
RESEARCH ARTICLE

A computational toolbox for molecular property prediction
based on quantum mechanics and quantitative

structure-property relationship

Qilei Liu, Yinke Jiang, Lei Zhang (✉), Jian Du

Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

© Higher Education Press 2021

Abstract Chemical industry is always seeking opportu-
nities to efficiently and economically convert raw materials
to commodity chemicals and higher value-added chemical-
based products. The life cycles of chemical products
involve the procedures of conceptual product designs,
experimental investigations, sustainable manufactures
through appropriate chemical processes and waste dis-
posals. During these periods, one of the most important
keys is the molecular property prediction models associat-
ing molecular structures with product properties. In this
paper, a framework combining quantum mechanics and
quantitative structure-property relationship is established
for fast molecular property predictions, such as activity
coefficient, and so forth. The workflow of framework
consists of three steps. In the first step, a database is created
for collections of basic molecular information; in the
second step, quantum mechanics-based calculations are
performed to predict quantum mechanics-based/derived
molecular properties (pseudo experimental data), which
are stored in a database and further provided for the
developments of quantitative structure-property relation-
ship methods for fast predictions of properties in the third
step. The whole framework has been carried out within a
molecular property prediction toolbox. Two case studies
highlighting different aspects of the toolbox involving the
predictions of heats of reaction and solid-liquid phase
equilibriums are presented.

Keywords molecular property, quantum mechanics,
quantitative structure-property relationship, heat of reaction,
solid-liquid phase equilibrium

1 Introduction

The molecular property plays an important role in life
cycles of chemical products, for example, the conceptual
designs of chemical-based products and their manufactur-
ing processes. How to fast and accurately obtain the
property data of interested molecules is a persistent
research topic. The most often reliable solution is to
measure the molecular properties by experiments. How-
ever, it is practically infeasible to perform thousands of
costly and time-consuming experiments for all com-
pounds, as the chemical space is still an unexplored galaxy
with more than 1060 molecules [1].
An alternative solution is to develop property prediction

models for reasonable and fast predictions of molecular
properties through quantitative structure-property relation-
ship (QSPR) methods [2] based on data and/or knowledge.
QSPR has been developed and used for nearly 140 years
since Mills probably first developed QSPR methods for
predictions of melting and boiling points in 1884 [3].
Dearden et al. presented a guidance on how to develop
reasonable QSPR methods, where 21 types of common
errors are discussed with examples [4]. In general, a
complete procedure for QSPR developments consists of
four steps: (1) prepare samples with the target properties
(dependent variables); (2) select a number of appropriate
descriptors (independent variables); (3) determine a
specific algorithm (e.g., least square algorithm) to establish
a linear or nonlinear model associating the target properties
with descriptors; (4) using evaluation criteria and/or
validation samples to evaluate the developed QSPR
methods. Although QSPR methods cannot completely
replace the experiments, they are able to quickly identify
promising molecular candidates which could then be
verified through focused experiments.
Up to now, a number of toolboxes has been developed

for QSPR (or quantitative structure-activity relationship
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(QSAR)) methods, as shown in Table 1. Kim and Cho
proposed an integrated standalone python package (PyQ-
SAR) that combines all QSAR modeling process in one
workbench [5]. PyQSAR is devoted to developing reliable
QSAR models on a single platform with an easy-to-follow
workflow. Enciso et al. provided an easy-to-use open-
source software platform (BioPPSy) for QSPR/QSAR
modelling [6]. Three key biochemical properties used in
drug discovery are presented to demonstrate the program
capabilities. Pirhadi et al. [7] had reviewed a few open-
source toolboxes for QSPR/QSAR modelling, such as
AZOrange [8], Bioalerts [9], camb [10], eTOXlab [11] and
Open3DQSAR [12]. Although above toolboxes are open-
source and powerful, the parameters in their property
prediction models are all fitted by external supports of
(pseudo) experimental data. The limited number or even
lack of (pseudo) experimental data will result in unreason-
able or failed predictions for molecular properties.
Dimitrov et al. [13] developed an OECD QSAR toolbox
for governments, where missing (pseudo) experimental
data are supported through a read-across method. For
molecules without property data, the read-across method is
able to fill the data gap through searching available
property data of similar molecules belonging to the same
category. However, the reliability of data provided by the
read-across method may be low.
With the developments of computational chemistry,

molecular simulation techniques are receiving increasing
attention among the community of molecular property
prediction. Compared with experiments and QSPR
methods, these calculation approaches focus on the
microscopic information of molecular systems (e.g.,
electron, atom, bond length, bond angle, dihedral angle,
etc.) based on highly recognized theories including
molecular mechanics (MM), quantum mechanics (QM),
and so forth. Therefore, these methods are not strongly
dependent on (pseudo) experimental data.
MM is the simplest and fastest way to evaluate

molecular systems. Based on a set of parameterized
empirical potential energy functions, it allows efficient
simulation of large biological systems or material
assemblies with thousands of atoms [14]. As one of the
most popular MM-based molecular simulation techniques,

molecular dynamics (MD) is generally used for modeling
the time-dependent motions (trajectories) of macromole-
cules (biological proteins, polymers, crystals, and so forth)
[15]. The simulation of the motion is achieved by the
numerical solution of the classical Newtonian dynamic
equations [16]. There are several free program packages
for MD simulation, for example, Amber [17], CHARMM
[18], GROMACS [19], LAMMPS [20], NAMD [21], and
so forth. Note that MM-based methods (e.g., MDmethods)
may fail to make predictions of properties with acceptable
accuracy if appropriate force field parameters are missing
in the simulation systems.
Compared with MM-based methods, QM-based meth-

ods including rigorous QM methods (e.g., Hartree-Fock
(HF), density functional theory (DFT), etc.) and semi-
empirical QM methods (e.g., PM7, etc.) predict molecular
properties by solving the Schrödinger equations without
any force field parameter. The prediction accuracy of QM
methods, especially for rigorous QM, for molecular
properties is superior to MM-based methods due its
consideration of electronic impacts, not simply nucleic
impacts, on molecular systems. However, the computa-
tional cost of QM methods, especially for rigorous QM, is
more intensive compared with MM-based methods and
increases exponentially with the system size of molecules.
Macromolecules are hard to be modeled by rigorous QM
methods. If super classical computers and linear scaling
algorithms (exist minor accuracy loss) are supported [22],
it may be possible to perform some QM tasks like single
point energy for macromolecules. QM has also been
applied in some commonly used software tools, for
example, Gaussian [23], ORCA [24], GAMESS [25],
MOPAC [26], and so forth. Gaussian is the most popular
commercial software in computational chemistry area. It
has comprehensive functions for property predictions and
enjoys great reputations among the community of
molecular simulation. ORCA is a free software which
has experienced rapid developments these years. With the
chain-of-spheres exchange algorithm [27], ORCA has
greatly reduced the computational expense of rigorous QM
methods at a cost of minor accuracy loss for calculations of
weak interactions for large molecular systems. GAMESS
has received great attentions for its open-source character-

