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ABSTRACT In this paper, the machine learning (ML) model is built for slope stability evaluation and meets the high
precision and rapidity requirements in slope engineering. Different ML methods for the factor of safety (FOS) prediction
are studied and compared hoping to make the best use of the large variety of existing statistical and ML regression
methods collected. The data set of this study includes six characteristics, namely unit weight, cohesion, internal friction
angle, slope angle, slope height, and pore water pressure ratio. The whole ML model is primarily divided into data
preprocessing, outlier processing, and model evaluation. In the data preprocessing, the duplicated data are first removed,
then the outliers are filtered by the LocalOutlierFactor method and finally, the data are standardized. 11 ML methods are
evaluated for their ability to learn the FOS based on different input parameter combinations. By analyzing the evaluation
indicators R?, MAE, and MSE of these methods, SVM, GBR, and Bagging are considered to be the best regression
methods. The performance and reliability of the nonlinear regression method are slightly better than that of the linear

regression method. Also, the SVM-poly method is used to analyze the susceptibility of slope parameters.
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1 Introduction

The slope is the most common geomorphologic and
geologic environment in human engineering and
economic activities. Recently the slope instability
(especially collapses, landslides, and mudslides) on
account of the natural and artificial factors, caused heavy
loss of lives, property and engineering economy. The
accuracy of slope stability evaluation determines the
success of slope engineering. Therefore, it has realistic
engineering significance to predict slope stability
accurately [1].

Slope engineering is a complex nonlinear dynamic
open system containing many random, complex factors,
and its stability and influencing factors have a highly
nonlinear relationship. The traditional methods of slope
stability analysis are the limit equilibrium method [2—4]
and numerical analysis methods [5-8], such as numerical
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manifold method (NMM) [9], discontinuous deformation
analysis (DDA) [10-12], phase-filed model (PFM)
[13-15]. However, these traditional methods have
encountered bottlenecks, such as “unclear mechanism”
and “inaccurate models”, and it is still difficult to
accurately predict the stability of complex slopes. Also,
these traditional methods are confronted with heavy
computing burden. Particularly their stability calculating
process is cumbersome, and is difficult to meet the
requirements of speeding up slope designs. In most cases,
engineering mega-projects involving a large number of
slopes, such as hydroelectric engineering, require rapid
stability assessment and rapid design at the preliminary
design stage. However, data processing methods and data
modeling algorithms based on machine learning (ML)
[16—18] can productively extract data features and mine
data value, providing a new way for intelligent research
on slope stability [19-22].

Many scholars have introduced the theory of artificial
intelligence into the field of Geology and put forward the
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methods of slope stability evaluation based on ML [23].
Applying ML to slope stability analysis has produced
positive outcomes [24-29]. The research result of Erzin
and Cetin [25] shows that the artificial neural networks
(ANN) models have better prediction performance than
the multiple regression (MR) models. Wang and Sassa
[30], Pradhan et al. [31], Melchiorre et al. [32] used ANN
to estimate and predict the deformation of regional
landslides. Based on the extreme learning neural network,
Li et al. [33] have developed a productive tool that can
fast-track assessing the stability of rock slopes. Pradhan
[34] adopted decision tree (DT), support vector machine
(SVM), and adaptive neuro-fuzzy inference system
(ANFIS) to make spatial prediction of landslide
susceptibility chart at Penang Hill, Malaysia. According
to the Bayes discriminating analysis (BDA) theory and
the engineering practice, some scholars [35-37] have
established the BDA model for slope stability prediction.
Li et al. [38] applied SVM model to identifying landslide
stability in the Xiluodu reservoir areas, and obtained good
results. Zhao et al. [39] examined the possible application
of relevance vector machine (RVM) in slope stability
analysis, and put forward the nonlinear relationship
between slope stability and its influencing factors. Zhou
et al. [40] proposed a method for slope stability prediction
using the gradient boosting machine (GBM) method. Qi
and Tang [41] demonstrated that integrated Al
approaches had great potential to predict slope stability.
Although ML has been broadly used in slope deformation
prediction, various intelligent algorithms and technical
means have perfected the slope deformation prediction
model and brought the slope deformation prediction into
a new era. However, it is still necessary to find a suitable
slope deformation prediction method, because each of
those above mentioned methods has disadvantages.

