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1 Introduction

During the past decades, Hg discharges to aquatic environ-
ments have been largely intensified due to increasingly
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H I G H L I G H T S

•Hg bioaccumulation by phytoplankton varies
among aquatic ecosystems.

•Active Hg uptake may exist for the phytoplank-
ton in aquatic ecosystems.

• Impacts of nutrient imbalance on food chain Hg
transfer should be addressed.
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G R A P H I C A B S T R A C T

A B S T R A C T

The bioaccumulation of mercury (Hg) in aquatic ecosystem poses a potential health risk to human
being and aquatic organism. Bioaccumulations by plankton represent a crucial process of Hg transfer
from water to aquatic food chain. However, the current understanding of major factors affecting Hg
accumulation by plankton is inadequate. In this study, a data set of 89 aquatic ecosystems worldwide,
including inland water, nearshore water and open sea, was established. Key factors influencing
plankton Hg bioaccumulation (i.e., plankton species, cell sizes and biomasses) were discussed. The
results indicated that total Hg (THg) and methylmercury (MeHg) concentrations in plankton in inland
waters were significantly higher than those in nearshore waters and open seas. Bioaccumulation factors
for the logarithm of THg and MeHg of phytoplankton were 2.4–6.0 and 2.6–6.7 L/kg, respectively, in
all aquatic ecosystems. They could be further biomagnified by a factor of 2.1–15.1 and 5.3–28.2 from
phytoplankton to zooplankton. Higher MeHg concentrations were observed with the increases of cell
size for both phyto- and zooplankton. A contrasting trend was observed between the plankton
biomasses and BAFMeHg, with a positive relationship for zooplankton and a negative relationship for
phytoplankton. Plankton physiologic traits impose constraints on the rates of nutrients and
contaminants obtaining process from water. Nowadays, many aquatic ecosystems are facing rapid
shifts in nutrient compositions. We suggested that these potential influences on the growth and
composition of plankton should be incorporated in future aquatic Hg modeling and ecological risk
assessments.
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intensive human activities (Kocman et al., 2017; Obrist
et al., 2018; Liu et al., 2019). The majority of Hg released
into the surface water was in the form of inorganic Hg
(IHg) (Guédron et al., 2017; Kim et al., 2017; Pirarath
et al., 2021). While under the anaerobic or anoxic
conditions such as bottom water (Ribeiro Guevara et al.,
2008), sediment and water boundary (Lei et al., 2019) and
wetlands (Liem-Nguyen et al., 2021), the IHg could be
further converted into the more neurotoxic MeHg with the
involvements of anaerobic microorganisms such as sulfate-
reducing and iron-reducing bacteria (Wu et al., 2011; Si
et al., 2015). The excessive intake of MeHg may induce
neurological diseases for adults and neurocognitive
dysfunctions for the fetus (Budnik and Casteleyn, 2019),
which previosly occurred in Japan in 1950s named
Minamata Disease (Eriksen and Perrez, 2014). Previous
studies have warned about the potential risks for sensitive
populations even exposed to a low dose of MeHg (Dai
et al., 2021). Strong Hg bioaccumulation and biomagni-
fication along aquatic food chain could lead to the high Hg
concentrations in high-trophic level predators, with a
biomagnification factor (log-scale) up to 5.0–7.7 L/kg
(Meili, 1991; Clayden et al., 2013). Although there are
several entry routes for Hg being uptaken into the human
beings (e.g., rice consumption, air inhalation, water intake)
(Višnjevec et al., 2014; Zhao et al., 2019), consumption of
Hg containing aquatic products is acknowledged to be the
dominant path (Višnjevec et al., 2014; Wu et al., 2020).
The accumulated Hg in carnivorous fish could reach a level
that causes the concerns of researchers and government
managers (Nguetseng et al., 2015). The US Food and Drug
Administration sets the limit of daily oral MeHg intake
below 0.1 μg/kg bodyweight; the fish with high Hg (e.g.,
King mackerel, Swordfish) are not recommended for daily
consumptions (US FDA, 2017). The European Union
Water Framework Directive set its environmental quality
standard for THg in fish to 20 μg/kg (wet weight).
However, Hg levels in the fish, for example breams, have
regularly exceeded the limits (Nguetseng et al., 2015).
Hg transfer from water to high trophic level organism

includes 3 steps listed below: 1) phytoplankton Hg
bioaccumulation; 2) transfer to zooplankton and phyto-
phagous fish; 3) ingestion of plankton and phytophagous
fish by omnivorous and carnivorous fish (Lehnherr, 2014).
Organisms at higher trophic levels have higher energy
demands and tend to ingest more food, which facilitates the
food chain transfer of Hg (Wu et al., 2020). By binding
with proteins, MeHg is difficult to be excreted out of the
organisms (Wu and Wang, 2011). Thus, a longer food web
and more complicated food structures could lead to the
higher Hg concentrations in high trophic level predators
(Ouédraogo et al., 2015). Hg bioaccumulation by the
plankton represents a fundamental step of Hg transfer from
water to aquatic organism (Yoshino et al., 2020). Previous
studies have revealed that the biomagnification along the
whole food chain from water to plankton (Minamata Bay,