Table 1 Toolboxes developed for QSPR/QSAR methods

Name Open-source Toolbox provides (pseudo) experimental data by itself Applicability domain

PyQSAR [5] Yes No Biochemistry and chemical engineering

BioPPSy [6] Yes No Biochemistry

AZOrange [8] Yes No Biochemistry, chemical engineering and pharmacy

Bioalerts [9] Yes No Biochemistry and pharmacy

Camb [10] Yes No Biochemistry

eTOXlab [11] Yes No Biochemistry

Open3DQSAR [12] Yes No Pharmacy

OECDQSARToolbox [13] No Yes (read-across method) Biochemistry, chemical engineering and pharmacy
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istic. MOPAC is a free semiempirical QM software with
efficient calculation speed for large molecules, even for
macromolecules, at the expense of precision. Semiempi-
rical QM methods are faster than linear scaling algorithm-
based rigorous QM methods, while giving more accuracy
loss.
To sum up, on one hand, although QSPR toolboxes are

able to develop property prediction models and make fast
predictions for molecular properties, they need reliable
methods to provide (pseudo) experimental data for QSPR
developments; on the other hand, QM methods are free
from dependence on (pseudo) experimental data and force
field parameters compared with QSPR and MM-based
methods, respectively. They are capable of making
accurate property predictions. However, QM methods
cost extremely high computational expense, which does
not meet the requirements of high-throughput property
predictions (seconds per molecule). Thus, it is desirable to
develop shortcut methods to accelerate QM calculations
with minor accuracy loss. In this work, a QM-QSPR
framework combining QM calculations and QSPR meth-
ods is established for fast predictions of molecular
properties. In section 2, the framework is established
through three steps including database establishment, QM
calculation and QSPR development, where QSPR methods
are used to accelerate QM calculations through linear/
nonlinear models, while QM calculations are used to
provide accurate pseudo experimental data for QSPR
developments. Note that the established QM-QSPR frame-
work is more recommendable for molecular properties that
suffer from a limited experimental data. In section 3, the
whole QSPR framework is carried out within a molecular
property prediction toolbox called “QM-QSPR”. The
software architecture of QM-QSPR with its dataflow and
workflow is systematically introduced. In section 4, the
application of the QM-QSPR framework and toolbox is
highlighted through two case studies involving the
predictions of heats of reaction and solid-liquid phase
equilibriums.

2 The QM-QSPR framework

The diagrammatic sketch of QM-QSPR framework is
shown in Fig. 1, which contains three steps including
database establishment, QM calculation and QSPR devel-
opment. More details about this framework are given in the
following text.

2.1 Database establishment

It is necessary to establish a database before QM
calculations and QSPR developments. Many molecular
databases are available online, such as PubChem,
DrugBank, ProCAPD database, NIST Chemistry

webbook, ZINC, ChEMBL, and so forth. When focusing
on different categories of molecules, different databases
are required, for examples, solvents, drugs, refrigerants,
ionic liquids, adsorbents, and many more. Thus, the
molecules with their basic molecular information (e.g.,
chemical abstracts service (CAS) number, simplified
molecular-input line-entry system (SMILES), etc.) should
be carefully selected in the database to develop a balanced
tailor-made QSPR method between generalization and
accuracy for one or multiple fixed categories of molecules.
Note that macromolecules are not considered in this paper
due to the computational cost. Conformational isomers are
not taken into account due to the lack of conformation
search algorithm in the current QM-QSPR framework.

2.2 QM calculation

After the database is established, the QM calculation step is
carried out to provide pseudo experimental data for
molecular properties. Starting from the basic molecular
information in the database, the stereoscopic representa-
tions of molecules (e.g., cartesian coordinates) are obtained
through either on-line (e.g., application program interfaces
(APIs) in website database using CAS number) or off-line
tools (e.g., OpenBabel software [28] using SMILES).
Before predicting properties through QM calculations,
geometry optimizations need to be performed first for
molecules to find their stable structures. Note that the
prediction accuracy and computational cost with regard to
the geometry optimizations and other QM functional
calculations (e.g., single point energy calculation, fre-
quency analysis, etc.) are greatly dependent on the QM
methods. Therefore, it is essential to select appropriate QM
methods for specific problems. Three main QM methods
are introduced here [29]:
(1) HF is one of the main QM methods to obtain the

Fig. 1 The diagrammatic sketch of QM-QSPR framework.
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numerical solution of the Schrödinger equations through
wave functions [30]. Modern post-HF methods are able to
provide the highest accuracy with the largest computa-
tional expense [31]. For example, using the coupled cluster
method CCSD(T) and large basis sets (often called the
“gold standard” in QM area [32]) for energy predictions,
mean unsigned errors of about 2 kJ$mol–1 are identified for
small molecules with 1 or 2 non-hydrogen atoms [31].
(2) DFT is another popular QM method to solve the

Schrödinger equations using the distribution of electron
density [33]. Compared with post-HF methods, it has a
faster prediction speed, though lower precision [34]. For
example, mean unsigned errors of about 8–24 kJ$mol–1 are
identified in a typical DFT method of B3LYP, which is,
however, 103 to 104 faster than CCSD(T) [31].
(3) Semiempirical QM methods, for example, PM7,

PM6, and forth, significantly reduce accuracy, but greatly
improve efficiency compared with post-HF and DFT
methods. For instance, unsigned errors of 120 kJ$mol–1 are
identified in semiempirical methods while their expense is
found lower by factors around 108 compared with CCSD
(T) [31].
Next, for QM predicted properties, they are discussed in

terms of two types as in the following text, including the
QM-based property and QM-derived property.

2.2.1 QM-based property

The QM-based property is defined as the molecular
property being directly predicted with the basic molecular
information through QM calculations. For examples,
enthalpy H , free energy G, dipole moment �, energy of
HOMO εHOMO, energy of LUMO εLUMO, etc., are regarded
as QM-based properties. Three commonly used thermo-
dynamic properties are discussed in detail as examples in
the following text, including standard enthalpy of forma-
tion at ideal gas state ΔfH

�
g , standard Gibbs free energy of

formation at ideal gas state ΔfG
�
g and standard entropy at

ideal gas state S�g.

