation of the underlying MINLP
into an MILP.
For the set of possible process design configurations M

with an index set IM ¼ f1,2,:::,Mg, a certain number of
flowsheet simulations are performed for each configuration
m 2 M : A DTR surrogate model is then fitted for each
configuration m 2 M from a set of sample points Pm,x

over the input space X � ℝn and a set of simulation points
Pm,z over the output space Z � ℝr. Every sample point pxm
and respectively pzm equally is a set of the type pxm ¼
fpxm,1,pxm,2,:::,pxm,ng and pz ¼ fpzm,1,pzm,2,:::,pzm,rg with every

pjm,d being a scalar value. Besides, two index sets IX ¼
f1,2,:::,ng � ℕ and IZ ¼ f1,2,:::,rg � ℕ for the dimension
of the input and output space are defined and an index set
IP for set Px and Pz as jPxj ¼ jPzj. The created triangulation
TX yields a set of simplices S, fulfilling the definitions
stated in section 2.1.2. Be IS ¼f1,2,:::,jSjg � ℕ the index
set of S, then each simplex �m,s again is a specific set of
points pxm,d,i with i 2 ISP ¼ fi jpxm,d,i 2 �m,s8d 2 IXg � IP
that are all part of the simplex. Lastly, a binary variable ym,s
is introduced, which relates to whether a point x is part of a
simplex � 2 S, in the flowsheet configuration m 2 M .
The MILP is postulated as follows: The objective

function is the minimum value of one element of the output
variable z:

min zk , (7)

with zk 2 z and k£r. Furthermore, for any input variable x
on the boundary ∂X of X and output variable z under the

given functional relationship Eq. (1) for TX , we can rewrite
Eq. (2) in the following way:

ym,s$xd ¼
X

i2 ISP
ym,s$αm,s,i$p

x
m,d,i

8 d 2 IX , s 2 IS , m 2 IM , (8)

ym,s$zd ¼
X

i2 ISP
ym,s$αm,s,i$p

z
m,d,i

8 d 2 IZ ,  s 2 IS , m 2 IM : (9)

Furthermore, due to the convex property of the simplex,
the following equation considering the linear combination
coefficients αm,s,i, which are treated as variables by the
optimizer, must be fulfilled:

X
i2 ISP

αm,s,i ¼ 1  8  s 2 IS , m 2 IM : (10)

Since an MILP only allows the formulation of linear
equations, a Big-M notation for Eqs. (8) and (9) is
introduced with the three variables �, φ and ψ replacing the
three products ym,s$xd, ym,s$αm,s,i and ym,s$zd. The follow-
ing are the four equations for the product ym,s,d$xd:

In these equations, M denotes so-called Big-M para-
meters; their values are set to the upper bound of the
respective variable they represent. Similarly, also the Big-
M notation for the second product ym,s$αm,s,i is written:

In this case, the Big-M parameter is equal to 1 and hence
left out of the equations. Lastly, also the Big-M notation for
the third product ym,s$zd is listed here:
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Equations (11)–(22) now allow to express Eqs. (8) and
(9) without the multiplication of variables in the following
way:

�m,s,d ¼
X

i2 ISP
φm,s,d,i$p

x
m,d,i 8 d2 IX , s2 IS , m2 IM ,

(23)

ψm,s,d ¼
X

i2 ISP
φm,s,d,i$p

z
m,d,i 8 d2 IZ , s2 IS , m2 IM :

(24)

To satisfy Eqs. (23) and (24), there exists exactly one
simplex in one flowsheet configuration in which the point x
is located, and all other simplices in this flowsheet and all
other flowsheets do not contain the point. Hence, an SOS1
constraint is added to the postulation in order to express
this: X

m2 IM

X
s2 IS

ym,s ¼ 1: (25)

With Eqs. (7) and (10), the MILP is now well defined
and can be solved with a suitable optimization algorithm.
Alternatively, further constraints on other elements of the
output variables can be imposed, referring to other process
metrics, e.g., economic indicators. For different types of
triangulations, this MILP has been postulated in similar
ways by Misener et al. [54,55].

2.2.3 Surrogate-assisted series of nonlinear programs
(NLP)

The third option for the SSO suggested by the authors
involves developing a superstructure based on GPR or
ANN surrogate models and the reformulation of the
underlying MINLP into a series of NLP.
To remove the integer variables y from the problem as

stated in Eq. (5), which are introduced for different
flowsheet options, the series of NLP has to involve an NLP
for each of these flowsheet options. For the set of possible
process design configurations M with an index set
IM ¼ f1,2,:::,Mg, a certain number of flowsheet simula-
tions are performed for each configuration m 2 M : For
each flowsheet configuration m 2 M a GPR or ANN
surrogate is then fitted from a set of sample points Pm,x over
the input space X � ℝn and a set of simulation points POBJ

m,z

for the metric to be evaluated in the objective function
over the output space ZOBJ � ℝ. This procedure is
performed for each of the metrics j to be considered as
constraint with a set of simulation points PCON

m,z,j over the

respective output space ZCON
j � ℝ. The boundaries for the

input variables are set to the bounds of the input space ∂X
and a set of initial points in the input space X0 2 X are
declared, in order to assure global optimality by perform-
ing a multi-start optimization with an amount of jX0j ¼ s.
The objective function is equally formulated as for the

MILP with Eq. (7). The series of NLP can now be solved
sequentially for each NLP performing being solved s times
with the different initial points x0 2 X0 by using a suitable
optimization algorithm.