As mentioned above, this paper primarily aims to study
the suitability of various ML methods for the evaluation
of factor of safety (FOS) To achieve the objective, a
survey methodology is developed to compare the
performances of different ML methods, such as support
vector regression (SVR), Bayesian ridge (BR), linear
regression (LR), elastic net regression (ENR), K nearest
neighbors (KNN), adaptive boosting regression (ABR),
gradient boosting regression (GBR), Bagging, extra trees
regression (ETR), DT, and random forest (RF). These
methods have been chosen especially because they are
broadly used in various projects, but rarely compared
with each other, largely due to the availability of Python
software. The following is the outline of this study.
Section 2 briefly introduces the slope data set and ML
algorithms, Section 3 presents these methods applied to
slope stability evaluation, and Section 4 provides the
results and discussions by performance criteria, as well as
contributions and limitations of current research. The
conclusions are drawn in Section 5.
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2 Materials and algorithms

2.1 Data set and predictor variables

Many factors affect the stability of slopes, including the
terrain landform, soil and rock physical mechanicals, and
external triggering factors such as hydrogeological
conditions. The FOS is a comprehensive index to
evaluate slope stability. In the analysis of slope stability,
FOS is essentially the ratio of slope sliding resistance and
slope sliding force, and is directly related to the soil shear
strength [42]. The unit weight vy, cohesion C, and angle of
internal friction ¢ are the critical parameters to determine
the soil shear strength. Some scholars use the strength
reduction method [43] and the gravity increase method
[44] to calculate FOS. Slope angle 8 and slope height H
are geometric characteristics of a slope, often determining
the slope failure conditions. As the slope height increases,
the slope stability gradually decreases. The larger the
slope angle, the lower the slope stability. Water
infiltration increases the weight of the geotechnical, and
the shear strength of the rock and soil is reduced due to
softening. All these changes are unfavorable to slope
stability. Therefore, each slope’s parameters related to the
geometry and geotechnical characteristics are selected.
More specifically, lead factors affecting slope stability are
as follows: unit weight y (kN/m3), cohesion C (kPa),
angle of internal friction ¢ (°), slope angle B(°), slope
height H (m), and pore water pressure ratio ry. They are
consistent with the parameters commonly available in the
literature [19,20,40,45]. Theoretically, there are other
indicators, but collecting these other indicators would be
a considerable challenge before they can be practically
applied. As seen in Fig. 1, the FOS value can be
calculated from the mapping f which is established from
the physical and mechanical characteristics of the slope.

FOS = f(y,C,@,8,H,ry). (1)

2.2 Data visualization

To evaluate the performance of the developed ML
algorithms, the 349 slope cases used in this study are
collected from more than 9 published articles (Refs.

/
phreatic surface -+

FOS=f(y,C o p Hr)

Fig. 1 Failure mechanism of the homogeneous finite slopes.
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[46-55]) which are referred to in the appendix.

The Violin plots of the slope data set are shown in Fig. 2.
The violin plots show the maximum values, median
values, and minimum values of each input parameter, and
the distribution of its density. In Fig. 2, the white dot in
the center of the violin plots represents the median, and
the top and the bottom edges of the black bar represent
the upper and lower quartiles, respectively. The thin black
line extended by the thick black bar represents the 95%
confidence interval. The data density at any position can
be seen from the shape of the violin plots. The greater the
width, the higher the data density. The distribution of
these variables and the relationship between FOS and
other input variables are shown in the correlation matrix
diagram of Fig. 3. From the figure, it can be seen the
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pairwise relationship between the parameters with
corresponding correlation coefficients and the marginal
frequency distribution of each parameter. The upper
triangle is the correlation coefficient, and the histogram
on the diagonal depicts the numerical distribution of each
feature. The curve drawn in each scatter plot of the lower
triangle is called local smoothing, which represents the
general relationship between the x-axis and y-axis
variables. As can be seen from Fig. 3, FOS has a positive
correlation with C cohesion, FOS has a negative
correlation with B, and B has a significant correlation
with ¢. Meanwhile, it demonstrates that different
variables have different effects on FOS. Therefore, a
series of comparative experiments are conducted with
varying combinations of input variables to assess the role

35 175
30 150 50
25 125 40
20 100 30
15 75 20
10 50 "
5 25
0 0 0
= 25 -10
unit weight cohesion angle of internal friction
600 5
60 500 4
400 3
40 300
200 2
20 100 1
¢ 0
0 -100 . .
slope angle slope height pore water pressure ratio
Fig. 2 Violin plots showing the distribution of observed slope cases.
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of different variables in this study, as shown in Table 1.
2.3 Data preprocessing