2.2.1.1 Standard enthalpy of formation at ideal gas state

ΔfH
�
g is one of the key properties in thermochemistry. The

ΔfH
�
g of a compound is defined as the enthalpy change

from its elements in their most stable states at a pressure of
1 bar and the specific temperature of 298.15 K [35]. Thus,
the general way to obtain ΔfH

�
g is to calculate H�

g for the
target molecule and its elements first, and then to add the
experimental standard enthalpy of vaporization ΔH�

vap or

sublimation ΔH�
sub for the elements that are liquids or

solids [35], respectively. Here is an example of benzalde-
hyde for calculating its ΔfH

�
g The generation route is

shown as follows.

7C s,graphiteð Þ þ 3H2 gð Þ þ 1

2
O2 gð Þ↕ ↓

7ΔH�
subðgraphiteÞ

7C gð Þ

þ 3H2 gð Þ þ 1

2
O2 gð Þ↕ ↓C7H6O2 gð Þ

Based on the generation route, ΔfH
�
g ðC7H6O2Þ ¼

H�
g ðC7H6O2Þ – 3H�

g ðH2Þ –
1

2
H�

g ðO2Þ – 7H�
g Cð Þ þ 7ΔH�

sub

ðgraphiteÞ. The H�
g for each compound is obtained through

QM calculations using appropriate QM methods. Some
commonly used QM methods for predictions of thermo-
dynamic properties are listed in Table A1 (cf. Electronic
Supplementary Material, ESM). The experimental ΔH�

vap

and ΔH�
sub for liquid and solid elements (being in their most

stable states at 1 bar and 298.15 K) are collected from
database (in this paper, the database refers to the Lange’s
handbook of chemistry [36] and NIST Chemistry Web-
book by default). Normally, the spin multiplicity of
compounds is set to 1, while the elements need selecting
appropriate values of spin multiplicity when performing
QM calculations for their H�

g . The experimental ΔH�
vap,

ΔH�
sub and recommended spin multiplicity for elements are

listed in Table A2 (cf. ESM).

2.2.1.2 Standard Gibbs free energy of formation at ideal gas
state

Similar to ΔfH
�
g , ΔfG

�
g is obtained through Gibbs free

energy change from its elements. The experimental ΔG�
vap

and ΔG�
sub for elements are calculated through ΔG�

vap ¼
ΔH�

vap – TΔS
�
vap and ΔG

�
sub ¼ ΔH�

sub – TΔS
�
sub, respectively,

where ΔS�vap and ΔS�sub are experimental data collected

from database. The experimental ΔG�
vap, ΔG

�
sub, ΔS

�
vap and

ΔS�sub for liquid and solid elements are listed in Table A2 in
Appendix A (cf. ESM).

2.2.1.3 Standard entropy at ideal gas state

S�g is calculated through Eq. (1),

S�g ¼
H�

g –G
�
g

T
, (1)

where H�
g and G�

g are predicted by QM calculations, T
represents temperature.

2.2.2 QM-derived property

In contrast to the QM-based property, the QM-derived
property is defined as the molecular property being
predicted with the QM-based property through quantitative
property-property relationship (QPPR) models (the model
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correlating QM-based property and QM-derived property).
Note that the prediction accuracy of QM-derived property
is strongly dependent on the QM methods, as the model
parameters in QPPR are fitted in advance using several
samples with a fixed QM method. Two key thermody-
namic properties, standard enthalpy of vaporization ΔH�

vap

and activity coefficient γ, are discussed as examples in the
following text.

2.2.2.1 Standard enthalpy of vaporization

Standard enthalpy of formation at liquid state ΔfH
�
1 is often

needed in practice and it is obtained through Eq. (2),

ΔfH
�
1 ¼ ΔfH

�
g –ΔH

�
vap, (2)

where ΔH�
vap is the standard enthalpy of vaporization and

its experimental data may not be available for the
compound of interest. Based on the knowledge that
ΔH�

vap is dependent on noncovalent interactions and
predicted with good accuracy from quantitative features
of the computed potentials on the molecular surfaces [35],
Politzer et al. [35] developed a QPPR model to predict
ΔH�

vap at 298.15 K with the characteristics of QM-based
properties of surface potential VSðrÞ and molecular surface
area AS The formula of the developed QPPR model with
parameters regressed from experimental data is shown in
Eq. (3) [35],

ΔH�
vapð298:15 KÞ

¼ 1:3556A0:5
S þ 1:1760ðv�2

totÞ0:5 – 10:4331, (3)

in which �2tot represents the total variance of VSðrÞ and v is
the electrostatic balance of VSðrÞ. To guarantee the
prediction accuracy of the QM-derived property, the QM
method “B3PW91/6-31G(d,p)” is selected for geometry
optimizations and single point energy calculations to
obtain the necessary �2tot, v and AS. More details about the
formula derivations, calculation procedures, selected
samples and model performances are given in Politzer
et al. [35].

2.2.2.2 Activity coefficient

Activity coefficient γ is a key mixture property in
separation and reaction unit operations [37]. UNIFAC
models are often employed to predict γ. However, a large
set of measured data are required for the regression of
group parameters for UNIFAC, which hinders the
applications of UNIFAC models to molecules with missing
group parameters. Here, a QPPR model named conductor
like screening model for segment activity coefficient
(COSMO-SAC) [38] is employed to predict γ with the

characteristics of QM-based properties of surface charge q
and molecular cavity volume VC. The general formula of
the developed QPPR (COSMO-SAC) model with a small
set of group-independent parameters regressed from
experimental data is described as the following Eq. (4),

γ ¼ f ðpð�Þ,VCÞ, (4)

where pð�Þ is the surface charge density profiles derived
from q. To guarantee the prediction accuracy of the QM-
derived property, the QM method “B3LYP/6-31G(d,p)” is
selected for geometry optimizations and COSMO calcula-
tions to obtain the necessary pð�Þ and VC. More details
about the formula derivations, calculation procedures,
model parameters and model performance are given in
Chen et al. [39].

2.3 QSPR development

The QM calculation is a reliable alternative to the
experiment for predictions of molecular properties with
acceptable accuracy. However, the costly QM calculations
prevent the high-throughput design/screen of promising
molecules with regard to target properties. Thus, it is
desirable to develop QSPR methods (shortcut methods)
with a number of pseudo experimental data generated from
QM to accelerate the QM calculations. QSPR combines
computer science and mathematical method to investigate
the correlations between the physical, chemical, biological
properties of compounds and their molecular structures. It
assumes that the properties of compounds are expressed as
a linear or nonlinear function of chemical structures. In this
way, the QM computational cost is significantly shortened
to fast identify molecules with target properties. In this
paper, QSPR methods are divided into two types: linear
QSPR method and nonlinear QSPR method.