Japan: 107.0–107.3; Lake Balaton, Hungary: 106.1–106.4;
Apostle island, USA: 104.4–105.3; Lake Taihu, China:104.2–
104.4) is higher than that from the plankton to the fish
(Minamata Bay, Japan: 4.6–6.2; Lake Balaton,
Hungary:7.8–14.8; Apostle island, USA: 2.0–10.2; Lake
Taihu, China: 3.9–6.5) (Hirota et al., 1974; Nguyen et al.,
2005; Rolfhus et al., 2011; Liu et al., 2012). Therefore,
even small differences in Hg bioaccumulation by plankton
could have measurable consequences on the overall
biomagnification of Hg in aquatic food chains (Pickhardt
and Fisher, 2007). However, in aquatic Hg modeling, these
parameters were usually simplified and assumed to be
within a small range (Tong et al., 2012; Lehnherr, 2014). In
natural waters, there are large variations of Hg in plankton
across the regions, resulting in a bioaccumulation factor
(BAF, log-scale) of Hg from the water to plankton at a
range of 2.4–5.9 L/kg for THg and 2.6–6.7 L/kg for MeHg,
respectively (Pickhardt et al., 2005; Schartup et al., 2015;
Wu et al., 2019a). This indicates the importance of the
plankton species compositions and regional environmental
conditions in determining the Hg transfers along aquatic
food chain.
In addition to Hg, another major issue in the aquatic

ecosystems is the changing of nutrient concentrations and
elemental stoichiometry, which are closely related to the
plankton species composition, their biomass and cell size
(Elser et al., 2000; Finkel et al., 2010; Huisman et al.,
2018; Tong et al., 2020). For instance, in the Lake Zurich,
Switzerland, the nitrogen (N) enrichment relative to the
phosphorus (P) had favored dominance of P. rubescens at
the losses of other phytoplankton (Posch et al., 2012). Lake
Taihu, China, has shifted from the mesotrophic status in the
1960s to eutrophic status in the 2000s, with the dominant
plankton shifting from diatom to cyanobacteria (Wang et
al., 2019). Similar changes have also been reported in the
nearshore waters (Burson et al., 2016; Zhang et al., 2020a).
Nutrient stoichiometry, an indicator closely related to
plankton cell size, is currently changing in aquatic
ecosystems (Finkel et al., 2010). Increasing water N/P
ratios are frequently reported worldwide (Penuelas et al.,
2020). The negative correlation between N/P and diversity
of zoo- and phytoplankton is associated with the shortened
pathway and lower transfer rate of matter and energy along
with trophic webs under the P limitation (Elser et al., 2000;
Abonyi et al., 2020). It might provoke the rise and fall of
plankton communities and progressions of their specy,
which could influence the Hg accumulation and biomag-
nification in the aquatic food chains.
Plankton represents a critical path for Hg uptake to

aquatic food chains from water. However, our under-
standing of the factors determining Hg accumulations in
aquatic ecosystems across the regions was still limited.
Regional differences in plankton Hg bioaccumulation were
rarely identified from the global perspective. In this study,
we set up a global data set for plankton Hg bioaccumula-
tions in 89 aquatic ecosystems, dividing into inland waters,
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nearshore waters, and open seas. Quantitative correlations
between Hg bioaccumulation in planktons and their
physiologic characteristics (e.g., species, cell sizes and
biomasses) were analyzed. The potential impacts of
changing nutrient concentrations and stoichiometries to
Hg bioaccumulation by planktons were discussed. The
outcome can contribute to the improved aquatic Hg
modeling in future. We suggest that the impact of changing
nutrients to Hg transfers in aquatic food chain and health
risk for the human beings should be addressed.

