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Abstract To study the dynamic behavior of a process,
time-resolved data are collected at different time instants
during each of a series of experiments, which are usually
designed with the design of experiments or the design of
dynamic experiments methodologies. For utilizing such
time-resolved data to model the dynamic behavior,
dynamic response surface methodology (DRSM), a data-
driven modeling method, has been proposed. Two
approaches can be adopted in the estimation of the
model parameters: stepwise regression, used in several of
previous publications, and Lasso regression, which is
newly incorporated in this paper for the estimation of
DRSM models. Here, we show that both approaches yield
similarly accurate models, while the computational time of
Lasso is on average two magnitude smaller. Two case
studies are performed to show the advantages of the
proposed method. In the first case study, where the
concentrations of different species are modeled directly,
DRSM method provides more accurate models compared
to the models in the literature. The second case study,
where the reaction extents are modeled instead of the
species concentrations, illustrates the versatility of the
DRSM methodology. Therefore, DRSM with Lasso
regression can provide faster and more accurate data-
driven models for a variety of organic synthesis datasets.

Keywords data-driven modeling, pharmaceutical organic
synthesis, Lasso regression, dynamic response surface
methodology

1 Introduction

Automation and computation have contributed substan-

tially to different aspects of chemical sciences, and will
continue to make a great impact [1–4]. In the pharmaceu-
tical industry, the availability of high throughput automatic
experimentation platforms have enabled multiple experi-
ments to be run in parallel under different conditions [5].
The data-rich experimental environment is crucial for the
improvement of quality, safety, speed, and cost efficiency
in organic synthesis [6,7]. This brings many advantages in
conducting multi-factorial experiments for process char-
acterization and optimization in process development.
There are different multivariate tools for pharmaceutical
process development and innovation [8,9]. One of the most
important tools is the design of experiments (DoE) [10], a
method that systematically decides the operating condi-
tions of a set of experiments and maximizes the amount of
information that is derived. One of the major advantages of
such experimental platforms is the robotic collection of
reaction samples at different time instants during each
experiment. Detailed analysis of such samples avails a host
of time resolved concentration data or chromatographic
areas of not only the reactants and products but also the
intermediates and byproducts, some of which might be of
unknown chemical composition. Before the dynamic
response surface methodology (DRSM) modeling
approach was postulated, a series of response surface
methodology (RSM) models would have to be estimated,
one for each of the time instants in which composition
measurements were collected. Instead of developing a
RSM model for each time instant that data were collected,
we have proposed the DRSM that can model all time
resolved measurements in all experiments [11–13]. To
overcome the same challenge, Domagalski et al. used a
strategy that involved the filtering of the data [14], the use
of the logarithmic transformed time as a DoE factor, and a
genetic algorithm in building the model. Wang et al.
proposed a semiparametric model for an ester hydrolysis
reaction [15], and compared the mechanistic models and
statistical models.
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The main theme of the present paper is to examine the
use of Lasso regression as a replacement of the stepwise
regression (SWR) for eliminating the insignificant para-
meters of the DRSM model, in terms of both modeling
accuracy and computational cost. The value of Lasso
regression is well known in the machine learning
community, as it induces sparsity in an identified model
by using a L1 norm regularization term [16]. Compared to
SWR, the computational time to estimate an accurate
modeling using Lasso regression is much faster and thus
more attractive, as we will show below. This is especially
true when the Lasso algorithm uses the alternating
direction method of multipliers (ADMM) [17].
Two organic synthesis problems in pharmaceutical

process development will be studied, using the datasets
from literature. The overall workflow of the experiment
conduction and the model calculation follows four steps:
(1) factor identification, (2) DoE, (3) experimentation, and
(4) DRSM modeling and further analysis (including
optimization, next round of DoE, etc.). We will first
study an organic synthesis problem presented by Doma-
galski et al. in 2015 [14]. We will show how Lasso can
provide DRSMmodels of the time-resolved concentrations
of different species with small computational time and
great accuracy. We will use the DRSM models of several
species to optimize the process operation in order to
minimize the usage of catalyst, while the achieved product
satisfies the minimum yield constraint. Different types of
uncertainty, including deviations from the exact optimal
process conditions as well as the uncertainties inherent in
the DRSM models, quantified by the associated prediction
intervals, have been considered in the optimization. The
former type of uncertainty, operational sensitivity, is very
important in the pharmaceutical sector for an effective
implementation of the optimal conditions [18]. For the
latter type of uncertainty, we use the nominal predictions of
the DRSMmodel as well as the related prediction intervals
to avoid failing to achieve the desired product quality by
model uncertainties, however small they might be. Another
important utility of the DRSMmodels is in identification of
the active stoichiometry in the reaction mixture and the
subsequent estimation of kinetic models. Most of these
tasks have been presented in previous publications [19,20],
and are omitted in this article due to space limitation.
The second case study examined here is based on the

paper by Dong et al. [20]. Instead of modeling the
concentration profiles, as done in the first case study, we
will model the extents of reaction to demonstrate the
flexibility of the DRSM modeling approach. The extent
data are obtained by transforming the concentration data
through the assumed stoichiometry of the present reac-
tions. The advantage here is that one needs to estimate a
smaller number of DRSM models than those for the
measured species, because there are fewer reactions than

the number of measured species. Here again, we observe
that Lasso provides similar computational efficiency
compared to SWR. This will be very valuable when the
chemistry is complex with the exact stoichiometry
unknown, and one needs to examine a large set of
candidate stoichiometries.
The main contribution of this paper is that DRSMmodel

is newly integrated with Lasso regression, which provides
fast and accuracy modeling for the dynamic response data
that appears in process development of organic synthesis.
The low computational cost of DRSM with Lasso and its
accuracy will be critical for multiple usages of the
algorithm in modeling the dynamic data of the organic
synthesis in pharmaceutical industry, such as automatic
stoichiometry identification, process optimization and
control.