2.3 SBO

All the presented SSO approaches in section 2.2 are
deterministic approaches to optimization, relating to the
found optimum, not incorporating any kind of uncertainty.
In contrast to that, the process design of a novel chemical
or biochemical process inherently represents a significant
uncertainty by itself [56]. Due to the development of
computational power and the ever-more growing use of
simulation software, making the computational tractability
of complex systems possible, the concept of SBO or, in
particular, stochastic simulation optimization has seen
increasing interest over the past years. This concept allows
to incorporate stochastic considerations as uncertainty into
an optimization formulation and solve them, given
sufficient computational capacities [26–28]. In contrast to
the prior presented approaches, the system to be optimized
does not need to follow a particular mathematical structure,
as the systems are commonly treated as black boxes [27].
Drawbacks of SBO are that the ability to find an

optimum to a given optimization problem with SBO is
heavily constrained by the computational tractability,
which can be easily exceeded by excessively high
computational costs for simulation evaluations, a high
dimensionality of the problem, or the description of
multiple objectives and constraints [26]. Furthermore, as
information about derivatives in black-box systems is not
readily available, the proof of global optimality for the
obtained solution by SBO remains challenging [57].
Among the several approaches for performing SBO, a

surrogate model-based method with SK surrogate models
will be elucidated in this section, as their use is favorable
for computationally expensive simulations [44]. The
interested reader is referred to a comprehensive summary
of the benefits and drawbacks of several other approaches
by Amaran et al. [57]. Besides the mentioned benefits of
SBO, a surrogate-based approach gives into the structure
of the search space and location of a possible global
optimum [58]. SK as surrogate model type is an extended
variant to the presented GPR in section 2.1.3. For the
individual differences, the reader is referred to the original
contributions [28,59].
Following the framework described by Al et al., the SK

surrogate is described with the following functional
relationship for any input point x 2 ℝn, closely related to
Eq. (4):

z ＝ � ＋ εðxÞ ＋ LðxÞ, (26)

where � is now a constant term referring to the mean value
of the prediction and ε(x) and LðxÞ representing extrinsic
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and intrinsic uncertainty in the prediction. Extrinsic
uncertainty describes the uncertainty of the surrogate
model with regards to the high-fidelity model due to an
imperfect representation of the input space X � ℝn by the
set of sampling points PX . Intrinsic uncertainty represents
uncertainty in the original model with regards to the
original physical system it represents. The model is fitted
to the initial set of sampling points of the input space PX
and simulation points PZ in the output space Z 2 ℝ.
The performed optimization works as an evolutionary

program, where an adaptive search with infill optimization
under a given infill criterion is performed. With an initially
small set of sample points, the infill optimization directs
the search towards more promising areas in the search
space by adding new sample points to the set PX . In this
iterative procedure, the SK model is updated and hence
improved. The iterations are terminated upon reaching a
specific criterion, and the simulation results from each step
can be investigated, and the optimum can be determined
from the set of sample points of the last iteration i* [27]:

min z ¼ min Pi*, x: (27)

Different infill criteria can be used for this task, and the
reader is referred to the literature for an overview [27].

2.4 Optimization under uncertainty

Process design inherently involves various sources of
uncertainty. These uncertainties can be accommodated in
the optimization; however, this always implies a certain
imparity in the calculated objective function, a so-called
“price of robustness” [60]. Several factors influence this
tradeoff: Grossmann et al. mention the availability of
information on the type of uncertainty, as well as general
data on the uncertainty, the way of hedging against the
uncertainty, a tremendous computational burden, as well as
difficult tractability of the results for this [24].
Established practices in performing optimization under

uncertainty in connection with mathematical programming
are robust optimization, chance-constraint programming,
or stochastic programming, which are investigated for
several decades and recently received attention by the use
of data-driven modeling techniques as, e.g., deep and
reinforcement learning in order to alleviate certain short-
comings of the classical mathematical programming
approaches [61]. However, for increased tractability of
the optimization problem, simulation-based approaches
that use high-fidelity simulation models and a metamodel-
ing approach seem to be a more viable solution [24,62].
Here, Monte Carlo methods, as introduced in section

A.2.1 (cf. ESM), represent a straightforward approach to
include the optimization under uncertainty in SBO and
allow a simple statistical quantification of the objective and
the constraint values. This has been performed successfully
for similar process design tasks [27,63]. This procedure is

integrated with the presented solver in section 2.3 and will
thus be used as such in the scope of this study.

2.5 Framework S3O

As mentioned, the conceptual design of novel bioprocesses
in a biorefinery setup is a highly complex challenge. They
arise from the difficulty of utilizing sustainable feedstocks
as lignocellulosic biomass, which requires additional unit
operations in the upstream process, the problematic nature
of microorganisms of showing scale-dependent dynamics
due to the intricate interactions in the regulation within the
transcriptional and metabolic network, and the arduous
conception of the downstream process, which has to
account for the specifications in the upstream process
while being constrained by economic limitations. While all
three introduced process design strategies can be utilized,
the resulting process design can face several hurdles
deriving from a lack of conceptuality, intrinsic limitations
in their feasibility, or disproportionate computational
burdens. To surmount these hurdles, the proposed frame-
work aims to leverage synergies in applying all proposed
strategies in a hybrid manner, where the benefits of each
methodology are harnessed to expedite the global task of
designing a process conceptually.
It comprises three sequential steps, namely (1) the

selection of product sets, substrates, and operations, (2)
SSO for determining candidate process topologies, and (3)
simulation optimization for consolidating an optimal
process design. It is illustrated in Fig. 1.

2.5.1 Selection of product sets, substrates, and operations

The overarching idea in the framework is to “begin with
the end in mind” [64,65]. Applying this principle in a
biorefinery context, the first thing to be defined is the set of
products. Due to the critical economic viability of
biorefinery concepts, it is of utmost importance to choose
an appropriate portfolio of products, which exploits the
available substrate to the maximally possible extent and
potentially maximizes the economic key performance
indicators of the biorefinery. Once the set of products is
defined, the feedstock for the biorefinery has to be chosen
accordingly, where a feedstock candidate should contain
reasonable amounts of the respective substrate that is
needed to produce the desired set of products.
Based on both a defined set of products and a feedstock,

all potential process candidates’ necessary unit operations
can be defined. As an integral part of this framework, this
step is heavily influenced by domain knowledge, which
allows for a bottom-up assessment of the possible
alternatives reducing the workload in this step immensely.
With the defined number of alternatives for unit operations
and process routes, a mechanistic model is developed for
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each unit operation, incorporating the domain knowledge
in the form of mathematical equations to describe the
underlying physical, chemical, and biological phenomena.