2 Materials and methods

2.1 Data collections

We identified and selected the relevant publications from
the Web of Science™ that contained measured THg or
MeHg concentrations in water and phyto-/zooplankton in
the aquatic environment. Both field monitoring and
laboratory studies were included. The keywords in the
topic field included “mercury and phytoplankton” or
“mercury and zooplankton” or “mercury and algae”. The
year of publications was not restricted. We further searched
for the keywords “food chain”, “accumulation” or
“biodilution” from the results. The online searching was
carried out on 22 March, 2019. Initially, a total of 589
publications were collected, and the majority of them were
published after the 2005. The subsequent screening was
performed according to the following rules: 1) publications
that report Hg accumulations; 2) publications that report
THg or MeHg concentrations and their bioaccumulations
in the plankton. We finally set up a data set involving
phyto- and zooplankton from 89 aquatic ecosystems with
their details in the Tables S1 and S2. The study sites
distribute in the six continents and three oceans. The
majority of these sites were located in the east of Asia and
north-east of North America. Based on the locations of
these aquatic ecosystems, we divided them into three
groups: the inland water (including lakes, rivers, reser-
voirs, and wetlands, 57 sites), nearshore water (22 sites)
and open sea (10 sites). THg/MeHg concentrations in
waters and planktons were collected and unified for the
data analysis. It should be noted that the differences of
sampling times in different studies were not strictly
discriminated. The additional information, such as coordi-
nate, plankton species, biomass and cell size, in original
publication was carefully reviewed and collected for the
subsequent analysis.

2.2 Original data handling and analysis

2.2.1 BAF values in the phytoplankton

Across all 89 aquatic ecosystems, the data about THg and

MeHg concentrations in water samples, phytoplankton and
zooplankton were collected. For some studies, THg and
MeHg concentrations in planktons were reported on the
dry weight basis. In these cases, a water content of 80%
was assumed and applied to convert the concentrations into
the wet weight basis (US EPA, 2012; Wickham et al.,
2019; Wu et al., 2019b). Totally, we obtained THg or
MeHg concentration in phytoplankton from 35 sites (127
samples) and that in zooplankton from 66 sites (581
samples). The paired water and plankton samples in
aquatic ecosystems were used to estimate the BAF values
for the phyto- and zooplankton. The BAF value (L/kg) was
unified as the mass ratio of THg or MeHg in the planktons
(ng/kg) and in waters (ng/L) (Long et al., 2018). The
biomagnification factor (BMF, unitless) was defined as the
mass ratio of the THg or MeHg in the zooplankton and
phytoplankton (Rolfhus et al., 2011).

2.2.2 Data about plankton species, cell size and their
biomass

To further explore relationships between physiologic
characteristics of plankton and their Hg bioaccumulation,
we also collected information about plankton species, cell
sizes, and plankton density in previous studies. After
examining the publications carefully, a total of 12
publications with information of specific species were
collected, 7 phytoplankton species (S. capricornutu,
Cosmarium botrytis, Schizothrix calcicola, Thallasiosira
spp., Chlamydomonas reinhardtii, Cryptomonas ozolini,
and Synechocystis sp.) and 6 zooplankton species (Family
Aeshnidae, Order Amphipoda, Heptageniidae, Littoral
Chironomidae, Limnephilidae and Profundal Chironomi-
dae). A more detailed description for the cell size, volume
and surface area for these plankton species was provided in
Table S3.
Based on the reported sizes in the publications, we had

classified the phytoplankton into three size categories: 0.2–
5, 5–20 and >20 μm (Gosnell and Mason, 2015; Gosnell
et al., 2017). The zooplankton was classified into four size
categories:< 0.5, 0.1–1, 1–2 and >2 mm (Hammersch-
midt et al., 2013; Schartup et al., 2015). The detailed
information was provided in the Supplementary Data set
S1. Since the separation of different plankton species was
difficult in the field monitoring, the biomass for a certain
size plankton may include different planktons. Few studies
reported the plankton biomasses directly. We used an
alternative indicator, chlorophyll a (Chl-a) concentration,
to represent the phytoplankton abundances in waters
(Schartup et al., 2018). The data was available in 53
aquatic ecosystems, with the Chl-a values ranging from
~0.08 to 28.8 μg/L (Table S4). The data of biomass for
zooplankton was available for a total of 14 ecosystems,
ranging from 4.6 to 142.5 μg/L (Table S5). A log-
transformation of data was applied to check if the original
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data was normally distributed. One-way ANOVA analysis
was applied to compare statistical differences in different
categories. The linear regression analysis was applied to
characterize the relationships between the Hg bioaccumu-
lation, cell sizes and biomasses of the plankton. The
statistical analysis was performed by the SPSS 23.0
statistical package. The level of significance criteria was
set at 0.05 for all the statistical tests.