2.3.1 Linear QSPR method

Linear QSPR method is generally performed through the
least square method. One of the most popular linear QSPR
methods in chemical areas is the group contribution (GC)
method, which assumes that the functional groups share
the same property contributions among all compounds and
the property value of each compound is a summation of all
GCs involved in this molecule [40]. The general model
formula of the GC method is described in Eq. (5),

f ðX Þ ¼
X

i
NiCi, (5)

where f ðX Þ is a function of property X and it may contain
additional adjustable model parameters (universal con-
stants) depending on the property involved, Ci is the
contribution of the group of type-i that occurs Ni times
[41]. Note that the GC method is essentially a knowledge-
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based QSPR method (or in other words, semi-empirical
QSPR method). Generally, external validation is an option
in such a knowledge-based QSPR method as the knowl-
edge ensures its extrapolation. Also, it is possible to
improve the predictive capability and application range of
the GC-based property model through including all of the
available experimental data of the property in the
regression [42].

2.3.2 Nonlinear QSPR method

One of the most popular nonlinear QSPR methods is the
back propagation-artificial neural network (BP-ANN)
method [43], the model of which could be built/trained
by following Eqs. (6) and (7),

minflossðppre,ptarÞ, (6)

ppre ¼ FBP-ANNðD,PÞ, (7)

where floss is the loss function to measure the differences
between the target outputs ptar and the prediction outputs
ppre, P is the set of parameters (e.g., weights and biases)
and hyperparameters (e.g., hidden layers), D is the input
dataset, and FBP-ANN is the optimization function that helps
the BP-ANN model to correlate the inputs and outputs.
Note that an external validation is compulsory in the BP-
ANN method because it is a data-based QSPR method (or
in other words, empirical QSPR method). In such method,
external validation must be given to avoid overfitting
issues.

3 QM-QSPR: software architecture

The workflow of the QM-QSPR framework with its
associated dataflow and computer aided tools is integrated
into the “QM-QSPR” toolbox, which provides the
additional option of QSPR method for molecular design
in OptCAMD software [44]. The software architecture of
QM-QSPR is shown in Fig. 2. Note that the current QM-
QSPR toolbox needs the paid prerequisite software
(Gaussian software [23]), while other prerequisite tools
(e.g., OpenBabel [28], Multiwfn [45,46], etc.) are all free.
The QM calculation section in the QM-QSPR architec-

ture consists of four steps: (a) user interface, (b) pre-
processing, (c) execution and (d) downstream applications.
In the user interface step, a set of molecules represented as
CAS or SMILES from the established database are given
by users and input through user interface, which is written
in python [47]. In the pre-processing step, the website API
script or OpenBabel [28] software is employed to trans-
form the CAS or SMILES to three-dimensional cartesian
coordinates (“.gjf” input files). Then, in the execution step,
based on the stereoscopic molecular information, geometry
optimizations are performed to find the stable molecular

structures through appropriate QM methods in Gaussian
software [23] prior to other QM functional calculations
(e.g., single point energy calculation, frequency analysis,
etc.). During this period, users can select additional
instructions (e.g., solvation model, pseudopotential, etc.)
for the execution step. The execution results are stored in
the “.log” output files. In the downstream application step,
on one hand, QM-based properties are directly obtained
from the output files; on the other hand, QM-derived
properties are predicted with the intermediate data (�2

tot,
pð�Þ, etc.) post-processed from the QM-based properties
(e.g., VSðrÞ, q, etc.) through additional tools (e.g.,
Multiwfn [45,46], etc.) or directly with the QM-based
properties according to the QPPR models.
All properties calculated from the QM calculation

section (QM-based/derived properties) are stored in
database and further used to develop QSPR methods, the
results of which are also stored in database and provide
high-throughput property predictions for other applications
(e.g., OptCAMD for molecular design [44]).

4 Case studies

Two case studies highlighting the use of QM-QSPR
computational toolbox, in which one involving the
predictions of heats of reaction and another for the
predictions of solid-liquid phase equilibriums, are pre-
sented below.

4.1 Prediction of heat of reaction

The goal of case study 1 is to predict heat of reaction. The
heat of reaction (also known as enthalpy of reaction)
ΔrH

�
stateðTÞ is the change in the enthalpy of a chemical

reaction that occurs at a constant pressure. ΔrH
�
stateðTÞ is an

important criterion for reactions and is described as
Eq. (8) [48]:

ΔrH
�
stateðTÞ � ΔrH

�
stateð298:15 KÞ

¼
X
j

vjΔfH
�
state,jð298:15 KÞ, (8)

where ΔrH
�
stateðTÞ approximates to ΔrH

�
stateð298:15 KÞ

over a modest range of temperature T [49], ΔfH
�
state,j

ð298:15 KÞ represents the standard enthalpy of formation
at 298.15 K for compound j, vj is the stoichiometric
coefficient of compound j, state represents gas ðgÞ or liquid
(l) state, � represents the standard state. In the following,
the subscript j will be simplified among properties if
unnecessary.
To calculate heat of reaction, predictions for ΔfH

�
state

ð298:15 KÞ are needed. As introduced in section 2, the
QM-based property ΔfH

�
g ð298:15 KÞ is directly predicted

by QM calculations. For ΔfH
�
1 ð298:15 KÞ, it is calculated
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through Eq. (2), where the QM-derived property
ΔH�

vapð298:15 KÞ is calculated through Eq. (3).

Besides ΔfH
�
g , ΔfH

�
1 and ΔH�

vap at 298.15 K are

considered, other thermodynamic properties ΔfG
�
g, ΔfG

�
1,

S�g, S
�
1, ΔG

�
vap and ΔS�vap at 298.15 K are also taken into

account in this case study because another important
reaction property, reaction equilibrium constant K�

stateðTÞ,
is often needed in some problems and calculated through
K�
stateðTÞ ¼ expð –ΔrG

�
stateðTÞ=RTÞ and ΔrG

�
stateð298:15KÞ

¼
X

j
vjΔfG

�
state,jð298:15 KÞ (or ΔrG

�
stateðT≠298:15 KÞ

�
X

j
vjΔfH

�
state,jð298:15 KÞ – T

X
j
vjS

�
state,jð298:15 KÞÞ

[48], where ΔfG
�
g, ΔfG

�
1, S�g, S�1, ΔG�

vap and ΔS�vap at

298.15 K are indispensable for calculations of K�
stateðTÞ.

However, the QM calculations for the above properties
are computationally cost. The GC methods are usually
used to fast predict thermodynamic properties for com-
pounds [42]. To accelerate the QM calculations, this case
study employs the QM-QSPR toolbox to develop new GC
methods regressed from the QM calculated data for fast
predictions of ΔfH

�
state, ΔfG

�
state, S

�
state, ΔH

�
vap and ΔG�

vap at
298.15 K based on drug and solvent database. The
workflow of case study 1 is shown in Fig. 3.