2.5.2 SSO

With all developed models and the set of all process
alternatives, a superstructure is composed. By the prior
selection of possible process alternatives through expert
knowledge and ultimately subjected to economic con-
siderations, the size of the superstructure is a priori heavily
reduced and hence faster to solve. Classically, by
performing SSO, the result is a deterministically optimal
process design. A second paramount benefit of SSO is the
possibility to account for nontrivial design decisions,
deriving from the nature of binary decisions in the process
design. However, this does not allow directly to incorpo-
rate possible uncertainties, which is why the SSO in this
framework serves as a selection tool for not only one
deterministic optimal process design but rather several
candidate process topologies. Furthermore, additional
constraints regarding the operability of the process,
product quality constraints, or others can be included in
this stage.

2.5.3 Simulation optimization

By selecting several candidate process topologies through
SSO, the number of candidates subjected to simulation
optimization is again reduced and hence computationally

facilitated. The candidate topologies, which are prone to be
the best process design, are subjected to simulation
optimization under uncertainty to ultimately yield a
consolidated process design. Possible uncertainties that
can be included span from uncertainties in the technical
domain, e.g., scale-up issues for fermentation reactors or
fluctuations in impurities that are separated in the down-
stream processing, over the operational domain, e.g.,
varying product and feedstock prices and supply, up to the
computational domain, e.g., uncertainties in model para-
meters, error propagation properties of models and
uncertainties in design parameters, as already mentioned
in section A.2 (cf. ESM). Constraints from the prior stage
can be added, as well as additional constraints. The entire
workflow of the implemented framework is shown in Fig.
2.
For the SSO, it is crucial to assess which option delivers

the best results under the given objective of determining a
small set of candidate process topologies. The constraints
here are that (1) the methodology should be able to pick
candidates that turn out to be optimal, (2) delivers results
consistently with respect to differently shaped design
spaces and flowsheet alternatives, (3) the SSO can be
performed within a reasonable amount of time with
reasonable computational resources, (4) the results are
consistent with each other, e.g., considering different
sample sizes for the input space and (5) should yield
solutions which are close to the theoretical underlying
global optimum of the original flowsheet model. In the
following section 3.2, all proposed options are evaluated
and benchmarked regarding these criteria to define which
methodology to choose ultimately.

Fig. 1 Illustration of the proposed framework S3O with its three stages: (1) selection of products and models, (2) SSO, and (3) SBO, as
well as the employed software and toolboxes.
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3 Case study and results

To demonstrate the feasibility and capabilities of the
introduced framework, a relevant industrial case study is
selected. After a concise description of the case study and
its relevance to industry, the application of the three steps
of the framework and the results are described and
analyzed.

3.1 Selection of product sets, substrate and operations

As the first and main produced chemical in the biorefinery
concept in the case study, xylitol is selected. Xylitol is a
sugar substitute with a similar taste to sucrose and
manifold beneficial health properties, as around 40%
fewer calories than sucrose, a very low glycemic index,
which makes it very suitable for diabetic nutrition, and

Fig. 2 Workflow of the proposed framework S3O indicating the tasks in the three stages and its intermediate and the final results.
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anti-cariogenic properties [66]. It has been determined as
one of the top 12 chemicals to be produced in a biorefinery
concept by the US Department of Energy already in 2004,
maintained that status in 2010, and is still attracting
researcher’s interest in order to facilitate a biotechnological
production in cell factories [67–71]. Nevertheless, and
despite a market volume estimate of 1 Bio USD and more
in 2022, there are only a few companies worldwide, e.g.,
DuPont Nutrition Biosciences, producing xylitol in a
chemical process from wood biomass or corn in a chemical
conversion process [70,72].
Proposed process designs in literature are scarce;

however, those who approach the idea of a process design
for the biotechnological production of xylitol either
conclude that the chemical production process is econom-
ically more safe and promising or that xylitol can increase
the added value of a biorefinery with other principal
products, as for example ethanol [73–75]. Hence, the
process design of a biotechnological production process
for xylitol is a perfectly suitable case study for demonstrat-
ing the proposed framework.
Beginning with the end in mind, according to the

framework, a suitable set of products is supposed to be
chosen in the first step of the workflow. As xylitol is
favorably produced from the hemicellulosic fraction of
lignocellulosic biomass, the product set can involve a
product for the cellulosic fraction of the biomass and one
for the lignin fraction. For the cellulosic fraction, succinic
acid is considered as a product. It is also one of the top 12
chemicals to be produced in a biorefinery setup and has
potential as a platform chemical, which makes it attractive
for several industrial branches, which benefits the
economic resilience of the biorefinery [67,76]. The lignin

fraction can be either used in a combustion process to
provide heat for steam generation in order to integrate heat
over the different process trains in the biorefinery or can be
further converted in a pyrolysis process into sustainable
aviation fuels, for which there is a high demand with
higher economic margins than for common biofuels as,
e.g., bioethanol [77–79]. The downstream process for both
the cellulosic and the hemicellulosic process train can
involve a classic setup with an evaporation unit and
following crystallization units or involve alternative
technologies as membrane separation; both approaches
are applied commercially and have been investigated for
their use in biorefinery downstream processes for both
xylitol and succinic acid [53,68,76]. As possible feedstock,
wheat straw with a high hemicellulosic content is chosen.
A potential superstructure formulation for this base-case
process design is illustrated in Fig. 3.
It becomes evident that by following the concept of

beginning with the end in mind and rigorously applying
expert knowledge in a bottom-up composition approach
for the superstructure, the initial search space is kept
comparatively small, which expedites all the following
steps in the workflow.
However, in order to analyze the results of the

application of this framework more tractable and thus
accessible to the reader, we reduce the superstructure of
this base case design to a smaller subset of only the xylitol
production train with a limited amount of unit operations.
Once the framework is validated, the whole superstructure,
as in Fig. 3, can be processed nonetheless. The reduced
superstructure involves six unit operations, namely a
biomass pretreatment unit operated as dilute acid pretreat-
ment (PT), an upconcentration unit (UCH), a fermentation

Fig. 3 Illustration of the entire initial bottom-up composed superstructure for the base-case process design of the introduced case study
with a hemicellulose, a cellulose, and a lignin process train; the reduced superstructure which will serve as the base case in this study is
marked in bold.
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unit operated as batch fermentation (FX), an evaporation
unit (EX), a first crystallization unit operated as cooling
crystallization (CX1) and a second crystallization unit
operated as antisolvent crystallization (CX2). Out of these
six unit operations, three are compulsory (PT, FX, CX1),
and three are optional (UCH, EX, CX2), which results in
eight binary decisions or eight different flowsheet alter-
natives. These are listed in Table 1 together with their
configuration ID (cID), which will be used as an identifier
throughout the section.

