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Abstract Few studies have described the key features and prognostic roles of lung microbiota in patients with
severe community-acquired pneumonia (SCAP). We prospectively enrolled consecutive SCAP patients admitted to
ICU. Bronchoscopy was performed at bedside within 48 h of ICU admission, and 16S rRNA gene sequencing was
applied to the collected bronchoalveolar lavage fluid. The primary outcome was clinical improvements defined as a
decrease of 2 categories and above on a 7-category ordinal scale within 14 days following bronchoscopy. Sixty-
seven patients were included. Multivariable permutational multivariate analysis of variance found that positive
bacteria lab test results had the strongest independent association with lung microbiota (R2= 0.033; P = 0.018),
followed by acute kidney injury (AKI; R2= 0.032; P = 0.011) and plasma MIP-1β level (R2= 0.027; P = 0.044).
Random forest identified that the families Prevotellaceae, Moraxellaceae, and Staphylococcaceae were the
biomarkers related to the positive bacteria lab test results. Multivariable Cox regression showed that the increase
in α-diversity and the abundance of the families Prevotellaceae and Actinomycetaceae were associated with clinical
improvements. The positive bacteria lab test results, AKI, and plasma MIP-1β level were associated with patients’
lung microbiota composition on ICU admission. The families Prevotellaceae and Actinomycetaceae on admission
predicted clinical improvements.

Keywords severe community-acquired pneumonia; lung microbiota; clinical improvements; 7-category ordinal scale;
Prevotellaceae

Introduction

Community-acquired pneumonia (CAP) is the leading
reason of hospitalization worldwide, which claims thou-
sands of lives each year [1]. Severe community-acquired

pneumonia (SCAP) refers to patients complicated with
severe hypoxemia, sepsis/septic shock, and acute respira-
tory distress syndrome (ARDS), who often require
intensive care and mechanical ventilation [2,3]. Although
broad-spectrum antibiotics and advanced oxygen support
are used commonly as the therapeutic regimen, the
mortality among SCAP patients remains as high as 25%–
50% [4,5].
Next-generation sequencing has revealed that the human

lung contains complex and dynamic microbiota commu-
nity [6]. The composition of lung microbiota in SCAP
patients is complex and susceptible to changes during

RESEARCH ARTICLE

Received October 14, 2020; accepted April 15, 2021

Correspondence: Qingyuan Zhan, drzhanqy@163.com;

Bin Cao, caobin_ben@163.com
*These five authors contributed equally to this work.

✉ ✉

Front. Med. 2022, 16(3): 389–402
https://doi.org/10.1007/s11684-021-0856-3



disease progression. The overgrowth of the invasive
pneumonia-associated pathogens in patients’ lower
respiratory tract may cause a decline in lung microbiota
diversity, and the microbiota might even be dominated by
single species [7]. Based on the new conceptual models of
respiratory microbiology proposed by Robert P Dickson,
the lung microbiota is determined by three factors, namely,
microbial immigration, elimination, and the relative
reproduction rates of the members, which are affected by
the regional growth conditions such as oxygen tension, pH,
alveolar ventilation, and temperature in the lung [8,9].
Critical illness alters the internal environment and
pathophysiology of the respiratory tract in patients with
SCAP. Laryngeal dysfunction, supine positioning, aspira-
tion or confusion, and intensive care unit (ICU) manage-
ment, including antibiotic use, mechanical ventilation, and
vasopressors, affect the balance of the immigration and
elimination of airway microorganisms [10]. Collectively,
these clinical parameters have the potential to change the
lung microbial composition of SCAP patients.
The relationship between respiratory microbial compo-

sition and respiratory infections has attracted increasing
research and clinical interests. Recently, several studies
have suggested that the lung microbiota is associated with
respiratory infection and disease outcomes. The murine
model suggests that the intact microbiota contributes to the
protection against bacterial pathogens with GM-CSF
signaling [11]. The sputum microbial composition is
associated with the length of stay and ICU admission in
children hospitalized for CAP [12]. Moreover, the
enrichment of specific taxon in the airway microbiota,
such as Enterobacteriaceae, might be related to high
plasma inflammatory cytokine level and the development
of ARDS, which indicate fewer ventilator-free days in
patients with critical illness [13,14]. Although previous
studies have identified that factors such as elder age,
underlying diseases, and immunocompromised status
predicted poor prognosis of SCAP patients [15], the
prognostic role of lung microbiota in SCAP patients
remains unclear.
As few studies have described the key features and

prognostic roles of the lung microbiota in patients with
SCAP, we conducted a study to explore the clinical factors
that may be associated with the lung microbiota in patients
with SCAP and identify the important taxa that may predict
clinical prognosis.