3 Results

3.1 Summary of Hg concentrations in aquatic ecosystems

Across all the investigated ecosystems, THg concentra-
tions in waters ranged from 2 pg/L to 7.1 ng/L, with a
median of 0.8 ng/L (n = 98); while the MeHg ranged from
0.3 pg/L to 1.9 ng/L, with a median of 25 pg/L (n = 117,
Fig. 1(A)). A positive relationship was observed between
THg and MeHg concentrations in waters (p< 0.05, n = 42,
Fig. S1(A)). For plankton, the average THg concentration
was 24.6 (0.2–1174.9) ng/g (median and range, n = 293);
while the corresponding average MeHg value was 8.7
(0.06–540) ng/g (n = 415). THg concentrations in
phytoplankton (0.3–66.8 ng/g) approached the values in
zooplankton (0.4–84.6 ng/g, p = 0.73 by one-way
ANOVA, Fig. 1). However, the average MeHg concentra-
tion was much higher in zooplankton (0.02–12.3 ng/g, n =
351) than that in phytoplankton (0.10–43.3 ng/g, n = 64,
p< 0.01). The percentage of MeHg in the THg was higher
in zooplankton (19.4(0.09–76.41) %, n = 29) than that in
phytoplankton (11.7(0.0–69.0) %, n = 15, p< 0.05,
Fig. S2). Positive relationships were observed between
THg and MeHg concentrations in both of phytoplankton
(p< 0.01, n = 15, Fig. S1(B)) and zooplankton (p< 0.01,
n = 29, Fig. S1(C)).
BAFTHg and BAFMeHg values in the phytoplankton were

2.4–6.0 and 2.6–6.7 (n = 64) L/kg (log-scale), respectively
(Fig. 2(A)). BAFMeHg values were higher than BAFTHg
values, indicating that phytoplankton has much stronger
bioaccumulation of MeHg than THg. Our data set further
revealed BAFTHg and BAFMeHg values for zooplankton
were 2.1–7.3 (n = 231) and 2.9–8.2 (n = 347) L/kg,
respectively (Fig. 2(B), in log-scale). BAFMeHg for
zooplankton was 5.0 times higher than BAFTHg, while
for phytoplankton, the value was only 2.0 times. This
indicated that the MeHg are subject to stronger bioaccu-
mulation with the increase of the trophic levels. Some
previous studies have reported that the MeHg can be
bioaccumulated and biomagnified significantly along
aquatic food chains, such as 4.1–5.2 L/kg (log-scale) in
Baihua Lake, China (Liu et al., 2012), 4.6–4.9 L/kg
in Chequamegon Bay, USA (Rolfhus et al., 2011), 5.6–6.4
L/kg in Babeni Reservoir, Romania (Bravo et al., 2014)
and 7.0–7.8 L/kg in the Minamata Bay, Japan (Hirota et al.,
1974). This indicates that the MeHg bioaccumulation by
planktons (with the log[BAFMeHg] of 2.6–6.7 L/kg) is
crucial in the Hg transfers along the aquatic food chain
(Fig. 2).

3.2 Comparison of plankton Hg bioaccumulation in
different ecosystems

The results suggested that characteristics of Hg accumula-
tion by the plankton could vary largely in different
categories of ecosystems (i.e., inland water, nearshore
water and open sea). A summary of THg and MeHg
concentrations in waters and planktons from different
types of aquatic ecosystems was provided in Table 1 and
Figs. S3 and S4. In general, both of THg and MeHg
concentrations in the inland water (THg: 2.2�1.8 ng/L, n =
46; MeHg: 0.20�0.32 ng/L, n = 68) were much higher
than those in the nearshore waters (THg: 1.4�1.8 ng/L, n =
21; MeHg: 20.0�1.0 pg/L, n = 18, p< 0.05) and in the

Fig. 1 THg and MeHg concentrations in waters (A), phytoplankton and zooplankton (B) in aquatic ecosystems (“Phy”: phytoplankton,
“Zoo”: zooplankton).
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open seas (THg: 46.0�2.0 pg/L, n = 31; MeHg: 7.0�2.0
pg/L, n = 31, p< 0.05) (Fig. S3). Higher Hg concentrations
in the inland waters could be explained by larger aquatic
Hg inputs and limited dilution capacities (Liu et al., 2016a;
2016b). Previous studies have estimated that about 800–
2200 Mg/year of Hg entered into the freshwater ecosys-
tems globally (Sunderland and Mason, 2007; Kocman et
al., 2017). Consistent with the trends of Hg concentrations
in waters, we found that THg andMeHg in both phyto- and
zooplankton in the inland waters were higher than those in
nearshore water (p< 0.01) and open sea (p< 0.01, Fig.
S4). The measuredMeHg concentration in the zooplankton
in inland water was 92.3 (2.0–537.0) ng/g (n = 186), but
3.8 (0.02–93.3) ng/g (n = 110) in the open seas. Compared
to the difference of Hg concentrations in the plankton, their
BAF values had less fluctuations in different types of
ecosystems. For example, the Log[BAFMeHg] value of
phytoplankton in inland water was 3.7–5.9 L/kg (n = 16),
which were close to the values in the open seas (3.3–5.7
L/kg, n = 20, Fig. 3).