With eight flowsheet options as listed in Table 1, the
following step 2 of the framework could also be solved by
a purely enumeration-based approach instead of formulat-
ing an SSO problem. However, to rigorously search
through the entire design space for globally optimal
solutions and to better account for nontrivial design
decisions while accelerating calculation times, the SSO
approach is the favorable option. The small problem size is
chosen as mentioned to enhance the tractability in the
scope of this manuscript.
For all the unit operations, mechanistic models are

developed: the PT model is set up as described in section
A.1.1 (cf. ESM) while considering the same components
as Prunescu et al. [80]. The data for the calibration of the
model derives from proprietary experiments. The opera-
tional variables considered in the pretreatment model are
the pretreatment temperature TPT in °C, the pretreatment
time tPT in min and the acid concentration acid in wt-% to
the original biomass. The fermentation model (FX) is set
up as described in section A.1.2 (cf. ESM), while using
data from batch experiments from Tochampa et al. [81].
The considered operational variables for the fermentation
model are the fermentation time tFX in h as well as the
inoculum concentration inoc in g$g–1   broth. The evapora-
tion model (UCH, EX) is set up as described in section
A.1.3 (cf. ESM) in the ASPEN Plus process simulation
software while using the DIPPR property database and the
NRTL equation of state. The considered operational
variable is the vapor fraction for either evaporation vEX
or upconcentration vUCH. The crystallization model (CX1,
CX2) is set up as described in section A.1.4 (cf. ESM) and

subsequently validated and calibrated with proprietary
experimental data. The considered operational variables
are the crystallization time tCX1,2 in h, the flowrate of
coolant for CX1 FC,CX1 in kg$s–1 and the flowrate of
antisolvent for CX2 FAS,CX2 in kg$s

–1 as well as the cooling
temperature TC,CX1 in °C for CX1. The considered model
outputs for this study are the mass of produced xylitol
MXyo in kg, the concentration of the inhibitory compounds
5-hydroxymethylfurfural and acetic acid in the final
process stage C5HMF,CAac in g$L–1 as well as a CO2 ratio
φ in kg$kg–1 indicating how much CO2 is produced per
kilogram of xylitol by the generation of steam to provide
heat in the pretreatment and the evaporation units. The
considered uncertainty in the third step of the framework is
the composition of the feedstock. All models are
implemented in MATLAB. The evaporation model is
interfaced with a COM interface to MATLAB. All models
are assessed regarding their robustness by means of Monte
Carlo-based uncertainty and sensitivity analysis as
described in sections A.2.1 and A.2.2 (cf. ESM). Hence,
the full design space for the case study is set up by factorial
selection in SPDlab, while excluding infeasible options a
priori. All model implementations are available through
the S3O GitHub repository [82].

3.2 SSO

3.2.1 Flowsheet sensitivity analysis

In order to perform the design space exploration, all
operational variables for each flowsheet are considered as
input variables. With the functionalities of SPDlab, N =
2000 samples with LHS sampling for each flowsheet (cIDs
1–8) are simulated [83]. The flowsheet samples are used as
input for the flowsheet sensitivity analysis by using the
easyGSA toolbox in MATLAB [42] to determine which of
the operational variables are most important regarding the
model output and should hence be considered as variables
in the optimization problem. The design space exploration
results are illustrated in Fig. 4 in violin plots for each
model output for each relevant flowsheet option. The
results of the ANN-assisted flowsheet sensitivity analysis
are illustrated in a heatmap in Fig. 5. All scripts and
implementations regarding the flowsheet sensitivity ana-
lysis are available through the S3O GitHub repository [82].
As a first major result, the flowsheets with the cIDs 3, 4,

7, and 8 turn out to be infeasible with the given design
space, as no set of input variables results in produced
xylitol. Furthermore, it becomes evident that there are
major differences between the flowsheets’ design spaces
with cIDs 1, 2, 5, and 6. Where cID 6 seems to have an
evenly distributed number of points regarding the mass of
xylitol produced, for cID 6, most of the sets of input
variables turn out to be infeasible with only a small feasible
fraction. Regarding the inhibitory compounds, especially

Table 1 Overview of all flowsheet options with their respective cID

and the units composing the flowsheet.

cID Flowsheet

1 PT-UCH-FX-EX-CX1-CX2

2 PT-UCH-FX-EX-CX1

3 PT-UCH-FX-CX1-CX2

4 PT-UCH-FX-CX1

5 PT-FX-EX-CX1-CX2

6 PT-FX-EX-CX1

7 PT-FX-CX1-CX2

8 PT-FX-CX1
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cIDs 2 and 6, as well as cID 5 to minor extents, seem to
produce significant amounts of inhibitors. This allows for
the conclusion that both inhibitory compounds should be
constrained to a certain level in the optimization problem
formulation to ensure product quality.
Regarding the flowsheet sensitivity analysis, a more

uniform picture emerges. For all four flowsheets, similar

operational variables seem vital despite a different order,
and also similar variables are insensitive concerning the
output. Hence, for cIDs 1, 5, and 6, we define TPT,  acid, 
inoc,    tFX and vEX and for cID 2, we define acid,  in
oc,  tFX,  vEX and vUCH as the variables to be considered in
the optimization problem. All simulations consider an
initial amount of lignocellulosic biomass ofM ¼ 1000  kg.

Fig. 4 Violin plots of the results from the design space exploration of flowsheets (a) cID 1, (b) cID 2, (c) cID 5, and (d) cID 6 with the
outputs: the mass of produced xylitol (upper left), the concentration of 5-hydroymethylfurfural in the final stage (upper right), the
concentration of acetic acid in the final stage (lower left) and the CO2 ratio (lower right).

Fig. 5 Heatmap of the total sensitivity indices (STi) calculated with the easyGSA toolbox by using ANN surrogates for all flowsheet
options and all operational variables.
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In conclusion, the design space exploration helped
reduce the initial search problem by 50%, and the
flowsheet sensitivity analysis can be used as a tool for
identifying crucial variables for SSO.