Materials and methods

Study populations

All patients with SCAP admitted in ICU between March
2018 and March 2019 were prospectively enrolled in this

observational study. The inclusion criteria were as follows:
(1) age ≥ 18 years; (2) diagnosed with SCAP according
to the 2007 Infectious Disease Society of America/
American Thoracic Society guidelines (Table S1) [16];
(3) time from illness onset to ICU admission ≤ 7 days; for
patients transferred to ICU from normal wards in our
hospital because of disease exacerbation within 7 days of
hospital admission, the time from illness onset to ICU
admission can be extended to 14 days (Fig. 1). Patients
were excluded if they met one of the following criteria:
(1) having a history of hospitalization within 14 days
before illness onset; (2) bronchoscopy couldn’t be
performed within 48 h after admission to ICU;
(3) peripheral blood specimens were not available within
24 h; (4) pregnant or breastfeeding women; (5) had an
alternative diagnosis at the end of the study, including lung
cancer, pulmonary tuberculosis, or pulmonary embolism.

Sample collection

Bronchoscopy was performed at bedside within 48 h of
ICU admission using the standard clinical protocol [17].
The bronchoscope was inserted through the nose or
orotracheal tube, and the bronchoalveolar lavage fluid
(BALF) samples were collected. Approximately 15 mL of
BALF specimen was immediately sent to the microbiology
laboratory for routine bacterial, fungal, and viral examina-
tions, and the remaining BALF was stored at – 80 °C until
further processing. Blood samples were obtained within
24 h of ICU admission. The blood samples were
centrifuged, and the remaining plasma was stored at
–80 °C.

16S rRNA gene sequencing

DNAwas extracted from BALF and negative control using
the Maxwell® RSC Whole Blood DNA Kit (Promega,
USA). The V3–V4 hypervariable region of the 16S rRNA
gene of all samples was amplified by polymerase chain
reaction (PCR). The pooled library was sequenced on the
Illumina Miseq platform (Illumina, San Diego, CA, USA)
using pair-end sequencing (2 � 300 bp). Details are
shown in the supplementary material.

Data collection

The following data of included patients were collected
using a standard case report form: demographic data,
underlying diseases, the time of illness onset, clinical
symptoms, laboratory findings, microbiology results,
radiographic data, antimicrobial use, glucocorticoid use,
and mechanical ventilation use. The included patients were
followed up until discharged or until the patient died,
whichever happened first.

390 Lung microbiota in severe community-acquired pneumonia



Cytokine measurement

The plasma interleukin-4 (IL-4), IL-6, IL-8, macrophage
inflammatory protein-1β (MIP-1β), vascular endothelial
growth factor-A (VEGF-A), and matrix metalloproteinase-
9 (MMP-9) of the included SCAP patients were detected
using a magnetic bead-based multiplex immunoassay and
read on a Bio-Plex 200 suspension array system (Bio-Rad,
Hercules, CA, USA) according to the manufacturer’s
instructions.

Definitions and outcomes

The primary outcome was the rate of clinical improve-
ments, which was defined as a decrease of 2 categories and
above on a 7-category ordinal scale within 14 days
following bronchoscopy. The ordinal scales, which were
also used in our influenza and COVID-19 studies,
consisted of the following categories: (1) not hospitalized
with resumption of normal activities; (2) not hospitalized,
but unable to resume normal activities; (3) hospitalization,
not requiring supplemental oxygen; (4) hospitalization,
requiring supplemental oxygen; (5) hospitalization, requir-
ing nasal high-flow oxygen therapy and/or noninvasive
mechanical ventilation; (6) hospitalization, requiring
extracorporeal membrane oxygenation and/or invasive
mechanical ventilation; (7) death [18–20]. In our study,
immunocompromised status was defined as meeting any of
the following conditions: having a history of cancer with
neutropenia (neutrophil count < 0.5 � 109/L), hemato-
logical malignancies, solid malignancies receiving che-
motherapy during the previous 3 months, solid organ or
bone-marrow transplant, active graft-versus-host disease,
bronchiolitis obliterans, human immunodeficiency virus
infection, immunoglobulin deficiency, using immunosup-
pressive agents, or current treatment with systemic
corticosteroids (≥ 20 mg of prednisone per day or its
equivalent) for > 30 continuous days before illness onset
[21]. The presence of ARDS on admission was diagnosed
according to the Berlin definition [22]. For nonventilated
subjects who had a history of acute respiratory failure
within 7 days because of a known respiratory event and
bilateral pulmonary infiltration on chest X-ray with PaO2/
FiO2 below 300 mmHg, ARDS was also diagnosed. Sepsis
and septic shock were diagnosed on the basis of the third
international consensus [23]. Acute kidney injury (AKI)
was diagnosed on the basis of the Kidney Disease
Improving Global Guidelines (KDIGO) [24]. Acute
cardiac failure was diagnosed by cardiologists on the
basis of clinical vitals, laboratory findings, and echocar-
diography. Pneumonia severity was assessed by CURB-
65, APACHE-II, and PSI risk class. For patients admitted
to ICU on the same day, the order of performing
bronchoscopy was arranged according to the time of
signing the bronchoscopy informed consent.