3.3 Impacts of physiologic characteristics on plankton Hg
bioaccumulation

Prior studies have reported that the type of plankton
species and their physiologic characteristics can strongly
influence plankton Hg bioaccumulation (Poste et al., 2019;
Tada and Marumoto, 2020; Zhang et al., 2020b). We found
that the extents of MeHg accumulations by phytoplankton
could vary largely among the different species (Fig. 4).
Log[BAFMeHg] value ranges from 5.3 to 6.6 L/kg among 7
phytoplankton species, with an average of 5.8 L/kg. The
maximum BAFMeHg was observed in Synechocystis sp.
and the minimum was observed in Cosmarium botrytis
(Fig. 4(A)). Log[BAFMeHg] value for zooplankton ranged

from 5.9 to 6.7 L/kg among 6 zooplankton species, with an
average of 6.2 L/kg. The maximum was observed in
Profundal Chironomidae, and the minimum was observed
in Limnephilidae (Fig. 4(B)). In general, BAFMeHg values
for the phytoplankton (5.4–6.6 L/kg) had bigger variations
than those for zooplankton (5.9–6.7 L/kg). Variations of
BAFMeHg values in different plankton species indicate the
importance of plankton species compositions in the Hg
transfer along the aquatic food chains (Ouédraogo et al.,
2015; Fox et al., 2017).
We further investigated the relationship between plank-

ton cell sizes, biomasses and Hg bioaccumulation extents
in the planktons. Cell size is believed to be an important
factor in influencing the plankton Hg bioaccumulations in
waters based on the passive diffusion hypothesis (Schartup
et al., 2018; Tada and Marumoto, 2020). Our results
indicated that THg concentration and its bioaccumulation
in plankton had differential trends with increasing of cell
size (Fig. 5). Both THg and MeHg in plankton increased
with increasing cell sizes. THg and MeHg concentrations
in phytoplankton with cell sizes higher than 20 μm were
51.3 and 2.2 ng/g, and they were 19 and 22 times higher
than those in phytoplankton with the sizes smaller than 5
μm (Fig. 5(A)). Similarly, the BAF values were higher in
the large-size phytoplankton than the small-size ones. For
zooplankton, MeHg concentrations showed positive cor-
relation with zooplankton size (p< 0.01), but no relation-
ship was observed for THg. BAFMeHg value for
zooplankton increased with the increasing cell sizes
(p< 0.01); while the BAFTHg values showed no trends in
relation to cell sizes (p > 0.1, Fig. 5(B)).
Prior studies have indicated that growth dilution in a

more productive ecosystem could lead to lower MeHg
concentrations in the aquatic food chains (Poste et al.,
2015; Brito et al., 2017). We analyzed the potential

Fig. 2 BAFTHg and BAFMeHg values (L/kg, log-scale) for phytoplankton (A) and zooplankton (B) in aquatic ecosystems.
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relationship between plankton density and extent of Hg
bioaccumulation in plankton. Similar to previous studies
(Schartup et al., 2018), we used the Chl-a to characterize
phytoplankton densities in the water. The regression
analysis indicated a negative correlation between MeHg,
BAFMeHg, and Chl-a (Fig. 6). A 10 μg/L increase in Chl-a
could lead to a decrease of MeHg in the phytoplankton by
11.7 ([MeHg] = ‒1.17 � [Chl-a] + 34.6, p< 0.05, n = 49,
Fig. 6(A)) and a decrease of Log[BAFMeHg] by 0.04
(Log[BAFMeHg] = ‒0.04� [Chl-a]+ 5.9, p< 0.05, n = 38,
Fig. 6(B)). By contrast, the THg (p>0.05, n = 48) and
BAFTHg (p > 0.05, n = 28) in phytoplankton had not
changed with the increases of Chl-a. For zooplankton, both
of MeHg and BAFMeHg had positive correlations with the
zooplankton density in waters ([MeHg] = 0.31 � [Zoobio]
+ 12.4 (p< 0.05, n = 14) and Log[BAFMeHg] = 0.0064 �
[Zoobio] + 5.5 (p< 0.05, n = 14, Fig. 6). Unlike the
phytoplankton, zooplankton’s growth dilutes MeHg body

burden, but they may consume greater quantities of MeHg
enriched preys of larger sizes (Schartup et al., 2018). This
may lead to a positive correlation between the MeHg and
zooplankton biomass (Gosnell et al., 2017). In contrast to
MeHg, THg and BAFTHg values had an insignificant
correlation with plankton density, suggesting that IHg and
MeHg accumulations in plankton follow different mechan-
ism.