3.2.2 Surrogate model performance assessment

For the surrogate model development and validation, N =
500 and N = 1000 flowsheet simulations with LHS
sampling are performed to compare their performance with
a different number of sampling points. The flowsheets
simulations are again performed with the SPDlab func-
tionalities. All four surrogate model types are fitted and
cross-validated with these sampling points, as explained in
section 2.1. The ALAMO surrogates are fitted within the
ALAMO software. For cross-validation, 20% of the input
samples are split off, and ALAMO is given this fraction as
a validation dataset to calculate validation metrics
internally. The DTR surrogates are all created with the
Delaunay functionality in Python’s scipy package, utiliz-
ing the QHull algorithm [41]. For their cross-validation,
due to the model’s inexistent extrapolative capabilities, the
boundary points, which form the convex hull of the design
space, are added to the sampling points. By random
selection, a fraction of 20% of the sample points is split off
to calculate the validation metrics for the training and
testing dataset. This procedure is repeated ten times to
calculate the range of the cross-validation metrics.
The GPR surrogates are fitted in MATLAB while

utilizing the statistics and machine learning toolbox. For
each dataset and each output, an internal routine to
optimize hyperparameters, e.g., the kernel functions in
MATLAB, is used with default settings to fit the GPR
model to the data. Subsequently, a 5-fold cross-validation,
as described in section 2.1, is performed to obtain the
validation metrics. The ANN surrogate is equally fitted in
MATLAB while using the deep learning toolbox. For each
dataset and each output, a grid-search algorithm as
implemented in the easyGSA toolbox is employed to
optimize several parameters, e.g., the number of nodes in
the hidden layer to fit the ANN model to the data.
Afterward, also a 5-fold cross-validation is performed in

order to obtain the validation metrics. All scripts and
implementations regarding the surrogate performance
analysis are available through the S3O GitHub repository
[82].
The calculated validation metrics are the coefficient of

determination R2 and the root mean square error (RMSE)
for the whole dataset, as well as the testing and the training
dataset, dependent on the applied validation method.
Figure 6 shows the parity plots for both N = 500 and N
= 1000 flowsheet samples for each surrogate model
predicting the amount of produced xylitol. For the
ALAMO surrogate models, the parity plots show a
relatively high variance in the model and the tendency to
underpredict higher values for the amount of xylitol.
Secondly, the GPR surrogates show almost a perfect fit,
apart from cID 6, where the accuracy is slightly lower than
for the other three flowsheets. Lastly, the ANN surrogates
show equally good fits to the data, however, with higher
variances than the GPR models and a decrease in the
prediction quality for cID 6. This can be attributed to the
low number of feasible sampling points in the design space
of cID 6, which is diametric to both surrogate model
methodologies as they rely heavily on the amount of
provided input data. The DTR surrogates are not shown as
parity plots as the simulation points become an inherent
part of the model, which makes the coefficient of
determination R2 ¼ 1 by definition and a parity plot thus
dispensable.
For all illustrated models in Fig. 6, the cross-validation

metrics for the full, the testing, and the training data set for
flowsheet cID 1 for the output variable being the amount of
produced xylitol are listed in Table 2.
The cross-validation metrics for all other flowsheet cIDs

and the other output variables are listed in the supporting
material. For the ALAMO surrogate models, the impres-
sion from the parity plots is confirmed by average values
for R2 between 0.6 and 0.8 and RMSE values, which are
significantly high. As described earlier, the R2 and RMSE
values for the DTR surrogate model are immanently 0 or 1
for the full and the training data set, but for the testing
dataset, it becomes obvious that the quality of fit for unseen
data is insufficient, expressed by R2 values around 0.6 and

Table 2 Cross-validation metrics of all surrogate models for flowsheet option cID 1 for both N = 500 and N = 1000 samples for the output variable

being the amount of produced xylitol

Model
ALAMO DTR GPR ANN

N = 500 N = 1000 N = 500 N = 1000 N = 500 N = 1000 N = 500 N = 1000

R2 0.822 0.765 1 1 1 1 0.997 0.994

RMSE 5.27 6.29 0 0 0.007 0.017 0.597 0.922

R2train 0.817 0.762 1 1 0.997 1 0.997 0.994

R2test 0.722 0.724 0.487 0.642 0.933 0.952 0.895 0.956

RMSEtrain 5.35 6.31 0 0 0.423 0.121 0.674 0.944

RMSEtest 6.54 6.99 8.802 7.677 2.945 2.66 4.002 2.535
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RMSE values up to almost 10. Equally, for the GPR and
the ANN surrogate, the validation metrics confirm the
parity plots’ results; both model types show excellent
validation scores even for the testing data sets. As a general
trend, it is also to denote that for the DTR, the GPR, and
the ANN surrogates, the model quality overall increases

with N = 1000 instead of N = 500 samples, which is in
agreement with the described properties in section 2.1. The
ALAMO surrogates do not show a consistent improvement
of the validation metrics with increasing sample size,
which is relatable to the difficulty of fitting a given number
of algebraic terms to datasets of increasing size.

Fig. 6 Parity plots of the ALAMO, the GPR, and the ANN surrogate models for all flowsheets (ALAMO: (a) cID 1, (d) cID 2, (g) cID 5,
and (j) cID 6; GPR: (b) cID 1, (e) cID 2, (h) cID 5, and (k) cID 6; ANN: (c) cID 1, (f) cID 2, (i) cID 5, and (l) cID 6) indicating the predicted
outputs over the simulated outputs for N = 500 (dark blue, blue, turquoise) and N = 1000 samples (green, bright green, yellow).
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Overall, it is to state that both machine learning
surrogate models show the best validation metrics and
both ALAMO and especially the DTR surrogates reveal
insufficient predictive abilities for unseen data points in the
test dataset.