Microbial laboratory tests

All the specimens for diagnostic microbiology were
collected within 48 h after ICU admission. Virus laboratory
tests were considered positive if the respiratory virus was
detected in sputum, endotracheal aspirates (ETA), BALF,
or nasopharyngeal (NP) swabs by real-time PCR (Zhijiang,
Shanghai, China), including respiratory syncytial virus,
influenza virus types A and B, parainfluenza virus,
rhinovirus, coronavirus, human metapneumovirus, and
adenovirus. Positive bacteria or atypical pathogen labora-
tory test results were defined as meeting one of the
following criteria: (1) positive bacterial culture in the blood
or pleural fluid sample; (2) positive antigen test for
Legionella pneumophila (Binax Now; Trinity Biotech,
Bray, Ireland) or Streptococcus pneumoniae (Binax Now;
Emergo Europe, Amsterdam, The Netherlands) in urine
sample; (3) identification of Mycoplasma pneumoniae or
Chlamydia pneumoniae in sputum, BALF, ETA, or NP
swabs by real-time PCR (Zhijiang, Shanghai, China);
(4) identification of L. pneumophila in sputum, BALF, or
ETA by real-time PCR (Zhijiang, Shanghai, China);
(5) bacteria with moderate-to-heavy growth (> 3+
growth) in qualified sputum or ETA or quantified culture
in BALF of ≥ 104 CFU/mL [21]. The diagnosis of
invasive fungal disease (IFD) was based on the revision
and update of the consensus definitions of IFD [25].

Statistical analysis

The software VSEARCH (version 2.7.1) and USEARCH
(version 10.0) were used to process the sequencing data.
Reads were denoised into Zero-radius Operational Taxo-
nomic Units (ZOTUs) with UNOISE3. Contaminants and
ZOTUs were identified by decontam package or compar-
ison with the control samples (Table S2). A total of 490
ZOTUs were analyzed after removal of contaminants and
ZOTUs whose relative abundance was less than 0.01%.
Statistical analysis was performed in R version 3.6.2 via
the Rstudio interface. PERMANOVA (vegan R-package)
based on the Bray–Curtis distance was performed to assess
the association between the clinical factors and the lung
microbiota. A random forest learning approach (random-
Forest R-package) was used to identify the clinical factors
associated with taxon. The Wilcoxon rank sum test and
generalized linear models were performed to compare the
relative abundance of the species. Multivariable Cox
regression was performed to assess the association
between lung microbiota and clinical improvements. The
Cox regression model was adjusted for sampling season,
plasma IL-8 level, CURB-65, APACHEII scores, presence
of shock at sampling, oxygen index on admission,
creatinine level, and microbiology results. Detailed
statistical analysis was described in the supplementary
material.
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Data access

The sequence data have been deposited in the NCBI
Sequence Read Archive under accession PRJNA616057.
Feature, taxonomy, metadata tables, and a reproducible
workflow of the analysis are available for download at
related website.