Data preprocessing is a data processing method with
quality requirements and calculation requirements as the
primary motivation. The influence of redundant variables,
missing values, and unbalanced data on subsequent
research can be reduced by using data processing. It
includes the processing of data values and variables. This
paper uses the Isolation Forest algorithm to identify
outliers. Then duplicate data are deleted, saving the time
of the training model and avoiding the overfitting training
model. Data has varying scales and some ML algorithms
make assumptions about your data having a Gaussian
distribution. To make the feature extraction more
accurate, we use the Power Transformer in the Scikit-
learn library to standardize the data.

2.4 ML techniques

In this paper, 11 regression techniques of ML are studied.
These algorithms are increasingly used for slope stability
analysis. Some of them have been used in slope stability
evaluation, and have established more complex nonlinear
relationships between input variables and outputs, and
have been proven to have good prediction performance.
They have an effective implementation, and the resulting
model allows for fast calculation of FOS. The following
slope stability prediction effects of different methods are
compared. In this article, the number of samples is
N (349), the feature vector X; consists of six slope
performance modifiers {xj,x;,x3,x4,x5,%6}, corresponds
to the variables discussed in Section 2.2. It is worth
reminding that, several articles on regression methods
have been published over the years but the subject will
always need updating [20,56—58]. And these articles only
provide a brief introduction to each regression algorithm.

2.4.1 Linear regression (LR)

LR [59] is one of the fundamental problems in regression

Table 1  Different models for FOS prediction with different input
parameters

model y C 1) p H r,

A N

B N L L

c N L A

D N

B N L

F N

G N L
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analysis. For the sample (X,y), y=(1,y2,...yn)', the
input data has p features, X;= (x1;%x2,....xnp)', the
coefficient is w=(Wl,...Wp). Therefore, the
corresponding multivariate linear regression equations are
established:

fX)=w'X+b, (2)

where b is the intercept. As an optimization problem,
usually, the least-squares form is used to minimize the
following regularized cost function:

argmin L(w, b) = min|| f(X) - y}3. ©)
w,b w,b

2.4.2 Bayesian ridge (BR)

Ridge regression increases the norm of weight coefficient
based on LR to overcome the collinearity problem. If
there are any missing or contradictory ill-conditioned
data, BR can be considered. It is an algorithm to estimate
the regression problem by using a probability model.
After X is regularized, the class is represented as
(X,f(X)) = (X,wTX). If the complexity of the class
representation is defined as Iw||?, and the class consistency
criterion and Occam’s razor criterion are used at the same
time, the following questions can be considered:

min [y~ wT X[, + A2, @)

where 1> 0 represents a regularization parameter. The
larger A, the greater the degree of contraction; when
A=0, BR degenerates to LR automatically. BR is very
robust to ill-conditioned data, and cross-validation (CV)
is not required to select hyper-parameters, but the
inference process of maximizing the likelihood function
is relatively time-consuming.

2.4.3 Elastic net regression (ENR)

ENR [60] is a mixture of lasso regression and ridge
regression. ENR is a linear regression model that uses L1
and L2 priors as a regularization matrix. ENR has the
advantages of both lasso regression and ridge regression,
and can achieve the purpose of variable selection and a
good grouping effect. The goal function of the model is

1
min [y —w X[} +aliwily + G, ()

when « =0, ENR regression is ridge regression; A =0,
ENR regression is lasso regression.

244 K nearest neighbors (KNN)

KNN [61] predict the expectant outputs based on
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distance. In KNN, when the training set, distance
measure, k value, and classification decision rules (such
as majority voting) are determined, the classes of inputs
are uniquely determined. The distance between the two
samples in the feature space reflects the similarity of the
two samples. Generally, the feature space of KNN is an
n-dimensional vector space over the field of real number
R". Euclidean distance or other distances can be used,
such as L, distance or Minkowski distance. The choice of
k value will have a significant impact on the output
results. In the practical application, CV is usually used to
determine the optimal £ value. KNN and its improved
algorithm have high time complexity, and cannot give the
specific objective function expression. However, it can
establish different objective function approximations for
different cases to be tested, so it has high prediction
accuracy.