3.2.3 SSO results

In order to define the underlying optimization problem to
the SSO properly, the following objective function and
constraints are introduced:

MINLP :

max MXyo ¼ f ðx,yÞ
s:t:  CHmf ¼ g1ðx,yÞ£0:5  g$L – 1

CAac ¼ g2ðx,yÞ£0:5  g$L – 1

φ ¼ g3ðx,yÞ³0,1

x2X , y2 ½0,1�

8>>>>>>>><
>>>>>>>>:

: (28)

The operational variables for the solver to choose are
acid,  inoc,  tFX,vEX for all flowsheet cIDs, TPT for flow-
sheet cIDs 1, 2, and 6 and vUCH for flowsheet cID 2. In
order to solve the underlying optimization to each SSO,
suitable solvers have to be chosen. For the ALAMO
surrogates and the resulting MINLP, the BARON solver is
chosen [84]. All algebraic equations for each flowsheet
option are instantiated in PYOMO. However, due to the
reduced design space of four flowsheet options, the binary
variable is removed, and the four flowsheets are solved
separately to accelerate the calculation process. This
converts the MINLP given as in Eq. (28) into four NLPs;
however, the results do not differ as the underlying
optimization problem does not change. Hence this
simplification is valid. All optimization problems are
solved with the default solver settings. If a solution is
found, the problem is solved to global optimality;
otherwise, the optimization problem is found infeasible.
For the DTR surrogates and the resulting MILP, the

Gurobi solver is chosen. The formulation of the problem is
equally given with Eq. (28), with f , g1, g2 and g3 being

linear functional relationships as given with Eq. (2).
Equations (6) through (25) are implemented in PYOMO.
Equally for the MILP, the four flowsheets are solved
separately, which reduces the dimensionality of the binary
variable. However, the resulting simplified MILP yields
the same solution; hence the simplification is valid. For N =
500 flowsheet samples the resulting optimization problem
results in around 1000000 continuous and 50000 integer
variables and double the number for N = 1000 flowsheet
samples. All problems are solved to global optimality.
For both the GPR and the ANN surrogates, the

MATLAB solver fmincon with the sequential quadratic
programming algorithm is chosen. The formulation of the
problem is equally given with Eq. (28), with f , g1, g2 and
g3 being functional relationships as given with Eq. (3)
while excluding the binary variable y. The surrogates are
passed to the solver together with a multi-start option,
indicating that the optimization problem should be solved
for q ¼ 1000 times in order to ensure global optimality.
For flowsheets where the optimization problem yields a
high fraction of all the multi-start solutions converging, the
results are within the same magnitude as the other
flowsheets’ results. With cID 2 and N = 1000 samples
and also for cID 6 and the ANN, however, the observed
solutions diverge, which is also reflected in the small
number of multi-starts converging. All scripts and
implementations regarding the SSO are available through
the S3O GitHub repository [82].
All results from the SSO for all four flowsheets for N =

500 samples are listed in Table 3 until Table 6. Results
from the SSO of flowsheet cID 6 with N = 500 samples
with all surrogate models and their respective solvers. All
tables indicate the predicted objective function values and
constraints (opt) and the results from the corresponding
validation simulation with the original flowsheet for the
same conditions (val) — according to optimal operational
conditions and their lower (lb) and upper (ub) bounds.
For the MINLP problems utilizing ALAMO surrogates

and the BARON solver, it becomes clear that the low
surrogate quality, expressed by the poor performance
metrics, heavily affects the feasibility and the quality of the

Table 3 Results from the SSO of flowsheet cID 1 with N = 500 samples with all surrogate models and their respective solvers.

cID 1-500 ub lb ALAMO/BARON DTR/Gurobi GPR/fmincon ANN/fmincon

opt val opt val opt val opt val

TPT 173 195 179.581 184.31 187.74 177.24

Acid 0.5 2 0.672 1.456 1.337 2.000

Inoc 0.5 3 3.000 1.523 1.497 1.191

tFX 8 16 47.938 43.207 42.656 47.727

vEX 0.99 0.998 0.995 0.996 0.998 0.998

MXyo 59.852 0.000 49.094 48.964 54.083 43.410 85.240 45.682

CHmf 0.5 0.000 0.028 0.058 0.060 0.034 0.006 0.020 0.007

CAac 0.5 0.002 0.004 0.002 0.002 0.001 0.000 0.001 0.000

φ 0.1 0.140 0.000 0.118 0.117 0.116 0.100 0.100 0.114
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optimization results. For this option, none of the obtained
solutions were satisfactory. However, for the MILP
problems utilizing the DTR surrogates, all solutions
show a very close agreement between the predicted
solutions and their validations, despite the insufficient
validation metrics. Furthermore, the problem is solved for

all flowsheets for all sample sizes. However, it becomes
clear that for all flowsheets, the theoretical underlying
global optimum is not reached. This is attributable to the
number of sampling points provided as the DTR surrogates
are strictly interpolative and can only predict according to
the provided input samples.

Table 4 Results from the SSO of flowsheet cID 2 with N = 500 samples with all surrogate models and their respective solvers.

cID 2-500 ub lb ALAMO/BARON DTR/Gurobi GPR/fmincon ANN/fmincon

opt val opt val opt val opt val

Acid 0.5 2 0.685 0.762 0.874 2.000

Inoc 0.5 3 2.998 1.493 0.500 2.736

tFX 12 48 47.999 46.427 40.493 12.490

vEX 0.99 0.998 0.996 0.997 0.990 0.998

vUCH 0.4 0.6 0.512 0.520 0.585 0.423

MXyo 53.004 0.000 50.017 51.123 13.315 0.078 4.410 11.938

CHmf 0.5 0.500 3.935 0.500 0.451 1.830 0.779 1.467 0.136

CAac 0.5 0.000 0.289 0.022 0.021 0.082 0.048 0.057 0.008

φ 0.1 0.123 0.000 0.117 0.120 0.028 0.000 0.037 0.028

Table 5 Results from the SSO of flowsheet cID 5 with N = 500 samples with all surrogate models and their respective solvers.

cID 5-500 ub lb ALAMO/BARON DTR/Gurobi GPR/fmincon ANN/fmincon

opt val opt val opt val opt val

TPT 173 195 193.69 185.50 186.6

Acid 0.5 2 0.776 1.188 1.127

inoc 0.5 3 2.315 0.963 0.782

tFX 8 16 28.415 45.079 48.000

vEX 0.99 0.998 0.993 0.998 0.998

MXyo Infeasible 47.915 47.86 54.829 48.12 67.400 46.86

CHmf 0.5 0.152 0.152 0.057 0.038 0.044 0.022

CAac 0.5 0.012 0.126 0.003 0.002 0.002 0.001

φ 0.1 0.118 0.118 0.132 0.123 0.168 0.117

Table 6 Results from the SSO of flowsheet cID 6 with N = 500 samples with all surrogate models and their respective solvers.