4.1.1 Database establishment

A database is created consisting of 2859 neutral molecules
with CAS numbers and Canonical SMILES, where 1956
drug molecules are screened from the DrugBank database
using the Lipinski’s “Rule of Five” and 903 solvent
molecules not repeated in drug molecules are selected from
the Virginia Tech database [50]. Compared with the
solvent molecules in Virginia Tech database, the drug
molecules in DrugBank database are more structurally
complex and their molecular weights are generally larger.
Selecting drug database is able to enlarge the applicability
domain of new developed GC methods since the group
values of existing GC methods to thermodynamic
properties regressed from experimental data are usually
blank among structurally complex molecules (e.g., drugs)
[42].

4.1.2 QM calculation

Before predicting properties, the stereoscopic representa-
tions of all 2859 molecules with cartesian coordinates are
obtained from PubChem using CAS numbers through the
website API script in the QM-QSPR toolbox.

Fig. 2 The software architecture of QM-QSPR with its dataflow and workflow.
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4.1.2.1 Standard thermodynamic property at ideal gas state

The unpackaged hybrid QM method in Table A1 in
Appendix A (cf. ESM) is employed to predict ΔfH

�
g , ΔfG

�
g

and S�g at 298.15 K with the Gaussian software [23], where
geometry optimization and frequency analysis are per-
formed using “B3LYP/6-31G(d)” and single point energy
calculation is carried out with “M062X/def2TZVP em =
GD3”. In this way, a balance between prediction accuracy
and computational cost is achieved, and large molecules
(e.g., drugs) are able to be handled by QM. Before
performing the hybrid QM method for 2859 molecules, 22
representative compounds including the types of alkane,
alkene, alkyne, halogen, alcohol, ether, aldehyde, ketone,
acid, etc. are taken for examples to confirm the prediction
accuracy through comparisons between the predicted
values and experimental data, the results of which are
shown in Fig. 4 and the corresponding raw data are listed
in Table B1 in Appendix B (cf. ESM).
From Fig. 4, it is found that the calculated values of

ΔfH
�
g , ΔfG

�
g, S�g for most compounds are in good

agreements with their experimental data. The mean
absolute error (MAE) of comparison results between
calculated values and experimental data for ΔfH

�
g ,

ΔfG
�
g, S�g of 22 examples are 8.7, 12.2 kJ$mol–1, and

10.7 J$mol–1$K–1, respectively, which verifies the feasi-
bility and effectiveness of the QM calculation for
predictions of thermodynamic properties ΔfH

�
g , ΔfG

�
g, S

�
g

at 298.15 K. Using the hybrid QMmethod, ΔfH
�
g , ΔfG

�
g, S

�
g

at 298.15 K for 2859 molecules are successfully predicted
and prepared for further QSPR developments.

4.1.2.2 Standard thermodynamic property of vaporization

Considering that the thermodynamic properties at liquid
state are also important in process industry, the QM-
derived properties, standard thermodynamic properties of
vaporization, are calculated in this section.
For ΔH�

vap, the fixed QM method of “B3PW91/6-31G(d,
p)” [35] are employed to optimize the structures of 22
example molecules and calculate their single point
energies. Afterwards, a powerful wave function analysis
program, Multiwfn [45,46], is employed to make surface
quantitative analysis for compounds to obtain �2

tot and v,
and subsequently ΔH�

vap through Eq. (3). The prediction
results are compared with experimental data and listed in
Table 2.
To our best knowledge, there is no appropriate model for

predictions of ΔS�vap. Therefore, the Trouton’s rule [51] is
applied to obtain the standard entropy of vaporization of
organic compound at boiling point ðΔS�vap ðTbÞ ¼
¼ 88  J⋅mol – 1⋅K – 1Þ, which is supported by the fact that
the gas entropy is significantly larger than the liquid
entropy and thus the latter can be ignored. In this paper, an
additional assumption is given that ΔS�vap at 298.15 K is

approximate to ΔS�vapðTbÞ, which makes it possible to

calculate ΔG�
vap at 298.15 K through the equation of

ΔG�
vap ¼ ΔH�

vap – T � ΔS�vap. The calculated values of

ΔH�
vap, ΔG�

vap, ΔS�vap at 298.15 K of 22 examples are
compared with the corresponding experimental data and
listed in Table 2. Also, using the appropriate QM method,
ΔH�

vap, ΔG
�
vap, ΔS

�
vap at 298.15 K for 2859 molecules are

Fig. 3 The workflow of case study 1.
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successfully predicted and prepared for further QSPR
developments.
Some calculated values of ΔG�

vap have large errors com-
pared with the experiment data, which are mainly caused
by the assumption of ΔS�vapðTbÞ � ΔS�vapð298:15 KÞ.
Besides, the coefficients for the ΔH�

vap expression
(Eq. (3)) are regressed by fitting to only 30 experimental
data [35], which may limit the application scope of Eq. (3)
(e.g., No. 12 compound in Table 2). Therefore, it is
desirable to develop reliable models for predictions of
ΔS�vapð298:15 KÞ in the future. Also, it is desirable to
employ more experimental data for fitting the model
coefficients of Eq. (3) or even revise Eq. (3) based on

knowledge if the fitting result of original Eq. (3) with
enough experimental data is not acceptable.