2.4.5 Support vector machine (SVM)

SVM [62] is a learning process that transforms the input
space into high-dimensional space through nonlinear
transformation defined by the inner product function and
solves the regression function in the high-dimensional
space. SVM can solve the problems of small samples,
high dimensionality, and nonlinearity. SVR is
characterized by the use of kernel functions, sparse
solutions, and dimension control of the number of edges
and support vectors. SVR has good generalization ability
and reliable prediction accuracy, being described as an
optimization problem. First, a convex ¢ loss function is
defined to control the fitting accuracy. By minimizing it,
the flattest tube containing most of the training samples is
found. Figure 4 shows the schematic of the linear model
fiIX) work principle. For nonlinear regression problems,
the final decision function is as follows:

FX =) (@i a) (X, X)) +b, (©)
i=1

Ya

Af(x) = wix+b

)
) potential support vector

v

Fig. 4 The schematic diagram of SVR.
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where a;, o is the Lagrange multiplier, «(X;, X;) = ¢(X;)"
#(X) are the kernel parameters. There are three kinds of
kernel types used in this paper: linear kernel (SVR-
linear), polynomial kernel (SVR-poly), and RBF kernel
(SVR-rbf, often called Gaussian kernel).

2.4.6 Decision tree (DT)

A DT [63,64] is a tree data structure, composed of nodes
and directed edges. Nodes are divided into two types:
branch nodes and leaf nodes. The branches of non-leaf
nodes represent the tests of data features, and each branch
represents the output of the data feature in a certain value
range. Admittedly, the process of building a DT is a
process of summarizing a set of classification rules from
training samples. Each time the classification feature is
selected, the local optimal feature under the current
conditions is selected to generate the classification rule.
Local optimization means that the data set will be more
ordered once the features have been selected for data
classification. The order degree of the data set is usually
measured by entropy, Gini, variance. DT has the
advantages of being simple and easy to learn, being
intuitive and easy to master, high efficiency, and high
analytical accuracy.

2.4.7 Random forest (RF)

RF [65] is an integrated algorithm based on a DT. In the
process of constructing the regression tree, RF will use
the Bootstrap re-sampling method to randomly select
values from y, and randomly select a specified number of
variables from the independent variables to determine the
classification tree nodes. The method based on ensemble
learning takes the mean value of each DT as the
regression prediction value.

T

- 1
h(X) = 7 ) (X 6),

t=1

)

where 6, is assumed to be an independent and identically
distributed random variable; 7 represents the number of
DT; h(X,6,) stands for the outputs. RF randomly selects
features based on the local region, and significantly
improves operating efficiency. Also, the contribution of
features can be obtained, but it is easy to overlearn.

2.4.8 Adaptive boosting machine

Adaptive boosting (Ada boost) is a common and
extensively used iterative algorithm with high efficiency,
simple implementation, and flexibility. This algorithm is
implemented by re-adjusting the data distribution. It
calculates the weight of each sample based on the
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correctness of each sample classification and the accuracy
of the previous overall classification. First, the new data
sets are sent to the classifier for training, and then the
trained classifiers are integrated to form the final decision
classifier. The loss function of the Ada boost algorithm is

N
Gi(@) = ) w exp(=yuahy(X,)),

n=1

®)

where « is the multiplier, w is the weight. Ada boost
algorithm can combine multiple single models, but it is
inefficient in large-scale data.

2.4.9 Gradient boosting machine (GBM)

GBM [66] refers to the gradient descent method. It is an
integrated model by constructing multiple classification
regression DT and combining them to form a strong
learner. GBR is one of the boosting algorithms. Its basic
idea is to use the value of the negative gradient of the loss
function in the current model as an approximation of the
residual error of the training result, and take the value as
the target of the next training. Just like the other boosting
algorithms, GBR adopts the forward phase method to
establish the additive model [67]. Therefore, the
prediction value of GBR is relatively stable, and it can
achieve high precision even in the case the amount of
data are small. At the same time, the use of strong pre-
pruning makes it develop the advantages of small depth,
fewer memory resources, and fast prediction speed.

2.4.10 Bagging

The general idea of Bagging technology is to use a weak
learning algorithm and a training set to make the learning
algorithm repeat training. In each round, N training
samples are randomly selected from the initial training set
by using the repeatable sampling method. After training,
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a sequence of prediction functions is obtained. For
regression problems, the simple average method is often
used to distinguish new cases. As shown in Fig. 5, the
selection of Bagging’s training set is random, and the
training sets of each round are independent of each other.
Each prediction function of Bagging has no weight and
can be generated in parallel. It reduces the generalization
error by reducing the variance.