2 Method and in silico experiment

In this section, we first present a brief description of the
DRSM methodology. Next, we summarize the Lasso
regression used in estimating the DRSM models. Finally,
we present the settings of two case studies, respectively for
modeling concentrations and reaction extents.

2.1 DRSM

RSM has been widely used to estimate data-driven models
for DoE. If we take its quadratic form as an example, the
RSM model is:

yðxÞ ¼ β0 þ
Xn

i¼1
βixi þ

Xn

i¼1

Xn

j¼iþ1
βijxixj

þ
Xn

i¼1
βiix

2
i , (1)

where y, the output variable, is modeled by a polynomial
interpolative equation which consists of a constant term,
β0, plus the linear terms βixi, the two-factor interaction
(2FI) terms βijxixj and the quadratic terms βiix

2
i . If the data

set is not numerous enough, a model with fewer terms is
estimated. All these terms are functions of the input factors
x ¼ ðx1, :::, xnÞ, where n denotes the number of input
factors. In Eq. (1), the βq (q ¼ 0,  i,  ij,  ii) are model
parameters that need to be estimated from the data. The
DRSM model is a generalization of the above RSM to
handle time-resolved output data, yðtkÞ. The DRSM
generalization of Eq. (1) requires each parameters βq to
become a parametric function of time βqðtÞ. For mathe-
matical convenience one uses a normalized time, τ, instead
of t, defined with respect to the batch duration, tb; τ ¼ t=tb:
The initial version of DRSM [11], now denoted by

DRSM-1, uses this normalized time, τ, as the independent
variable in describing the βqðτÞ parametric functions:
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yðx,τÞ ¼ β0ðτÞ þ
Xn

i¼1
βiðτÞxi

þ
Xn

i¼1

Xn

j¼iþ1
βijðτÞxixj

þ
Xn

i¼1
βiiðτÞx2i , (2)

where both output y and each βqðτÞ are function of the
normalized time. Each βðτÞ function is parameterized by a
linear combination of shifted Legendre polynomials:

βqðτÞ ¼
XR

r¼0
γqrPrðτÞ,  q ¼ 0,  i,  ij,  ii

with  i ¼ 1,  2,  :::, n; j ¼ iþ 1, :::, n, (3)

in which Pr (ô) denotes the shifted Legendre polynomial of
order r, and the γqr coefficients are the DRSM parameters
whose values are estimated from the data. The first three
shifted Legendre polynomials are as follows:

P0ðτÞ ¼ 1;  P1ðτÞ ¼ – 1þ 2τ;  P0ðτÞ ¼ 1 – 6τ þ 6τ2: (4)

A weakness of this model is that as R increases, the
estimated model exhibits an undesirable oscillatory
behavior at large times. To eliminate this behavior and to
achieve great model accuracy with small values of the
global parameter R, a second version of DRSM model has
been developed [12], denoted as DRSM-2. In DRSM-2, �,
an exponential transformation of time, is used as the
temporal independent variable:

� ¼ 1 – expð – t=tcÞ, (5)

where tc is a time constant representing the slowest
component of the apparent dynamics in the process. As a
result of this transformation, the DRSM-2 model is
described by the following two equations:

yðx,�Þ ¼ β0ð�Þ þ
Xn

i¼1
βið�Þxi

þ
Xn

i¼1

Xn

j¼iþ1
βijð�Þxixj

þ
Xn

i¼1
βiið�Þx2i , (6)

βqð�Þ ¼
XR

r¼0
γqrPrð�Þ,  q ¼ 0,  i,    ij,  ii

with  i ¼ 1,  2,  :::, n; j ¼ iþ 1, :::, n, (7)

where the γqr coefficients are called the local parameters
and appear linearly in the model. On the other hand, the
DRSM-2 model has two global parameters: the maximum
order R, taking only integer values, and the time constant
tc, which has a non-linear effect on the model.
The above discussion concerns the modeling of single

response. If multiple responses are measured, e.g.,
concentrations of ns species, one develops ns DRSM-2
models. Furthermore, a constrained variation of the