4.1.2.3 Standard thermodynamic property at liquid state

Based on the obtained gas thermodynamic properties and
vaporization properties at 298.15 K, liquid thermodynamic
properties at 298.15 K are obtained through
ΔfH

�
1 ¼ ΔfH

�
g –ΔH

�
vap, ΔfG

�
1 ¼ ΔfG

�
g –ΔG

�
vap and S�1 ¼

S�g –ΔS
�
vap. The calculated values of ΔfH

�
1 , ΔfG

�
1, S

�
1 at

298.15 K of 22 examples are compared with the
corresponding experimental data and listed in Table 3.
Also, ΔfH

�
1 , ΔfG

�
1, S

�
1 at 298.15 K for 2859 molecules are

Fig. 4 Comparison results between QM calculated values and experimental data for (a) ΔfH
�
g , (b) ΔfG

�
g and (c) S�g at 298.15 K of 22

representative compounds (blank means experimental data are unavailable in database).
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calculated and prepared for further QSPR developments.
Some calculated values have large errors compared with
the experiment data, which are mainly caused by the
prediction error of ΔH�

vap, ΔG
�
vap and ΔS�vap.

To sum up, the QM calculation method is capable of
predicting ΔfH

�
g , ΔfG

�
g and S�g with acceptable prediction

accuracy. However, some large errors are identified in the
predicted vaporization and liquid thermodynamic proper-
ties. Models for predictions of ΔS�vap and ΔH�

vap need
further improvements in the future. In spite of this, the GC
methods are still developed for vaporization and liquid
properties in the next section just in case they are needed
for some problems without any experimental data support.
Besides, the regression results of GC method may also
provide some inspirations for future QSPR developments
of vaporization and liquid properties.

4.1.3 QSPR development

With the obtained pseudo experimental data, the GC
method is developed for fast predictions of thermodynamic

properties in this case study. Here, for convenient
interaction of computational tools, a group division script
(convert molecular SMILES to pre-defined group sets) is
written in python [47] using the RDKit package, where
209 group sets (named as MG1-RDKit) are defined in
SMILES arbitrary target specification. Most of these newly
defined group sets refer to the commonly used first-order
Marrero and Gani (MG1) group sets [42] as they are able to
cover a large variety of organic compounds. Besides, a
certain number of small compounds (e.g., H2O, O2, etc.)
are also included in MG1-RDKit group sets. The whole
group sets are able to be expanded and/or revised by users
flexibly. Then, the least square method is employed to
regress the MG1-RDKit GCs to the thermodynamic
properties with 2859 molecules (samples) through
Eq. (5) (f ðX Þ ¼ X –UC ¼

X
i
NiCi, UC represents a

universal constant). The fitting results (R2)/error criterion
(MAE) of ΔfH

�
g , ΔfG

�
g, S

�
g, ΔH

�
vap, ΔG

�
vap, ΔfH

�
1 , ΔfG

�
1 and

S�1 are listed in Table 4.
The results in Table 4 indicate that the developed GC

method with MG1-RDKit group sets has ability in fast

Table 2 The calculated values of ΔH �
vap, ΔG

�
vap, ΔS

�
vap at 298.15 K of 22 examples and their corresponding experimental data a)

No. Compound CAS number
Calculated

ΔH�
vap /(kJ$mol–1)

Experimental

ΔH�
vap /(kJ$mol–1)

Calculated

ΔG�
vap /(kJ$mol–1)

Experimental

ΔG�
vap /(kJ$mol–1)

Calculated

ΔS�vap /(J$mol–1$K–1)

Experimental

ΔS�vap /(J$mol–1$K–1)

1 Methane 74-82-8 4.4 –21.8 88.0

2 1-Octene 111-66-0 46.9 40.4 20.7 88.0

3 Ethylene 74-85-1 18.7 –7.5 88.0

4 1-Butyne 107-00-6 34.9 8.6 88.0

5 1-Bromohexane 111-25-1 50.3 24.1 88.0

6 Bromoethane 74-96-4 31.3 5.0 88.0

7 Propanol 71-23-8 48.5 47.5 22.2 8.8 88.0 129.1

8 Ether 60-29-7 34.6 27.4 8.4 –5.6 88.0 170.3

9 Benzaldehyde 100-52-7 63.2 37.0 88.0

10 Acetaldehyde 75-07-0 27.6 26.1 1.3 –5.4 88.0 103.4

11 Acetone 67-64-1 35.1 31.3 8.8 88.0 96.5

12 Methyl ethyl
ketone

78-93-3 41.3 19.6 15.0 88.0 100.8

13 Hexanoic acid 142-62-1 72.8 46.5 88.0

14 Acetic acid 64-19-7 53.3 52.2 27.1 16.0 88.0 123.6

15 Ethyl acetate 141-78-6 38.5 35.7 12.3 5.3 88.0 106.1

16 Methyl formate 107-31-3 38.0 28.7 11.8 88.0

17 Propionitrile 107-12-0 38.3 12.0 88.0

18 Acetonitrile 75-05-8 35.0 39.6 8.8 5.4 88.0 93.7

19 Propylamine 107-10-8 44.4 31.3 18.2 88.0

20 Methanethiol 74-93-1 27.2 1.0 88.0

21 Water 7732-18-5 35.1 44.0 8.9 8.5 88.0 118.9

22 Carbon dioxide 124-38-9 18.1 19.8 –8.1 –8.4 88.0 94.4

a) Blank means experimental data which are unavailable in database.
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predicting these thermodynamic properties with acceptable
accuracy. Note that the MG1-RDKit based GC method
may lead to poor predictions for ΔfH

�
g , ΔfG

�
g, ΔfH

�
1 , ΔfG

�
1

in some cases as the MAEs of these properties are not

small, which is caused by the fact that the interactions
among first-order group sets cannot be ignored for the
structurally complex molecules (e.g., drugs). Therefore,
higher-order group sets are needed to further improve the
prediction accuracy of MG1-RDKit based GC method in
the future.
The MG1 group sets regressed from experimental ΔfH

�
g ,

ΔfG
�
g and S�g values [42,48] are also compared with the

MG1-RDKit group sets. First, the number of group sets
with ΔfH

�
g , ΔfG

�
g and S�g values are counted and compared

between these two GC methods, the results of which are
shown in Fig. 5. It is found that the numbers of group sets
with ΔfH

�
g , ΔfG

�
g and S�g values in the MG1-RDKit based

GCmethod have increased by 44, 64 and 103, respectively,
compared with those in the MG1 based GC method, which
demonstrates that the new developed GC method is able to
predict properties of molecules in larger chemical space. In
addition, an evaluation criterion of SRGC

database is employed
to calculate the ratios of the molecules for which their
group sets have values of ΔfH

�
g and S�g to all molecules

in a database. It is found that SRMG1
VirginiaTech ¼

Table 3 The calculated values of ΔfH
�
1 , ΔfG

�
1, S

�
1 at 298.15 K of 22 examples and their corresponding experimental data a)

No. Compound CAS number
Calculated

ΔfH
�
1 /(kJ$mol–1)