4 Discussion

Hg accumulation by the plankton is a key process
influencing concentrations of Hg in high trophic-level
organisms, since phyto- and zooplankton are the material
bases for entire food chain (Pickhardt and Fisher, 2007;
Yoshino et al., 2020). Previous field monitoring and
modeling results orginlally hypothesized that MeHg in

Fig. 3 Comparison of BAFTHg and BAFMeHg value (L/kg, log-scale) in the phytoplankton (A and B) and zooplankton (C and D) in
inland water, nearshore water and open sea.
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phytoplankton would change linearly with the water MeHg
and then propagate to the higher trophic level pretators
(Driscoll et al., 2012; Lavoie et al., 2013; Zhang et al.,
2020b). However, the recent studies recognized that Hg
bioaccumulation by plankton could be controlled by a
combination of multiple factors, such as Hg availability,
plankton growth, productivity and dissolved organic
matter in waters. These factors can impose positive or
negative impacts on plankton Hg bioaccumulations
(Soerensen et al., 2016; Gosnell et al., 2017).
Based on the global and across-system data set, we

found that Log[BAFMeHg] values in phytoplankton ranged
from 2.4 to 6.0 L/kg (n = 49). Although MeHg
concentration was very low in water (0.3 pg/L–1.9 ng/L,
n = 117, Fig. 1(A)), the accumulated MeHg in phyto-
plankton could be up to 0.3–66.8 ng/g (Fig. 1(B)). As
summarized in Table 2, due to dietary uptake and
assimilation, the subsequent MeHg biomagnification
could be 3.3–69.2 with the increasing trophic level. With
accumulations along the food chain, Hg concentrations in
carnivorous fish could be significantly elevated, exceeding
the thresholds for safe consumption (e.g. 20 μg/kg for

Table 1 Comparison of Hg concentrations in water and planktons in different types of aquatic ecosystemsa)

Types of aquatic
ecosystems

Hg concentrations or
BAF value All Inland water Nearshore water Open sea

Water

THg (ng/L)
2.3�0.6
(n = 98)b)

2.2�1.2
(n = 46)

1.4�0.4
(n = 21)

(46�15) � 10–3

(n = 31)

MeHg (ng/L)
(10.0�2.0) � 10–2

(n = 117)
0.2�0.2
(n = 68)

(20.0�8.0) � 10–3

(n = 18)
(7.0�0.4) � 10–3

(n = 31)

Phytoplankton

THg (ng/g)
72.2�17.4
(n = 63)

328.9�119.4
(n = 7)

11.0�5.1
(n = 33)

45.6�15.9
(n = 23)

MeHg (ng/g)
1.0�2.2
(n = 64)

26.6�4.0
(n = 16)

0.6�0.2
(n = 28)

8.6�3.6
(n = 20)

Log [BAFTHg] (L/kg)
4.9�0.2
(n = 67)

5.4�0.2
(n = 11)

4.2�0.1
(n = 27)

5.0�0.2
(n = 20)

Log [BAFMeHg] (L/kg)
5.2�0.1
(n = 60)

5.2�0.2
(n = 16)

4.5�0.2
(n = 24)

5.2�0.2
(n = 20)

Zooplankton

THg (ng/g)
21.9�1.2
(n = 230)

204.2�35.5
(n = 78)

33.1�3.2
(n = 60)

7.7�2.1
(n = 92)

MeHg (ng/g)
6.61�3.5
(n = 351)

92.3�5.4
(n = 186)

6.3�1.0
(n = 55)

3.8�0.3
(n = 110)

Log [BAFTHg] (L/kg)
5.0�1.04
(n = 231)

4.7�1.1
(n = 50)

4.8�0.7
(n = 50)

5.2�1.1
(n = 131)

Log [BAFMeHg] (L/kg)
5.6�1.0
(n = 347)

5.8�0.9
(n = 154)

5.7�1.1
(n = 53)

5.4�1.3
(n = 140)

Notes: a) Concentration of THg and MeHg in the plankton was based on the wet weight. b) Number in brackets represents the number of samples across all the aquatic
systems

Fig. 4 A comparison about the bioaccumulations of MeHg by different phytoplankton (A) and zooplankton (B).
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Fig. 5 Hg concentrations and BAF values (log-scale) for phyto- (A) and zooplankton (B) with different cell sizes.