DRSM-2 algorithm has been introduced [13], where the
initial concentration at t ¼ 0 are fixed to their known
values and all model predictions are forced to be non-
negative for problems where concentrations data are
modeled. Several values of R, the first global parameter,
are explored along with a set of values for tc, the second
global parameter, and the γqr values are estimated through
linear regression. For each R value, the best tc value is
refined though nonlinear regression. Once tc, for the
current R, is fixed, SWR or Lasso regression is employed
to eliminate the insignificant γqr parameters and the
corresponding Bayesian information criterion (BIC)
value is recorded. The R value, and the corresponding
model, with the smallest BIC values is then selected. This
model is further refined by the imposition of the constraints
on the known initial concentration values and the
requirement that all model predictions, related to species
concentrations, should be non-negative. For the data where
the unit is in percentage (which might be so in reality), we
have also considered the constraint to enforce the
summation of multiple components to be one, as the
independently calculated responses cannot reach exactly
one hundred percent. This constraint is important, when (1)
all the species could be measured and (2) the data is
presented in unit of percentage. However, we do not
include such a constraint here because very often there are
impurities whose concentrations cannot be measured.
For the estimation of the tc parameter, we initially try

different values, followed by a local non-linear regression
for fine-tuning, because the regression of the non-convex
model would have encountered challenges on global
optima. The elimination of the insignificant γqr parameters
has been achieved through SWR in our previous publica-
tions [11–13]. In the present paper, we also use Lasso
regression, and we will demonstrate that it reduces the
computational effort significantly. Algorithm 1 sum-
marizes the steps employed in the development of the
final constrained DRSM-2 model. The previous publica-
tion [13] provides more details on the steps involving time
constant tc and constraints (steps 2, 3, 5), while the steps
involving Lasso regression and BIC values (steps 4, 6) are
presented in the next section of this article. The order of the
polynomials is constrained by the number of samples each
experiment has; while the form of the DRSM model
(linear, 2FI, or quadratic, etc.), relating input to output
variables, are constrained by the degree of freedom the
DoE offers [13]. However, no specific type of experimental
design is required for the DRSM algorithm.

2.2 Lasso regression

We use the bold letter γ to denote the vector of all local γqr
parameters with different indices q and r. The simplest way
to estimate these local parameters is through the following
least square linear regression problem:
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min
γ

Xne
i¼1

Xmi

k¼1
yik – ŷikðγÞð Þ2

n o
, (8)

where ne denotes the number of experiments and mi
denotes the number of measurements in experiment i. In
the squared summation terms, yik denotes the kth

measurement in ith experiment, and ŷik denotes the
corresponding DRSM model’s prediction, which is a
function of the γ parameters. Because linear regression
might lead to overfitting, especially for the higher values of
R, we have used SWR to eliminate the insignificant
parameters in the past. Here we are examining the possible
advantages that Lasso regression [21], as the preferred
regularization approach, can offer to avoid overfitting.
With any regularization approach, a penalty term, PðγÞ, is
added to the objective function, and the following
minimization is used instead of that in Eq. (8):

min
γ

Xne
i¼1

XMi

k¼1
yik – ŷikðγÞð Þ2 þ lPðγÞ

n o
, (9)

where, l is the regularization weight parameter. In Lasso
regression, the penalty term is the L1 norm of the vector
with all the parameter values, PðγÞ ¼ kγk1. Lasso regres-
sion has a well-known sparsity property pushing many of
the less significant parameters to a zero value. The
alternative L2 norm penalty, known as Ridge regression,
does not provide the sparsity that the L1 does. Lasso
regression can be solved through different optimization
methods, and it will be solved using ADMM, a
computationally-efficient dynamic programming algo-
rithm based on dual decomposition and augmented
Lagrangian [17]. As we will show later, the main attraction
of Lasso compared to SWR in the DRSMmodel estimation
is its computational cost. We use the BIC to choose the
regularization parameter l, which is defined as follows.

BIC ¼ – 2lnPr yĵγð Þ þ RSlnKT: (10)

In this equation, both y and γ̂ are vectors, and Pr yĵγð Þ is the
likelihood function, denoting the probability of observing
measurement set y given that the DRSM model parameter
set is estimated to be γ̂. KT is the number of measurements,
while RS is the number of significant γ̂ parameters. The log
likelihood value in the first term is calculated by the

equation below:

lnPr yĵγð Þ ¼ –
1

2
y – ŷð ÞT 1

�̂2 y – ŷð Þ – KT

2
ln �̂2� �

–
KT

2
lnð2πÞ:

(11)

Here, ŷ denotes the DRSM-estimated values of the output,
while �̂2 denotes the estimated variance. The use of Lasso
and BIC together helps to build a model with accuracy and
sparsity. The Akaike information criterion (AIC) as well as
the generalized cross validation (GCV) approach have
been tested too, but they do not provide as consistent
results as the BIC approach does, which will be discussed
in more detail later in Section 3.1.
After Lasso regression completes it task, we fine-tune

the resulting model by an additional step applied to the γ
parameters that Lasso has retained. Analysis of variance
(ANOVA) calculation is performed to test if some of the
retained γ parameters are insignificant [22]. Here we use a
threshold p-value of 0.05. If such insignificant parameters
are still present, they are removed.