Experimental

ΔfH
�
1 /(kJ$mol–1)

Calculated

ΔfG
�
1 /(kJ$mol–1)

Experimental

ΔfG
�
1 /(kJ$mol–1)

Calculated

S�1 /(J$mol–1$K–1)

Experimental

S�1 /(J$mol–1$K–1)

1 Methane 74-82-8 –78.1 –36.9 118.7

2 1-Octene 111-66-0 –146.2 –121.8 56.3 335.0

3 Ethylene 74-85-1 32.8 69.4 130.9

4 1-Butyne 107-00-6 122.4 174.7 201.2

5 1-Bromohexane 111-25-1 –215.0 –43.3 325.9

6 Bromoethane 74-96-4 –101.2 –42.7 198.4

7 Propanol 71-23-8 –309.5 –303.5 –190.1 –170.6 212.8 193.6

8 Ether 60-29-7 –303.2 –279.4 –155.8 –116.7 245.4 172.4

9 Benzaldehyde 100-52-7 –115.7 –48.8 244.5

10 Acetaldehyde 75-07-0 –192.0 –192.2 –134.6 –127.6 163.5 160.4

11 Acetone 67-64-1 –255.6 –248.3 –170.0 195.8 198.8

12 Methyl ethyl
ketone

78-93-3 –288.5 –258.2 –174.0 225.7 239.1

13 Hexanoic acid 142-62-1 –581.9 –390.5 323.4

14 Acetic acid 64-19-7 –465.1 –484.4 –387.3 –390.2 197.6 159.9

15 Ethyl acetate 141-78-6 –496.0 –481.1 –362.9 265.7 256.7

16 Methyl formate 107-31-3 –406.1 –386.1 –327.9 196.4

17 Propionitrile 107-12-0 8.1 72.1 196.4

18 Acetonitrile 75-05-8 32.2 34.4 68.2 86.5 163.4 149.7

19 Propylamine 107-10-8 –125.7 –101.3 10.4 215.1

20 Methanethiol 74-93-1 –54.8 –19.9 165.2

21 Water 7732-18-5 –262.1 –285.8 –224.5 –237.1 106.6 69.9

22 Carbon dioxide 124-38-9 –408.7 –413.3 –386.2 –386.0 126.1 119.4

a) Blank means experimental data which are unavailable in database.

Table 4 The fitting results (R2)/error criterion (MAE) of ΔfH
�
g , ΔfG

�
g,

S�g, ΔvapH
�, ΔvapG

�, ΔfH
�
1 , ΔfG

�
1 and S�1 between GC predictions and

QM predictions

Property R2 MAE

ΔfH
�
g 0.990 28.1 kJ$mol–1

ΔfG
�
g 0.988 27.7 kJ$mol–1

S�g 0.993 6.7 J$mol–1$K–1

ΔH�
vap 0.925 4.0 kJ$mol–1

ΔG�
vap 0.925 4.0 kJ$mol–1

ΔfH
�
1 0.990 28.0 kJ$mol–1

ΔfG
�
1 0.988 27.7 kJ$mol–1

S�1 0.993 6.7 J$mol–1$K–1
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669

903
� 100% ¼ 74%, SRMG1

DrugBank ¼
660

1956
� 100% ¼ 34%,

SRMG1 –RDKit
VirginiaTech ¼ 903

903
� 100% ¼ 100% and SRMG1�RDKit

DrugBank ¼
1956

1956
� 100% ¼ 100%, which indicates that the MG1-

RDKit group sets are able to handle more structurally
complex molecules (e.g., drugs) compared with the MG1
group sets due to the superiority of the QM-QSPR
framework in providing more pseudo experimental data
for GC regressions.

4.1.4 Heat of reaction for aspirin synthesis

Aspirin is used to treat pain and reduce fever or
inflammation. It is generally produced by salicylic acid
and acetic anhydride. The diagrammatic sketch of synth-
esis pathway for aspirin is shown in Fig. 6.

The properties, ΔfH
�
g ð298:15 KÞ, for each compound in

aspirin synthesis pathway have been obtained from the
experiment, unpackaged hybrid QM method, MG1-RDKit
based GC method and MG1 based GC method, which
are listed in Table 5. Considering that the QM-predicted
ΔfH

�
g ð298:15 KÞ are close to the experimental

ΔfH
�
g ð298:15 KÞ in Fig. 4(a) and Table 5, it is reliable to

adopt the prediction result of ΔfH
�
g ð298:15 KÞ for

compound aspirin for calculations of ΔrH
�
g ð298:15 KÞ.

The results of ΔrH
�
g ð298:15 KÞ for unpackaged hybrid QM

method and MG1-RDKit based GC method are –49.5 and
–37.6 kJ$mol–1, respectively, which confirms that predic-
tion accuracy of MG1-RDKit based GC method is
acceptable. Besides, it is found that the MG1 based GC
method fails to predict ΔfH

�
g ð298:15 KÞ of aspirin while

the MG1-RDKit based GC method succeeds, which
indicates that the MG1-RDKit based GC method has a
wider application range.

4.2 Prediction of solid-liquid phase equilibrium

This case study mainly refers to Liu et al. [52]. Here, four
new crystallization solvents are investigated through the
QM-QSPR toolbox. Solid-liquid phase equilibrium plays
an important role in chemical engineering, e.g., crystal-
lization process in pharmaceutical industry. It is described
through Eq. (9),

lnxSati –
ΔHfus,i

RTm,i
1 –

Tm,i

T

� �
þ lnγSati ¼ 0, (9)

where xSati , ΔHfus,i, Tm,i and γSati are the saturated mole

Fig. 5 The number of group sets with ΔfH
�
g , ΔfG

�
g and S

�
g values

in the MG1 based GC method and MG1-RDKit based GC method.

Fig. 6 The diagrammatic sketch of synthesis pathway for aspirin.