Fig. 6 Relationships between plankton biomass: Chl-a and concentration of THg and MeHg in phytoplankton (A); Chl-a and BAF
values of THg and MeHg in phytoplankton (B); zooplankton biomass and concentration of THg and MeHg in zooplankton (C) and
zooplankton biomass and BAF values of THg and MeHg in zooplankton (D).
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THg) (Nguetseng et al., 2015). The direct Hg uptake from
water by high-trophic level organisms is usually small
(Tong et al., 2017; Schartup et al., 2018). Thus, the Hg
concentration in the high trophic level organisms is largely
influenced by the degree of MeHg initially bioaccumulated
in the phytoplankton. However, the plankton Hg bioaccu-
mulation abilities could vary in different types of aquatic
ecosystems, which might be attributed to the differences of
plankton species, their biomass (Lee and Fisher, 2016) and
availabilities of Hg in the aquatic ecosystems (Kainz and
Mazumder, 2005; Ndu et al., 2018).
Hg bioaccumulation by planktons could be largely

influenced by the physiologic characteristics of plankton,
while many physiologic and ecological processes in the
plankton can be related to cell size directly or indirectly
(Finkel et al., 2007; Kim et al., 2014; Schulhof et al.,
2019). The degree of MeHg enrichment in algal cells in the
natural community could also depend on size of
predominant cell in plankton assemblage (Le Faucheur
et al., 2014). Passive diffusion of MeHg through cell
membrane of phytoplankton was initially believed to be a
dominant pathway for the MeHg accumulation. Mason
et al., (1996) had first demonstrated this plankton Hg
uptake pathway by using the marine diatom Thalassiosira
weissflogii. In their investigations, the plankton MeHg
uptake rate was linearly correlated with the KOW of Hg in
the exposure solutions. The passive diffusion through algal
membrane was thus believed to be the main mechanism of
Hg uptakes by plankton (Mason et al., 1996; Pickhardt and
Fisher, 2007). This hypothesis is welcome by the modelers
due to the simple numeric simulations and it has been

widely applied in the aquatic Hg modeling (Schartup et al.,
2018; Wu et al., 2020). Based on this hypothesis, small-
size phytoplankton usually has significantly higher MeHg
uptake rates than the large-size ones due to the great ratios
of cell surfaces to cell volumes (Lee and Fisher, 2016;
Zhang et al., 2020b). However, this hypothesis of passive
diffusion cannot explain the results from some field
monitoring (Gosnell and Mason, 2015). For instance, an
investigation in the Long Island Sound indicated that
phytoplankton with sizes>20 μm had much higher THg or
MeHg concentration than those with sizes< 5 μm (Gosnell
et al., 2017). Similar positive correlation was also observed
in our global data set as shown in Fig. 5, which might be
explained by another MeHg uptake mechanism through
the facilitated transport. This mechanism was proved by
the experiments with the algae exposed to MeHg in the
dark, which would result in the decreases of MeHg uptakes
(Lee and Fisher, 2016). In a study in river systems, the
volume concentration factors of inorganic Hg were similar
for the living and the heat-killed cells, but values of MeHg
in living cells were 1.5–5.0 times greater than those in dead
cells (Pickhardt and Fisher, 2007; Tada and Marumoto,
2020). The heat-killed diatoms were shown to contain less
MeHg in the cytoplasm, where the total cellular Hg in dead
diatoms was 4%–64% less compared with that in the living
cells (Pickhardt and Fisher, 2007).
Hg biomagnification along the food chains largely

depends on plankton species in water; while nutrient
concentrations, stoichiometry and climate factors can
impact the plankton species and abundance (Finkel et al.,
2010; Razavi et al., 2015; Huisman et al., 2018; Paerl et al.,

Table 2 MeHg bioaccumulation and biomagnification in aquatic food webs

Aquatic ecosystems Type
Log [BAFMeHg] (L/kg) BMFMeHg

References
Phy Zoo Prey-fish Zoo/Phy Prey-fish/Phy Prey-fish/Zoo

Minamata Bay, Japan Nearshore water 7.0 7.3 7.7 2.0 4.6 6.2 Hirota et al., 1974

Long Island Sound, USA Nearshore water 5.2 5.6 6.5 13.2 3.3 4.0 Gosnell et al., 2017

Chequamegon Bay, USA Nearshore water 4.6 5.6 5.9 6.5 16.6 2.1 Rolfhus et al., 2011

Voyageurs, Canada Inland water 4.6 5.8 6.5 15.1 52.5 4.9 Wiener et al., 2006

Isle Royale, USA Inland water 5.6 5.9 6.1 3.9 7.8 2.0 Gorski et al., 2003

Apostle islands, USA Inland water 4.4 5.3 5.4 8.1 10.2 2.0 Rolfhus et al., 2011

Southern Wisconsin, USA Inland water 4.7 5.9 6.1 14.5 40.7 2.8 Herrin et al., 1998

Northern Wisconsin, USA Inland water 5.3 5.4 6.2 1.6 14.5 8.5 Watras et al., 1998