2.3 Case study A: modeling of concentrations

First, we examine the ability of the DRSM model to
accurately model the datasets related to an organic
synthesis reaction, examined by Domagalski et al. [14],
which was the first paper, to the best of our knowledge, to
model dynamic composition data but used a rather
complex modeling approach. In the present paper, we
test DRSM modeling methodology against the data of
Domagalski et al. [14]. We also compare Lasso and SWR
with respect to two criteria: speed of calculations and
accuracy of the obtained models. Because Domagalski
et al. presented three rounds of DoE, the Lasso vs. SWR
comparison is performed with all such data sets. In
addition, we use our estimated DRSM models to solve an
optimization task defined by Domagalski et al. Further-
more, we demonstrated how some robust optimization
versions of the problem can be easily tackled to take
uncertainty into consideration.
The case study here relates to a reaction network

involving ten species in total, and therefore, there are ten

Algorithm 1. Procedures in calculating DRSM models

1. For a set of polynomial orders, R ¼ 1 : Rmax

2. For a set of tc values, perform linear regression for gqr and select the tc that results in the smallest sum of squared errors.

3. Fine-tune tc via nonlinear regression and fix.

4. Eliminate the insignificant local parameters gqr , by SWR or Lasso.

5. Re-estimate the significant gqr parameters by imposing the regression constraints.

6. Tabulate the BIC values.

7. Select R, and the corresponding model, with the smallest BIC value.
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responses: two starting materials, one intermediate, one
product, one catalyst, four impurities generated by the
reactions, and water. The initial amount of the starting
material 1 is fixed over different experiments, and all of the
units of the output responses are provided in equivalent
(equiv) mol of the starting material 1. The data are obtained
from a simulated model consisting of a set of ordinary
differential equations, representing five irreversible and
one reversible reaction. Some of the reaction rates are
expressed in the Michaelis-Menten form. There are six
factors: initial amount of starting material 2, catalyst
amount, solvent volume, temperature, trace amounts of
water, and mixing speed. Three rounds of DoE are
implemented, and each round includes 20 experiments,
following a 1/4 fractional factorial design with four
replicates at the center. More details can be found in the
paper by Domagalski et al. [14].

2.4 Case study B: modeling of reaction extents

Another case study is performed to assess the DRSM
obtained with Lasso regression but from a different point
of view. This dataset is from Dong et al. 2019 [13], a
second organic synthesis problem. The previous publica-
tions have shown that this concentration dataset can be
well modeled through DRSM with SWR. Similar to case
study A, this concentration dataset can be modeled through
DRSM with Lasso regression too, which will be omitted
here. In order to illustrate that the DRSM methodology is
versatile, we model the reaction extents, instead of species
concentrations for this case study.
This case study is based on the simulation of a complex

reaction network, involving ten species and eight reactions
(six reversible and two irreversible). There are three factors
involved in the DoE: temperature, initial concentration of
species B, and initial concentration of species D. The DoE
follows a central composite design with three replicates at
the center. Previously, it has been shown that seven, out of
eight, reactions can be successfully identified, and the one
reaction that was missing has very small reaction extent,
leading to concentration change on the same level as the
noise in the system [20]. Based on the identified
stoichiometries, one can transform the concentration data
in experiment i to the reaction extent, as the following
formulation shows:

zi ¼ ΔciN
þ
ID: (12)

In this equation, Δci is a nT � nS matrix, and nT and nS
represent the number of composition samples and
measured species, respectively. The j-th row and k-th
column of Δci is the concentration change of species k at
time point j compared to its initial concentration.
Matrix N ID is of dimensions nR � nS, representing the
identified reaction stoichiometries in the network. Here nR
is the number of independent reactions; while Nþ

ID denotes

the pseudo-inverse of N ID. Note that N ID denote the
estimated stoichiometries which do not necessarily have to
be the true ones in the reaction network. Matrix zi is of
dimensions nT � nR. This transformation will project the
time-resolved concentration data of nS species into a
reaction extent space of nR reactions.

3 Results and discussion

In this section, we first present the results of case study A
in detail. This includes the obtained DRSM models for the
concentration data, the computational times and model
accuracies obtained using Lasso or SWR for different
datasets, and the results of process optimization using the
DRSM models. Finally, we present the results of case
study B, where the reaction extents are modeled.

3.1 Case study A

3.1.1 Results of using Lasso and its comparison with SWR

The Domagalski data relate to 60 experiments. The sixth
factor, mixing speed, was shown to be insignificant and is
ignored. Because of the plethora of experiments, one can
easily estimate a quadratic type of DRSM model. Ten such
models are developed, one for each species. When using
Lasso, the value of the regularization weight l is selected
so that the BIC value is minimized. Two other approaches
were used besides BIC. The AIC is often considered as an
alternative to BIC and the GCV is very often used with
Lasso and other regularization techniques [23]. As seen in
Fig. 1, the BIC values clearly show a minimum versus the
l values, and this helps us to choose the most desirable l
value. No clear minimum is observed in the AIC and GCV
plots against the l values, shown in the two left subplots.
The minimum BIC value model of –1344 is obtained at
l ¼ 4� 10 – 4 and the resultant model has 44 local γ
parameters. This exemplary result shown in Fig. 1 relates
to the product species. There are consistent minimum
values for the BIC criterion in the corresponding plots for
other species, which is not the case with the other two
criteria: AIC and GCV.
Continuing to focus on the product species, we compare