cID 6-500 ub lb ALAMO/BARON DTR/Gurobi GPR/fmincon ANN/fmincon

opt val opt val opt val opt val

TPT 173 195 184.00 184.00 191.04

Acid 0.5 2 0.960 1.265 1.609

inoc 0.5 3 2.536 2.507 0.976

tFX 8 16 23.221 22.465 45.041

vEX 0.99 0.998 0.998 0.998 0.997

MXyo Infeasible 43.688 43.95 47.727 43.58 0.016 26.35

CHmf 0.5 0.373 0.347 0.500 0.322 11.321 4.627

CAac 0.5 0.022 0.021 0.014 0.018 0.243 0.134

φ 0.1 0.112 0.112 0.101 0.111 0.000 0.066
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For the GPR and the ANN surrogates, for N ¼ 500
samples, the results are mostly not in agreement with the
validation simulations despite the good validation metrics.
For N ¼ 1000 samples, however, the results from the
optimization improve and converge with the validation
results. This is explained by the general trend of machine
learning models to show an improved prediction when
provided with larger amounts of training data. Overall it
shows that the GPR-assisted NLP predicts more consis-
tency for different flowsheets and sampling sizes. In
contrast to that, the ANN assisted NLP predicts more
inconsistently, depending on the sampling size and
flowsheet, but with successful predictions, the predicted
values for the objective function are higher than the ones
predicted by the GPR and thus closer to what would
correspond to the global optimum for the rigorous
flowsheet.
The illustration Fig. 7 indicates both the prediction of

each surrogate model for each flowsheet and sample size as
the center of the circle and the root mean square error of the
testing data set of the surrogate model as the radius of the
circle. Furthermore, the results from the validation

simulations are added (cross).
Again, it becomes clear that the most consistent

combination of the surrogate model, optimization problem,
and solver is the choice of DTR surrogates despite its
validation metrics, as overall, the consistency is highest.
For both the GPR and the ANN, it is visible that the models
predict higher objective function values, but the validation
simulations are less in agreement than with the DTR
surrogates. For the ALAMO surrogates, it becomes
apparent that their performance in the given optimization
problem is impaired. This can potentially be attributed to
the underprediction surrogate models, as seen in Fig. 6,
which do not allow for an optimal solution under the given
constraints.
Overall, it is to point out that after analyzing the quality

of the surrogate models and the results from the SSO, the
indication regarding the quality between the different
surrogate models is ambiguous. However, regarding the
underlying case study, it becomes apparent that flowsheet
cID 1 shows the best objective function values for both
sample sizes; hence it should be subjected to investigation
in the third step of the framework. Both cID 2 and cID 5

Fig. 7 Bubble plot for the visualization of the consistency metrics of the different superstructure modeling approaches, the center of each
sphere indicating the predicted value in the optimization problem, the radius of the sphere being the RMSE of the testing dataset in the
cross-validation, and the cross/saltire indicating the respective validation simulation for (a) cID 1, (b) cID 2, (c) cID 5 and (d) cID 6 for
respectively N = 500 samples (blue, cross) and N = 1000 samples (yellow, saltire).
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show very similar objective function values and constraint
values, which is why both should be equally subjected to
investigation in the third step of the framework.

3.3 SBO results

All flowsheets considered candidate process topologies
from step two of the framework are now subjected to SBO
using the MOSKopt solver [27], utilizing SK surrogate
models. As uncertain input, the wheat straw composition is
chosen to vary around 5% by the nominal value. The
composition of the feedstock is highly dependent on
climate effects as well as geological conditions of the
fields, amongst others, which lead to varying compositions
[85]. Logically, a varying feedstock composition influ-
ences the product yields, explaining the importance of
critically assessing this uncertainty. The initially assumed
composition is 31.3% hemicellulose, 42.7% cellulose, and
the residual as lignin; the uncertainty is supposed to be
uniformly distributed. For the SBO, twenty-five initial
samples and each sample with 100 Monte Carlo samples
are chosen. The optimization criterion for the underlying
Bayesian Optimization is the multi-constraint FEI, as
explained in Al et al.’s work [27]. The solver hedges
against uncertainty with the simulation’s mean values and
performs 75 iterations, which results in 100 total calcula-
tion steps. The starting points are chosen to be the optimal
results for each flowsheet from step two of the framework.
All scripts and implementations regarding the SBO are
available through the S3O GitHub repository [82]. The
results from the three SBO runs are listed in the following
Table 7 (opt) together with the corresponding validation
simulations (val).
Firstly, the results from the SSO are confirmed, referring

to that cID 1 appears to be the optimal flowsheet in the
given design space, including a pretreatment unit, an
upconcentration unit, a fermentation unit, an evaporation
unit, and two crystallization units. This is also the

flowsheet option with the highest number of possible
unit operations to maximize the product yield. Both cID 2
and cID 5 seem to perform equally well, despite their
difference being once performing an upconcentration
before the fermentation and once performing two crystal-
lization steps in the downstream processing. Overall, the
yield for all flowsheet options is comparatively low. This
indicates the possible use of alternative unit operations and
operation modes in the initial superstructure to increase the
amount of final product.
Secondly, it is noteworthy that for all the three

flowsheets, the predicted optimum for each respectively,
despite being subjected to uncertainty in the feedstock, is
globally higher than by any of the introduced SSO
alternatives. Figure 8 indicates for each cID how much
the objective function value improved quantitatively over
the 100 iterations when providing the operational condi-
tions found to be optimal in step 2.
In conclusion, the performed SBO based on the SSO

results from step 2 appears to be an excellent combinatorial
solution leveraging synergistic effects between screening a
multitude of alternatives and thoroughly designing few
alternatives.