2.4.11 Extra trees
Extra trees [68] were proposed by Pierre Geurts in 2006.
It is a ML algorithm based on Bagging and a variant of
the random forest algorithm. It uses classification and
regression tree (CART) as the basic weak learner model,
and each DT is independent of the other. In the process of
combining the final models, for regression problems, the
arithmetic average of all DT models is taken as the final
result. Each DT of the extra trees selects multiple features
randomly, and each classification threshold is randomly
generated, and can effectively prevent overfitting,
improve the generalization ability of the model, and make
the model have good performance in predicting untrained
data.

Bagging and DT can enhance the generalization
performance of regression, and have high stability, and
are not prone to overfitting.

3 Slope stability assessment with the ML
model

3.1 Training and testing data sets

This study implements regression analysis in Python 3.8.
During the implementation of different ML methods, 9/10

slope cases are used to train the model, and the rests are
used to test the generalization ability of the models.

test
test > leaml.ng regressor data
sample 1 algorithm
training test learning combmed
. regressor
examples g2mpied algorithm £ regressors

test
sample 3

learning
algorithm

-" regressor /

Fig. 5 Bagging algorithm.
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Numerical results may vary given the stochastic nature of
the algorithm or evaluation procedure or differences in
numerical precision. Consider taking the average value of
the calculated results for comparison.

3.2 Evaluation of the regression model’s performance

Mean absolute error (MAE), mean square error (MSE),
and coefficient of determination (R°) are selected to
evaluate the prediction effect of the regression model.
MAE represents the average value between the predicted
value and the actual value. The closer the MAE is to 0, the
effect of the adjustment is better, meaning that the
prediction model more precisely describes the set of
training samples. MSE represents the mean of the squares
between the predicted value and the actual value. The
following are the calculation formulas of MAE and MSE.

l n
MAE = ;;|f<xi)—yi|, ©9)
_1g o2
MSE = n;mx) v, (10)

where 7 is the number of training data sets, y; is the actual
value of the test data set, f(X;) is the predicted value of
the test data set.

R* is the coefficient of determination indicating the
degree of matching between the regression model and the
target variable.

D& -y
R:P=1- i:l—’

i(y,- -y
i=1

where y is the mean of the test data set. Theoretically, the
value range R? is (—oo,1]. Generally speaking, the closer
the value of R? is to 1, the imitation effect of the
regression model is better on the target variables. By
experience, we can know that R® is greater than 0.4,
indicating that the model has a good effect on data fitting
and can be used to predict the target variable [69]. What
we need to know is that R* is affected by the number of
samples and the number of features. Therefore, the results
of different data sets trained by the same model will be
different.

(11)

3.3 Verification technique of the proposed models

CV methods are generally used to evaluate the
generalization performance of different regression
algorithms on the same data set. Besides, the training
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process of the ML is enhanced by the repeated CV used
for the model evaluation. To obtain a reliable
performance evaluation, a 10-fold CV is often performed
in multiple runs to avoid deviations caused by different
sample divisions. In this paper, the 10-fold CV is used in
the inner loop and 50 times in the external cycle, and the
average value of repeated CV MAE, MSE, and R is taken
as the final evaluation value.

3.4 ML method development and parameter optimization

We established seven models to study the qualitative
sensitivity of the parameters in Eq. (1). The input
parameters involved in each model are shown in Table 1.
11 kinds of ML regression algorithm comparison
schemes are designed. This paper uses the 10-fold CV to
optimize the parameters of each algorithm. The parameter
settings of each scheme are shown in Table 2.

4 Regression results and discussions

4.1 Regression results achieved by regression models

The performance comparison of all ML regression
methods is shown in Fig. 6. The boxplots in Fig. 7 show
the results of 50 repeated CVs for different models. For
model A, the histogram in Fig. 8 shows that the overall
performance of nonlinear SVR is the best, both SVR-poly
and SVR-rbf are better than other algorithms. The
average R? of SVR-poly is 0.8640, the highest among all
the algorithms, and its MAE and MSE is 0.4208 and
1.5531 respectively, the lowest among all algorithms; The
average values of R?, MAE, and MSE of SVR-rbf are
0.8461, 0.4288, and 2.0153, respectively, followed by
GBR and Bagging, with the average values of R* is
0.7949 and 0.7715 respectively. LR has the lowest