Lasso against SWR in Fig. 2. The red solid line shows the
nominal predictions of the SWR, and the green dot-dashed
line corresponds to the Lasso model predictions. We show
only half of the 60 experiments, just the odd numbered
ones; experiment 45 is enlarged as a magnified example.
The difference between the two models is clearly seen to be
insignificant. The dashed line shows the prediction
intervals [13] from Lasso, which are similar to those
from SWR. Moreover, we look at the parameters retained
by both techniques. The global parameters were the same
for both approaches, R ¼ 2,  tc ¼ 2:18 h. The local
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parameters, γ, are summarized in Tables 1 and 2, where a
blank cell means that the corresponding γqr is zero. The
five factors, x1 to x5, correspond to temperature, solvent
volume, catalyst amount, starting material 2 amount, and
trace amount of water, in their coded form (varying from
–1 to 1). Both Lasso and SWR include 36 local parameters.
For most of the terms, both techniques select the same
significant orders. For example, considering all the
constants, linear and quadratic terms, only x2 and x3
effects have different orders in � using Lasso and SWR.
For the cross terms, there are more terms with different
orders, but the maximum difference of the coefficient is
0.032 (for order 1 of term x2x4), which is only 3% of the
maximum coefficient 0.950 (for order 0 of the constant
term). Therefore, from both the fitting results and the
detailed analysis of model parameters, Lasso and SWR
result in very similar DRSM models.
Moreover, we compare the fitting results of all species

using Lasso vs. using SWR. The results are summarized in
Table 3. The species from S1 to S10 respectively represent
(1) catalyst, (2) starting material 1, (3) the intermediate
reversibly formed by catalyst and starting material, (4)
starting material 2, (5) product, (6) impurity 1, (7) water,
(8) impurity 2, (9) impurity 3, and (10) impurity 4. Both
techniques lead to the same global parameters over all ten
species. Number of significant local parameters, γ, are
similar, with the maximum difference of 4. The root mean-
square error (RMSE) of the fitted data are also given, and
the difference of using Lasso and SWR is less than 10% at

most. The species S5 (product), discussed in the previous
paragraph, is a representative species with a RMSE
difference of 6%. The table also shows the ratios of the
RMSE of Lasso fitting and maximum value of the output,
which is between 1% and 7%; the species with large
concentrations, such as S2, S4 and S5, also have large
absolute values of RMSE.
Therefore, we conclude that the SWR and Lasso do not

have significant difference in terms of the calculated
DRSM models. However, Lasso has the advantage of
much faster solution time. Considering the time consumed
in the step of determining the significant local parameters,
SWR takes 3.3 s on average, while Lasso takes 0.029 s.
Such improvement is valuable, because local parameters
need to be determined not only for different responses, but
also for different R values. We use both forward and
backward SWR [23], and ADMM for Lasso [17].

3.1.2 Models from different datasets

The above models were estimated using all the available
data in the paper by Domagalski et al. [14]. This will be
denoted as the “Full” data set. However, the data set of 60
experiments were obtained from three rounds of DoE. We
now examine the DRSM models that could have been
estimated using the different data subsets. We also present
a comparison among these models. In each round of DoE,
the upper and lower bounds in the factor space were

Fig. 1 The dependence of three criteria: (a) GCV, (b) BIC and (c) AIC, on the Lasso weight l, and (d) the number of local parameters.
The BIC plot shows a clear minimum while the other two criteria fail to show such a minimum. For the BIC case, the number of local
parameters γ vs. l is given in the lower right subplot.
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changed. The first round consisted of 20 experiments, 16
for a fractional factorial design and 4 replicates at the
center point. The data set will be denoted by “Rd1”. In this
case, there are not enough distinct experiments for a
quadratic model. Instead, a 2FI model is estimated,
considering all possible 2FI terms. In the second DoE
round, 20 more experiments were added, bringing the
number of available experiments at that time to 40. The
quadratic DRSM model using these data will be denoted
by “Rd12”.
The estimated values for the two global parameters,

R,  tc, for the three datasets are very similar. In fact, the
maximum polynomial order, R, for the additional models,
“Rd1” and “Rd12” is the same as the one shown in Table 3,

for each of the species. The best tc value varies slightly
between data sets for the same species, but the differences
are less than 30%. The comparison of the number of
parameters and the RMSE are summarized in Table 4; all
of these models were obtained by using Lasso. Models
based on the “full” and “Rds12” data sets have very similar
values for the number of local parameters γ, while the
model based on the “Rd1” data set, has fewer γ parameters
because it lacks the five quadratic terms. All three models
have comparable values for RMSE when this measure is
calculated from the data set through which the model is
estimated. This is reported as RMSEa in Table 4. We also
calculated the RMSE for the Rd1 and Rd12 models against
the data for all 60 experiments. This is denoted as RMSEb

Table 1 Comparison of γ values for intercept, linear, and quadratic terms estimated through SWR and Lasso for the product species a)

Item Order β0ð�Þ
Linear term Quadratic term

x1 x2 x3 x4 x5 x1
2 x2

2 x3
2 x4

2 x5
2

Lasso 0 0.950 0.100 – 0.084 0.222 0.028 – 0.031 – 0.044 – 0.045 – 0.220 – 0.034 – 0.059

1 0.162 – 0.137 0.047 – 0.118 – 0.075 0.026

2 – 0.087 – 0.018 0.070

Stepwise
regression

0 0.945 0.105 – 0.091 0.216 0.041 – 0.035 – 0.036 – 0.047 – 0.222 – 0.035 – 0.052

1 0.180 – 0.141 0.045 – 0.109 – 0.072 0.033

2 – 0.067 0.014 0.073

a) A blank cell implies parameter is zero (Lasso) or insignificant (SWR).