Table 5 The properties, ΔfH
�
g ð298:15 KÞ, for each compound in aspirin synthesis pathway obtained from different methods (the experimental data

refers to ICAS software [42]; blank means data which are unavailable)

Molecule CAS number
Experiment

ΔfH
�
g /(kJ$mol–1)

Unpackaged hybrid QM

ΔfH
�
g /(kJ$mol–1)

MG1-RDKit

ΔfH
�
g /(kJ$mol–1)

MG1

ΔfH
�
g /(kJ$mol–1)

Salicylic acid 69-72-7 –494.8 –473.5 –458.4 –469.4

Acetic anhydride 108-24-7 –572.5 –588.3 –587.0 –575.2

Aspirin 50-78-2 –677.1 –667.1

Acetic acid 64-19-7 –432.8 –434.3 –415.9 –432.6
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fraction, enthalpy of melting, melting point and saturated
activity coefficient of solute i, respectively. T represents
the crystallization temperature.
The solvent-related property, γSati , is predicted by the

COSMO-SAC model [38], where the pð�Þ of solvents are
key model inputs for predictions of γSati . However, the
computational cost of generating pð�Þ through QM
calculations are time-consuming, which hinders the high-
throughput predictions of γSati through the COSMO-SAC
model. In this case study, the QM-QSPR toolbox is
employed to develop a machine learning-based atom
contribution (MLAC) method for fast predictions of pð�Þ.
The MLAC method is developed based on solvent
database and QM calculations. The workflow of case
study 2 is shown in Fig. 7.

4.2.1 Database establishment

A database is created by screening 1120 solvents contain-
ing H, C, N and O elements with CAS numbers and
Isomeric SMILES from the Virginia Tech database [50].
Here, only H, C, N and O elements are considered as these
elements can be found in most of the commonly used
organic solvents.

4.2.2 QM calculation

Before predicting properties, the stereoscopic representa-
tions of all 1120 solvents with cartesian coordinates are
obtained from Isomeric SMILES by OpenBabel [28] in the
QM-QSPR toolbox.

The molecular pð�Þ is obtained by the summation of all
atomic pð�Þðpatomð�ÞÞ contributions based on the assump-
tion of the COSMO-SAC model [38]. The patomð�Þ of all
solvents are calculated with the Gaussian software [23] and
the COSMO-SAC model [38]. In Gaussian, the QM
method “B3LYP/6-31G(d,p)” is selected for solvent
geometry optimizations and COSMO calculations. In the
COSMO-SAC model, the group-independent model para-
meters refer to Chen et al. [39] (listed in Table C1 in
Appendix C (cf. ESM)), which have been specially
reparametrized for “B3LYP/6-31G(d,p)” and verified to
have good performance for the predictions of solvent
properties (e.g., γ). More detailed information about the
formula derivations of patomð�Þ can be found in Chen et al.
[38]. Finally, a database of patomð�Þ is established as the
outputs for the development of MLAC method, where the
number of atomic samples for H, C, N and O elements is
15535, 9108, 305 and 1215, respectively.

4.2.3 QSPR development

With the obtained pseudo experimental data, the MLAC
method is developed for fast predictions of molecular pð�Þ
in this case study. The MLAC method starts from the
molecular SMILES, which is first converted to the
stereoscopic representation with cartesian coordinates
through OpenBabel [28]. Then, a script is written in
python [47] to transform the stereoscopic representation to
the three-dimensional atomic descriptors, weighted atom-
centered symmetry functions (wACSFs) [53]. More
detailed information about the wACSFs can be found in
Gastegger et al. [53]. Four separate element-based (H, C,

Fig. 7 The workflow of case study 2.
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N, O) BP-ANNs are apriori built/trained through Eqs. (6)
and (7) with atomic samples of 15535, 9108, 305, 1215
wACSFs (input data) and patomð�Þ (output data) for H, C,
N, O elements, respectively, before its use in the MLAC
method. With the established BP-ANNs, patomð�Þ are
predicted with the wACSFs and the MLAC method ends
with pð�Þ summed by patomð�Þ. More detailed information
related to the MLAC method (e.g., the architectures of BP-
ANNs, the performance of MLAC method, the weakness
of MLAC method that poor predictions may be identified
in solvents containing N element, etc.) can be found in Liu
et al. [52].

4.2.4 Crystallization for ibuprofen

The cooling crystallization process for solute ibuprofen
with four solvents (1-propanol, 2-methyl-1-propanol, 3-
methyl-1-butanol and ethyl acetate) is taken as examples to
highlight the QM-QSPR toolbox. The experimental data of
solid-liquid phase equilibrium are obtained from Wang

et al. [54], which are compared with those predicted by
Eq. (9) based on the QM calculation and MLAC method.
The necessary crystallization parameters of ΔHfus,ibuprofen

¼ 27:94  kJ⋅mol – 1 and Tm,ibuprofen ¼ 347:6 K are taken
from Hong et al. [55] and the crystallization temperature
range is set to 260 K£T£320 K. The results of QM
calculation and MLAC method are shown in Fig. 8. It is
found that the solid-liquid phase equilibrium curves of
MLAC predictions for four solvents (see Figs. 8(a–d)) are
all close to the QM calculations, which indicates the
reliability of the MLAC method in fast predictions of pð�Þ
and γ for solvents with H, C and O elements. Although
minor prediction errors are identified in solid-liquid phase
equilibrium curves of solvents 3-methyl-1-butanol and
ethyl acetate between the QM calculations and experi-
ments (see Figs. 8(c) and 8(d)), the QM calculation
(specifically, the COSMO-SAC model) is still worth
considering for predictions of solid-liquid phase equili-
brium curves of structurally complex molecules if their
group parameters are missing in UNIFAC models.

Fig. 8 Comparisons of solid-liquid phase equilibrium curves of solute ibuprofen and four solvents ((a) 1-propanol, (b) 2-methyl-1-
propanol, (c) 3-methyl-1-butanol and (d) ethyl acetate) obtained from the experiment, QM calculation and MLAC method.
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5 Conclusions

In this paper, a QM-QSPR framework is established for
molecular property prediction, involving three steps of
database establishment, QM calculation and QSPR devel-
opment. In the QM calculation step, molecular properties
are classified in terms of QM-based property and QM-
derived property, for which appropriate QM methods are
recommended considering prediction accuracy and com-
putational efficiency. With the sufficient pseudo experi-
mental data from the QM calculation step, QSPR methods
are developed for fast predictions of molecular properties
in terms of linear QSPR methods (e.g., GC method) and
nonlinear QSPR methods (e.g., MLAC method). Two case
studies involving the prediction of heat of reaction and
solid-liquid phase equilibrium are presented to confirm the
feasibility and effectiveness of the QM-QSPR framework.
The targets of developing the MG1-RDKit based GC
method with a wide application scope and the MLAC
method with a high prediction accuracy for pð�Þ are both
achieved in two case studies, respectively, through the
developed computational toolbox of QM-QSPR. In the
future, more QM-based/derived properties with corre-
sponding QSPR methods will be incorporated into the
QM-QSPR toolbox for convenient molecular property
predictions and applications to other chemical-related
software (e.g., OptCAMD [44] for molecular design).
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