Table 2 Tuning parameters of different regression models

method tuning parameters

BR -

LR -

ENR {alphas =[0.0001, 0.0005, 0.001, 0.01, 0.1, 1,
10],11_ratio=[.01, 0.1, 0.5, 0.9, 0.99], max_iter =

5000}

KNR {n_neighbors =5, p =5}

SVR {kernel = [ rbf, poly, linear ], ¢ = [43,10, 100],
degree =, 3, Jepsilon=[.1,.1, ], coef0 = [, 2, ]}

RFR {n_estimators = 100, random_state = 100}

ABR {n_estimators = 200, random_state = 100}

GBR {n_estimators = 30}

Bagging {n_estimators = 100}

ETR {n_estimators = 500, random_state = 1}

DTR {max_depth =4, random_state = 0}
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Fig. 6 Comparison of all ML regression methods for slope stability analysis. (a) BR; (b) LR; (c) ENR; (d) ABR; (e) GBR; (f) ETR; (g)

Bagging; (h) DTR; (i) KNR; (j) SVR-poly; (k) SVR-rbf; (1) RFR.

relative performance, the average R* value of SVR-linear
is 0.2392, the lowest among all algorithms, and the
average R” value of EN is 0.2584; the average values of
R*, MAE, and MSE of DTR are 0.2886, 0.6374, and
4.0272, respectively. For model B, the average R® of
SVR-rbf is 0.7966, followed by Bagging, SVR-poly, and
KNR, and their average R*is 0.7837, 0.7528, and 0.7444,
respectively. For model C, the higher R obtained by ETR
is 0.8085, followed by RFR, SVR-rbf, SVR-poly, and
Bagging, and their R* is 0.7934, 0.7486, 0.7250, and
0.7290, respectively. Not surprisingly, the linear methods,
such as SVR-linear, BR, LR, and EN, have not performed

well here. For model D, the average value of R* obtained
by SVR-rbf, SVR-poly, and GBR is relatively high,
0.4879, 0.4738, and 0.4478, respectively. The average R>
of ETR is 0.1141, the relatively lowest among all
algorithms. In a similar vein, the results of models E and
F are shown in Fig. 7. We can observe that the average
value of R® obtained by SVR-poly and SVR-rbf is
relatively high. We can get the following facts: for ML
techniques mentioned in this paper, the performance (Rz)
of the training data set is between 0.0780 and 0.8640, the
performance (MAFE) is between 0.3613 and 1.1137, and
the performance (MSE) is between 0.9859 and 6.8485.
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From these results, we can see that SVR nonlinearity can  despite the seriously unbalanced data set, while the

achieve relatively higher precision for all regressions

results for linear algorithms are generally lower and this
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Fig. 8 The calculation results of model A. (a) The value of R
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is probably because algorithms fail to handle the
nonlinear boundary class.

In addition to the prediction performance, the efficiency
of different ML algorithms in slope evaluation varies
significantly. By using a personal computer with Intel
CPU 1i5-9400 to realize the modeling, the average value
of the time spent in repeated CV was used as the final
evaluation value. Taking model A as an example, BR
generates results in 3.3162 s; LR generates results in
32106 s; EN generates results in 9.9647 s; KNR
generates results in 3.5616 s; SVR-rbf generates results in
7.2451 s; SVR-poly generates results in 31.8426 s; SVR-
linear generates results in 77.8207 s; RF generates results

Front. Struct. Civ. Eng. 2021, 15(4): 821-833

in 39.3332 s; AdaBoost generates results in 11.9616 s;
GBR generates results in 6.1160 s; Bagging generates
results in 44.6803 s; ET generates results in 130.2820 s;
DT generates results in 3.3344 s. The above data show
that ET and SVR-linear are the most computationally
intensive techniques and take the longest amount of time
to train. Although linear (BR, LR, and EN) algorithms
and DT are relatively fast in evaluating the FOS values of
these cases, their prediction performance is worse than
others.