Table 2 Comparison of γ values for 2FI terms estimated through SWR and Lasso for the product species a)

Item Order x1x2 x1x3 x2x3 x1x4 x2x4 x3x4 x1x5 x2x5 x3x5 x4x5

Lasso 0 0.020 – 0.071 0.011 – 0.017 0.041 0.042 – 0.021 – 0.028 0.045

1 – 0.131 0.037 – 0.021 – 0.039 0.020 0.043

2 0.041

Stepwise regression 0 0.018 – 0.069 0.059 0.064 – 0.021 – 0.019 – 0.043 0.054

1 – 0.125 0.027 – 0.032 – 0.023 – 0.027 0.039 0.060

2 0.049

a) A blank cell implies parameter is zero (Lasso) or insignificant (SWR).

Table 3 DRSM model summary of SWR and Lasso for different species

Species
R tc Number of variables γ RMSE (in unit of equiv) RMSE/max

(Lasso)SWR & Lasso SWR Lasso SWR (ref.) Lasso ΔLasso

S1 2 1.77 37 37 0.0059 0.0062 3.8% 3.8%

S2 2 2.18 28 31 0.0639 0.0702 9.9% 6.5%

S3 2 1.77 38 42 0.0061 0.0065 7.2% 6.1%

S4 2 2.18 28 30 0.0530 0.0570 7.4% 4.4%

S5 2 2.18 36 36 0.0463 0.0493 6.4% 4.5%

S6 1 4.24 28 27 0.0035 0.0035 –0.1% 5.5%

S7 1 2.59 22 24 0.0088 0.0089 1.4% 1.7%

S8 2 2.59 22 20 0.0084 0.0085 1.7% 6.1%

S9 2 4.24 28 24 0.0005 0.0005 –0.7% 6.2%

S10 2 4.24 26 28 0.0002 0.0003 3.4% 3.2%
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in Table 4. These numbers are naturally larger than the
RMSEa values for the same model. In the two shaded
columns of Table 4, we report two percentage differences
in RMSE values, ΔRd1 and ΔRd12, when the predictions
of different models are tested against the full set of data
from the 60 experiments. ΔRd1 compares the Full and Rd1
models and ΔRd12 compares the Full and Rd12 models.
Naturally all differences are positive and range between by
55% to 356% in ΔRd1 and between 9% and 158% for
ΔRd12. For each species the ΔRd12 values are smaller
than the ΔRd1 values.
Finally, we also compared the DRSMmethod with those

methods used in the paper by Domagalski et al. [14]. To
make a fair compassion, we filtered and transformed the
dataset according to what was used by Domagalski et al.:
(1) we only considered the experiments with yield greater
than or equal to 70%; (2) 37 experiments were used for
calibration, and the remaining used for verification; (3) the
logarithm of the product concentration was modeled as the
output. Using the DRSM method, the RMSE values are
0.026 for the calibration data and 0.052 for the verification
data. Both these RMSE values are better than most of the
models in the paper by Domagalski et al., and are
comparable to the best model there, which is using a
genetic algorithm, leading to RMSE equal to 0.032 and
0.044 respectively for the calibration and verification data.
In addition to the modeling accuracy, DRSM with Lasso is
shown to be computationally efficient, while performing a
deep heuristic search in genetic algorithm can be much
more computationally expensive.

3.1.3 Optimization of process conditions

The use of the RSM model in process optimization is well
established in the literature [24–26]. DRSM models, a
generalization of the RSM models, can also be used to
perform more detailed optimization studies. Without using
the duration of the experiment as a factor in the DoE,

which reduces the number of experiments, they enable us
to calculate the optimal batch duration to achieve an
optimal operation. Moreover, they also enable the
constraint with an indefinite time instance, for example,
the maximum concentration constraint of an intermediate
at any time between the start and the end of the batch. Like
any other optimization task, one needs to define the
objective function to be maximized or minimized and the
required constraints. In a recent publication [27], the
DRSM model has been used in the calculation of the
optimal operating window, during which all the impurities
are below a concentration upper limit.
Here, we solve the optimization problem that Doma-

galski et al. defined, to minimize the amount of catalyst,
while constraining the product concentration to be greater
than 90% at the cycle time, which is 6 h. We present three
variations of this problem and their respective solutions,
mostly to examine some important robustness issues. M1:
This is the basic optimization formulation. We calculate the
values of the factors that minimize catalyst usage while
respecting the product concentration and batch duration
constraints. The nominal predictions of the DRSM model
are used here. M2: This is a robust variation of the M1
problem above. It accounts for the fact that the
implemented factor values might be 5% different from
the optimal values calculated from the nominal model.
This will be called the implementation robustness. M3:
This is further variation of the M2 problem, accounting for
the prediction uncertainties of the DRSMmodel (with 95%
confidence interval). Therefore, this model considers both
the implementation robustness as well as the prediction
robustness.
The solutions to the above three variations to the

optimization problem are given in Table 5. The optimal
factor levels are given in coded values (varying between –1
and 1) and in the physical units. With M1, the minimum
catalyst amount is 0.015 equiv (of starting material 1).
However, this will violate the yield constraint when there is