4 Conclusions and future research

4.1 Conclusions

In this paper, we presented a framework to expedite the
conceptual process design of novel bioprocesses in
biorefinery setups by leveraging synergistic effects from
applying expert knowledge and combining SSO and SBO
in a hybrid manner. In this process, four different SSO
alternatives are investigated and benchmarked. The
proposed bottom-up approach to compose the initial
superstructure by beginning with the end in mind and
first selecting a product set, a feedstock, and subsequently,

Table 7 Results from the SBO for all candidate process topologies with the MOSKopt solver, using 25 initial sampling points, 75 iterations, the

mean value as hedge against uncertainty, and the multi-constraint FEI criterion

Item ub lb cID 1 cID 2 cID 5

opt val opt val opt val

TPT 173 195 195.000 195

Acid 0.5 2 0.715 0.984 0.879

Inoc 0.5 3 1.611 3.000 3

tFX 8 16 44.994 30.367 24.271

vEX 0.99 0.998 0.997 0.998 0.998

vUCH 0.4 0.6 0.400

MXyo 56.310 56.736 53.760 54.224 53.96 54.17

CHmf 0.5 0.045 0.032 0.492 0.471 0.062 0.061

CAac 0.5 0.001 0.001 0.019 0.020 0.002 0.002

φ 0.1 0.119 0.125 0.127 0.129 0.128 0.128
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the processing units reduce the initial maximum size of the
superstructure heavily.
The second step of the proposed framework is based on

using SSO to solve the process synthesis problem under-
lying the superstructure and determine several candidate
process topologies. Four different alternatives of solving
the optimization problem by surrogate model-assisted SSO
are proposed: the use of ALAMO surrogate models in an
MINLP, the use of DTR surrogate models in an MILP, and
the use of either GPR or ANN surrogate models in a series
of NLP with a multi-start solution strategy. The latter three
options serve the purpose of predicting several candidate
process topologies. A thorough benchmark of all four
alternatives reveals that all surrogate models have different
shortcomings when applied in the framework. A general
property of surrogate models is the shortcoming in terms of
adhering to mass balance restrictions. Furthermore, they do
not rely on physical constraints but rather on an alternative
mathematical formulation and the quantity of provided
data to fit the behavior of the underlying high-fidelity
model accurately.
In consequence, the predictions of surrogate models

inherently deviate to a certain extent. Hence, a combined
validation of both surrogate performance and optimization
results is essential to benchmark the proposed alternatives.
In other words, the mere selection of a surrogate model
based on convincing cross-validation metrics is not a
guarantee to obtain a consistent and qualitatively good
result from the resulting optimization problem in which the
surrogate model is used. We have empirically presented in
this study that cross-validation metrics alone, i.e., the

coefficient of determination and the root mean square error,
are solitarily not a good indicator of the surrogate model’s
quality in the subsequent optimization application. For
example, the GPR and ANN surrogates suffer from several
shortcomings in the optimization problem, whereas their
validation metrics are superior. Opposed to this, the DTR
surrogates’ validation metrics are inferior compared to the
GPR and the ANN, but the optimization results are
consistent and qualitatively better. Hence, we recommend
a critical assessment of the quality of a chosen surrogate
model and its validation in the respective optimization
problem. We also point out that the combination of DTR
surrogates in an MILP has shown promising results in
using the proposed framework in this particular case study.
Regarding the size of the resulting superstructure

formulations for larger design cases, it is to state that
also the computational burden will consequently increase
but can be alleviated in several ways. For example, the
necessary flowsheet simulations can be expedited by using
both a parallelization approach to evaluate bigger numbers
of flowsheet options and utilizing cloud or cluster
computing solutions to accelerate the speed of a single
simulation. Furthermore, by decreasing the initial size of
the superstructure as in step 1 of the framework and solely
focusing on several candidate process topologies in step 3,
the overall computational burden is reduced optimally. It
can also facilitate the solution of larger problems than the
presented one.
Lastly, the third step of the framework involves the SBO

of all candidate process topologies from step 2. The used
solver MOSKopt can improve the objective function value

Fig. 8 Visualization of the improvement of the objective function value over the iterations in the SBO with the MOSKopt solver for
flowsheet (a) cID 1, (b) cID 2, and (c) cID 5.
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consistently for all subjected candidates under a given
uncertainty scenario and yields a consolidated optimal
process design as the final result of the framework.
Overall, it remains to conclude that our proposed

framework was validated successfully. It considerably
facilitates and accelerates the conceptual process design of
novel bioprocesses in biorefinery setups, as shown with an
example of a xylitol production process in a biorefinery.

4.2 Future research

Despite the impaired validation metrics, the proposed
framework with the DTR surrogate models performed best
in the optimization task and is hence the suggested
alternative in this case. However, to improve the validation
metrics and improve the predictions in terms of global
optimality, a first option would be to base the framework
on adaptive sampling strategies instead of a static sampling
strategy as Latin hypercube sampling [86–88]. Alterna-
tively, algorithms that reduce the mesh’s original size by
iteratively removing edges of the triangulation can be
employed [89]. The improvement for the triangulation and
subsequently the MILP is a reduced number of simplices
by having fewer sampling points in regions, where a linear
interpolation with a lower error is possible, and increasing
the number of sampling points in regions, where the linear
interpolation causes a greater error and improving the
prediction in the vicinity of the global optimum. This has
been proposed in the literature by Chen et al. for the case of
a triangulation model but also as assistance for improving
the fit of other machine learning models as GPRs, which
can be equally used for this optimization task, as shown in
this work [90,91].
Overall, we acknowledge that the presented results here

are specific to the selected case study. Therefore, the
application in further case studies is necessary in order to
consolidate these conclusions further. Indeed, we believe
there are concrete empirical observations, which indicate
that the validation issue of emerging surrogate-based/
machine learning-based optimization approaches needs to
be more critically analyzed and assessed to ensure their
appropriate use in further process systems engineering
applications.
From a more holistic perspective, the use of this

framework is not only limited to process design but can
equally be applied for the optimization of whole value
chains, involving the choice of different feedstocks, plant
locations, and logistic constraints. Lastly, especially for the
used fermentation models, the black-box kinetics can be
replaced by genome-scale metabolic models in order to
perform also cell factory optimization, which can con-
tribute to the further expedition of designing bioprocesses
and promote the transition towards a bio-based and circular
economy as instigated by the 2030 Sustainability Agenda
of the United Nations.
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