4.2 Comparison of ML regression techniques

Among the seven models in Table 1, model A using six
parameters (y,C,¢,B,H,ry) to train SVM have the best
generalization performance. It is clear that SVR’s
polynomial algorithm produced relatively good results in
terms of Rz, MAE, and MSE of all model training data
sets, and the average value of R” is 0.8640. Therefore, this
paper adopts the SVR-poly algorithm for parameter
sensitivity analysis. During the research, the parameters
of the SVR-poly algorithm are the same as those in the
previous section. Here, the relative sensitivity of a
parameter is assessed by the degree of performance
degradation of the model (excluding the parameters
analyzed) compared with model A (including all six
parameters). As can be seen from Fig. 9, the vertical
coordinate is R, the polynomial algorithm in SVR is used
for regression fitting of all input parameters, and model A
(y,C,¢,B,H,ry) provides the best result. Comparing the
performance of model A and model B (y,C,¢,8,H), we
can see from Fig. 9 that r, is a little sensitive in analyzing
the FOS. Comparisons of the results of model A and
model C (y,C,p,H,r,) show that ¢ is sensitive in FOS.
The comparisons between model A and model D
(y,C,p,H,ry) reveals that B8 is more sensitive. By
analyzing the performance of model A and model E
(y,C,p,H,ry), it is found that H is also more sensitive.
Comparing model A with model F (C,¢,8,H,r,) implies
that y is a bit sensitive. It can be seen from the last row of
Figs. 7 and 9 that the number of negative values in the R*
calculation results are significantly increased due to

1.0
09+F
0.8F —
0.7F ]
0.6
0.5F
0.4F
03F
0.2F
0.1
0.0

model A model B model C model D model E model F model G

Fig. 9 Sensitivity analysis of SVR-poly input parameters.
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removing the input parameter C in model G, and such a
removal demonstrates that C is more sensitive.

Through the above analysis, it can be concluded that all
the parameters contained in Table 1 are sensitive to FOS.
Nevertheless, according to the performance of these
models given in Fig. 9, the relative sensitivity of the
parameter in descending order is C, B, H, ¢, ry, y. B, H
are the geometric parameters of the slope and play a vital
role in FOS assessment. For this reason, in engineering
practices of slope design and protection, cutting-slope
unloading is usually carried out to ensure slope stability.

4.3 Superiority and limitations

This article systematically evaluates the FOS regression
utilizing 11 ML methods. Although these studies reveal
some significant findings, there are also limitations. First
of all, we only predicted the FOS and did not explore the
failure mechanism of the slope, such as circular sliding,
plane failure, toppling failure, and wedge-shaped failure.
And we did not touch upon the reasons for these failures.
Secondly, rainfall, earthquake, human activities, and
other external or trigger factors have a significant impact
on the slope stability, but these factors are ignored in this
study due to challenges in acquiring their data. Thirdly,
other variables related to slope stability should have been
collected to improve the model’s prediction accuracy.
Finally, other new development regression methods may
be used to improve comparison of ML methods. If so,
their outcome could have been compared with the
methods studied in this paper. Also, the processing of
outliers and sampling deviation are significant
components of model uncertainty. They have a vital
influence on the regression model of predicting slope
stability, and need addressing in future research.

5 Summary and conclusions

Intelligent optimization algorithms have been widely used
in slope deformation prediction. The integration of
various intelligent algorithms and technical means has
improved the slope deformation prediction models and
brought their capacity up to a new era. The proposed
models are constructed based on a data set of the 349
slope cases collected from published research works in
recent years. This paper is primarily divided into data
preprocessing, outlier processing, and comparison of
various models. In the data preprocessing, the duplicate
data are first removed, then the outliers are filtered by the
Local Outlier Factor method, and finally, the data are
standardized. In comparison and selection of various
methods, BR method, LR method, EN method, KNR
method, SVR method, RFR method, ABR method, GBR
method, Bagging method, ETR method, DTR method are
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used for comparative experiments. By analyzing the
evaluation indexes R2, MAE, and MSE of these models,
we can draw following conclusions. First, the ML
regression method cannot be used blindly, because no
method is considered to be a fully automatic regression
method. For slope data sets, it is necessary to use repeated
CV. Among 11 different ML algorithms, GBR, SVM, and
Bagging are considered to be the best regression methods.
The performance and reliability of the nonlinear
regression method are slightly better than that of the
linear regression method. The comparison results show
that model A composed of 6 input variables
(v,C,¢,B8,H,ry) is more reliable when combined with
SVM, GBR, and Bagging methods. The cohesion of
materials and the geometric design parameters (3,H) of
slope have a vital influence on the stability of a slope.
This study can be used as a benchmark for applying the
artificial intelligence method to slope stability prediction
and has a significant reference value for slope designs.
The impact of data imbalance on slope stability prediction
will be discussed in future research.
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