Table 4 Comparison of models estimated from different datasets in case study A

Species
Number of γ RMSEa (10

–2 equiv) RMSEb (10
–2 equiv)

Full Rd1 Rds12 Full Rd1 Rds12 Rd1 ΔRd1 Rd12 ΔRd12

S1 27 26 31 0.62 0.54 0.41 1.25 102% 1.24 101%

S2 28 12 29 7.02 9.17 6.46 17.96 156% 14.38 105%

S3 28 24 24 0.65 0.50 0.49 1.30 99% 1.22 87%

S4 28 19 31 5.70 7.42 4.53 15.48 172% 14.71 158%

S5 36 19 36 4.93 7.35 4.35 22.48 356% 16.23 229%

S6 28 24 27 0.35 0.13 0.43 0.77 123% 0.40 14%

S7 22 20 24 0.89 0.87 0.99 1.97 122% 0.97 9%

S8 22 17 19 0.85 0.84 0.93 1.89 121% 1.03 20%

S9 28 28 24 0.05 0.03 0.06 0.08 55% 0.05 10%

S10 26 27 26 0.03 0.02 0.03 0.06 152% 0.03 17%
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uncertainty. The M2 solution requires that the yield
constraint is respected when the implemented factor vary
by 5% from the calculated optimal values. Naturally it asks
for a higher amount of catalyst, 0.024 equiv. Finally, if one
also considers the DRSM model’s uncertainty, more
catalyst (0.054 equiv) should be used. The factor levels
of the catalyst amount are given in bold because they also
represent the objective function of the optimization. The
optimal values of the temperature factor are affected by the
uncertainties considered especially on the M3 case, while
the corresponding values of the other three factors are less
sensitive; their coded values change by less than 15%. The
optimization results should be further validated through
experiments, especially when the DoE is very frugal. This
has been studied and discussed in detail previously [27].
With the use of the DRSM model, we can also easily

draw contour plots, which present how the objective
function or constraint values change. Such an example is
shown in Fig. 3 where the x-axis is the catalyst amount
(factor 3), which is also the objective function, while factor
1 is on the y-axis; other factors are fixed according to the
solution of formulation M1. The contour lines show the
DRSM nominal estimation of product concentration at 6 h.
The blue square is where the optimal solution lies, as it
corresponds to the smallest catalyst amount of x-axis while
satisfying that the product yield is greater than 0.9. We can
also generate a series of contour plots by varying multiple
factor levels as well as time, as shown in Fig. 4. Across
different subplots, we can observe the trend clearly that the
increase of the concentration with time will be accelerated
by a higher temperature (factor 1), a lower solvent volume
(factor 2).

Table 5 Factors in the design space and optimal conditions from different formulations

Item

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Temperature
/°C

Solvent volume
/(L$mol–1)

Catalyst amount
/equiv

Starting material 2
/equiv

Water amount
/wt-%

Range Lower 30 0.7 0.01 1.04 0.05

Upper 65 1.2 0.15 1.20 0.50

Solutions in coded
values

M1 0.76 – 1.00 – 0.93 – 1.00 – 0.55

M2 0.73 – 0.96 – 0.81 – 1.00 – 0.48

M3 0.40 – 0.84 – 0.37 – 1.00 – 0.60

Solutions in original
units

M1 60.84 0.70 0.015 1.04 0.152

M2 60.31 0.71 0.024 1.04 0.167

M3 54.52 0.74 0.054 1.04 0.139

Fig. 3 Contour plot of the concentration for product (in unit of equiv), with factors 1 and 3 varying at different values. Factor 2 is fixed at
0.7 L$mol–1, factor 4 is fixed at 1.04 equiv, and factor 5 is fixed at 0.152 wt-%, while time is fixed at 6 h. Blue square denotes the optimal
condition of M1.
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3.2 Case study B

Next, we show the results of case study B. Using the
reaction extent data, we develop DRSM models for the
seven identified reactions (i.e., seven responses), using
SWR or Lasso. The results are summarized in Table 6.
Both SWR and Lasso lead to the same global parameters R
and tc. For reactions R3 to R7, the difference of Lasso and
SWR is quite minimal, in terms of the number of variables
γ and the RMSE values.
For reactions R1 and R2, Lasso leads to smaller number

of variables, compared to stepwise reactions. Therefore,
we look at these two DRSM models in detail. We focus on
reaction R2 here, since reaction R2 has a larger RMSE
difference. The γ values are given in Table 7. Besides
removing some high-order terms, Lasso helps to remove
the 2FI term x2x3 and the quadratic term x2