Lake Balaton, Hungary Inland water 6.1 6.4 7.3 2.0 14.8 7.8 Nguyen et al., 2005

ELA Uplands, Canada Inland water 5.1 5.8 6.5 4.5 24.0 5.4 Hall et al., 2005

Baihua Reservoir, China Inland water 4.1 4.0 5.1 1.5 8.9 13.2 Liu et al., 2012

Taihu Lake, China Inland water 4.2 4.4 5.0 1.7 6.5 3.9 Wang et al., 2012

Babeni, Romania Inland water 5.6 5.7 6.4 1.2 6.6 5.4 Bravo et al.,2014

Lagoon of Venice, Italy Inland water 5.2 6.4 7.1 13.8 69.2 5.0 Dominik et al., 2014

Notes: a) “Zoo/phy”: Zooplankton prey on phytoplankton; “Prey-fish/phy”: Prey-fish prey on phytoplankton; “Prey-fish/zoo”: Prey-fish prey on zooplankton; b)
Average and range of Log[ BAFMeHg] are 5.1 (4.1–7.0) for phytoplankton, 5.7 (4.0–7.3) for zooplankton and 6.3 (5.0–7.7) for prey-fish, respectively. c) Average and
range of BMFMeHg are 6.4 (1.2–15) for the process that zooplankton prey on phytoplankton, 20.0 (3.3–69.2) for the process prey-fish prey on phytoplankton and 5.2
(1.9–13.2) for the process that prey-fish prey on zooplankton, respectively.
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2020). Phytoplanktons range over nine orders of magni-
tude in cell volumes, which affected the physiologic factor
and ecological function, such as metabolic rates, nutrient
diffusions and uptakes, and grazing rates (Waite et al.,
1997; Finkel et al., 2010). These changes may affect the
functioning of entire ecosystem and nutrient cycle.
Nutrient supply in water can lead to a large extent control
cell sizes and taxonomic structures of phytoplankton
community (Sterner and Elser, 2003; Borics et al., 2021).
As shown in the Redfield ratio, the natural assembles of
marine planktons tend to present the molar C:N:P ratios of
106:16:1 (Redfield, 1934). In the freshwater ecosystems, P
limitation for algal growths could occur when the ratio of
TN/TP mass is above 23; while N limitation occurs when
this ratio is lower than 9 (Guildford and Hecky, 2000). The
variability of nutrient inputs into the surface waters could
act as a downward selective factor on phytoplankton cell
size (Grizzetti et al., 2012; Burson et al., 2016; Penuelas
et al., 2020). Over vast area of the oceans, N, P and Fe are
limiting elements which form minimum nutrient require-
ments for some larger phytoplankton (Finkel et al., 2010).
However in inland and nearshore waters, due to the
enrichments of one single nutrient (Penuelas et al., 2020)
and human mitigation measures (Tong et al., 2020; Wang
et al., 2021), the increasing N/P ratio becomes widespread
(Burson et al., 2016). In a total of 66 lakes with continuous
temporal monitoring, 55 lakes had experienced rapid
increases in the N/P (Penuelas et al., 2020). Similar
conditions also occurred in China’s coastal waters (Zhang
et al., 2020a) and freshwater lakes (Tong et al., 2020). For
zooplankton, high N/P stoichiometry and P limitation
bring low-quality foods. High C/P ratios resulting in P
limitations are connected with inferior food quality,
leading to C excess for zooplankton (Alvarez-Fernandez
et al., 2018; Bergström et al., 2018; Lorenz et al., 2019).
This phenomena has different impacts on zooplankton with
different sizes, since the low-quality food is less friendly to
the larger zooplankton (Karpowicz et al., 2019). Although
it has been acknowledged that the plankton species
composition in water is changing rapidly, this information
has been rarely used in existing aquatic Hg models,
resulting in large inaccuracies in the modeling results and
future predictions (Lee and Fisher, 2016; Schartup et al.,
2019).

5 Conclusions

Impacts of plankton species composition on aquatic Hg
cycling and subsequent Hg exposure risk for human beings
are believed to be a missing part in the current aquatic Hg
modeling. Our results suggested that Hg concentrations in
plankton in inland waters were significantly higher than
those in nearshore water and open seas. BAF (log-scale)
for THg and MeHg in phytoplankton were 2.4–6.0 and
2.6–6.7 L/kg respectively. Higher MeHg were observed for

both phyto- and zooplankton with bigger cells. It should be
noted that some other factors (e.g., DOM in water, water
temperature and climate) also affect the plankton Hg
bioaccumulation. Results from this study could be useful
for assessing Hg pollutions in the natural waters, but they
should be interpreted with care. For the natural algal
community, Hg is impossible to be measured correctly due
to the difficulty in separating plankton. More information
about the phytoplankton community structures is neces-
sary before the results of this study can be impelemted in
aquatic Hg modeling.
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