2 entirely. The
weight of these removed terms is less than 2% of the
maximum weight in the models. Even though Lasso has a
total number of variables γ one third less than SWR, the
difference in the modeled output is extremely small, as one
can barely tell the difference of the SWR and Lasso fitting
lines shown in Fig. 5. At the beginning of each experiment,
the reaction extent is fixed to be zero, which is a feature
that constrained DRSM allows. This figure also includes

the true reaction extent obtained from the ODE system
from the simulation. We can observe that both DRSM
models can describe the true reaction extents very well.
The differences between the modeled reaction extents

and the true values are small for all seven identified
reactions. Among them, reaction R6 has the greatest
difference, whose fitting results are shown in Fig. 6. For
both SWR and Lasso, the obtained model of R6 is the
same, as presented in Table 8. The reaction rate of R6 is
small, and therefore, the noise in the data, after projection
from species concentration space to reaction extent space,
leads to more prominent relative errors, as one can observe
from the blue circles in the figure. Many other reactions,
for example R2, have even more negligible difference, and
the profiles of modeled reaction extents and true values
overlap each other, as shown previously in Fig. 5.
Finally, the computational time will be briefly discussed.

Same as what was observed in case study A, Lasso takes
much less time, 0.047 s on average, compared to SWR,
3.8 s on average. This improvement will be very valuable,
if one has many candidate stoichiometric groups and wants
to develop DRSM models for the reaction extents/rates for
a large number of candidate groups. This challenge will
appear if the chemistry is unknown and complex, and the
continuous-time DRSM models describing each reaction

Table 6 DRSM model summary of SWR and Lasso for different reactions

Reaction
R tc Number of variables γ RMSE (in unit of equiv) RMSE/max

(Lasso)SWR & Lasso SWR Lasso SWR (ref.) Lasso ΔLasso

R1 4 2.81 31 21 0.0032 0.0041 27% 0.4%

R2 4 2.81 30 20 0.0109 0.0150 38% 1.2%

R3 3 1.96 33 32 0.0135 0.0151 11% 1.5%

R4 2 2.82 26 26 0.0059 0.0059 0% 1.1%

R5 2 8.80 25 25 0.0045 0.0045 0% 2.9%

R6 2 8.80 19 19 0.0040 0.0040 0% 5.5%

R7 2 6.24 14 12 0.0027 0.0030 10% 6.6%

Table 7 Comparison of γ values estimated through SWR and Lasso for reaction R2 a)

Item Order β0ð�Þ
Linear term 2FI term Quadratic term

x1 x2 x3 x1x2 x1x3 x2x3 x1
2 x2

2 x3
3

Lasso 0 0.3555 0.0584 0.0527 – 0.0303 0.0064 – 0.0035 – 0.0017

1 0.3698 0.0146 0.0456 – 0.0423 – 0.0017

2 – 0.0437 – 0.0071 – 0.0120 – 0.0064 0.0059

3 – 0.0329 0.0023

4 – 0.0186

Stepwise
regression

0 0.3592 0.0572 0.0511 – 0.0298 0.0065 – 0.0036 – 0.0019 – 0.0047 0.0028

1 0.3880 0.0174 0.0500 – 0.0436 – 0.0047 0.0028

2 – 0.0316 – 0.0489 – 0.0088 – 0.0121 – 0.0043 0.0059

3 – 0.0460 – 0.0048 0.0018 0.0021 0.0023

4 0.0144 0.0091 0.0029 0.0019

a) A blank cell implies parameter is zero (Lasso) or insignificant (SWR)
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will be useful in determining whether a specific stoichio-
metric group is likely to happen or not.

4 Conclusions

In this paper, we introduced an improvement of the DRSM,
a data-driven modeling tool for the dynamic response data,
by utilizing Lasso regression instead of previously used
SWR. This makes the solution process much speedier
while maintaining the solution quality. Other algorithmic
enhancements added in the article include (1) a non-linear
regression to refine the value of the global parameter tc and
(2) the use of an ANOVA step after Lasso regression to
further eliminate insignificant model parameters. We tested
its ability to model different types of datasets. The
computationally efficient DRSM algorithm, with Lasso
regression incorporated, can be used for accurately
modeling different dynamic datasets, enabling data-driven
process development in multiple aspects, such as stoichio-
metry identification, process optimization and control.
For the case study, we first focus on modeling the

concentration data from an organic synthesis problem
described by Domagalski et al. in 2015 [14]. There are
three advantages in using the systematical data-driven
method DRSM: (1) DRSM model is more accurate than
most models and as accurate as the best model obtained
from genetic algorithm by Domagalski et al. (2) The
solution time of DRSM with Lasso is fast. (3) Last but not
the least, it does not need the data filter used in the genetic
algorithm, and thus enables the modeling of data in a
broader range. We further studied its applications in
process optimization and how to add robust DRSM
constraints to address uncertainty. In the second case
study, we demonstrated how DRSM can accurately model
the reaction extents, instead of species concentrations, for
another example in pharmaceutical industry. This shows
the versatility of DRSM approach in modeling different
types of data.
Moving forward, it will be interesting to study how to

use DRSM in automatic stoichiometry identification and
kinetic estimation. Using target factor analysis together
with DRSM, we can distinguish the true reactions from the
false ones in the underlying network. However, this is
based on an expert-generated list of candidate stoichiome-
tries, and false positives might exist. The DRSM algorithm

with Lasso described here, with low computational cost,
enables the screening of a large number of stoichiometric
groups, which can facilitate the automatic stoichiometry
identification.
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