Results

Patients’ characteristics and bacterial profiles

A total of 67 patients were included (Table 1), and the
study flowchart is depicted in Fig. 1. The median age of

study patients was 64 years. Fifty (74.63%) patients in the
study population were male. Sixteen (23.88%) patients
were current smokers, and 10 patients (14.93%) were in
immunocompromised status. The sampling season was
winter (27/67, 40.3%). Twenty-four (35.82%) patients had
a decrease of 2 categories and above on a 7-category
ordinal scale within 14 days, and the average number of
days was 9.54 days. Forty (59.7%) patients had a decrease
of 1 category and above on a 7-category ordinal scale
within 14 days, and the average number of days was
6.8 days. The distribution of patients in each changed
category ordinal from day 1 to 14 is shown in Fig. S1. A
total of 67 BALF samples from the patients were analyzed.
Proteobacteria was the most abundant phylum in the lung

Table 1 Baseline characteristics of the patients

Variable All patients (N = 67) Improvement (n = 24) Unimprovement (n = 43) P

Age, year, median (IQR) 64 (22) 56 (16.5) 67 (23) 0.07

Male, n (%) 50 (74.63) 17 (70.83) 33 (76.74) 0.59

Smoking statusa

Current smoker, n (%) 16 (23.88) 8 (33.33) 8 (18.6) 0.34

Former smoker, n (%) 19 (28.36) 5 (20.83) 14 (32.56)

Nonsmoker, n (%) 32 (47.76) 11 (45.83) 21 (48.84)

Drinking history, n (%) 13 (19.4) 7 (29.17) 6 (13.95) 0.24

Immunocompromised status, n (%) 10 (14.93) 5 (20.83) 5 (11.63) 0.51

Chronic respiratory disease, n (%) 11 (16.42) 3 (12.5) 11 (25.58) 0.76

Sampling season, n (%)

Spring 16 (23.88) 9 (37.5) 7 (16.28) 0.18

Summer 12 (17.91) 3 (12.5) 9 (20.93)

Autumn 12 (17.91) 5 (20.83) 7 (16.28)

Winter 27 (40.30) 7 (29.17) 20 (46.51)

Symptoms, n (%)

Fever 53 (79.1) 18 (75) 35 (81.40) 0.54

Cough 50 (74.63) 18 (75) 32 (74.42) 0.96

Sputum 36 (53.73) 14 (58.33) 22 (51.16) 0.76

Dyspnea 54 (80.60) 19 (79.17) 35 (81.40) 1

Confusion/disorientation 15 (22.39) 4 (16.67) 11 (25.58) 0.40

Laboratory findings on ICU admission

pH, median (IQR) 7.443 (0.058) 7.44 (0.051) 7.44 (0.079) 0.78

PaO2/FiO2, mmHg, mean�SD 181.36�78.62 205.06�78.99 168.13�76.14 0.10

Procalcitonin >1 ng/mL, n (%) 36 (53.73) 10 (41.67) 26 (60.47) 0.14

Creatinine >106 μmol/L, n (%) 28 (41.79) 7 (29.17) 21 (48.84) 0.12

Initial radiographic findings, n (%)

Diffuse bilateral pulmonary infiltration 56 (83.58) 19 (58.33) 37 (86.05) 0.70

Pleural effusion 25 (37.31) 4 (16.67) 21 (48.84) 0.009

Pathogen identifiedb, n (%)

Virus 25 (37.31) 9 (37.5) 16 (37.21) 0.96

Bacteria 12 (17.91) 4 (16.67) 8 (18.60)

Viral and bacterial co-infection 7 (10.45) 2 (8.33) 5 (11.63)

Atypical pathogensc 9 (13.43) 4 (16.67) 5 (11.63) 0.84

Probable IFD 8 (11.94) 2 (8.33) 6 (13.95) 0.77

Complications at sampling, n (%)

ARDS 29 (43.28) 7 (29.17) 22 (51.16) 0.08

Sepsis 65 (97.01) 22 (91.67) 43 (100) 0.12
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microbiota, accounting for 43.7% of the total filtered reads,
followed by Firmicutes (30.94%), Actinobacteria (7.93%),
Bacteroidetes (4.6%), and Fusobacteria (1.17%). At
the family level, the most abundant taxa were Pseudomo-
nadaceae (23.22%), Streptococcaceae (13.71%),
Pasteurellaceae (11.33%), Corynebacteriaceae (5.72%),
Moraxellaceae (5.15%), Staphylococcaceae (4.94%),

Bacillaceae_1 (4.5%), Veillonellaceae (2.98%), Prevotel-
laceae (2.11%), and Enterobacteriaceae (1.74%).

Clinical factors associated with lung microbiota on ICU
admission

We first performed a univariate PERMANOVA on the

(Continued)

Variable All patients (N = 67) Improvement (n = 24) Unimprovement (n = 43) P

Septic shock 21 (31.34) 3 (12.5) 18 (41.86) 0.01

AKI 23 (34.33) 6 (25) 17 (39.53) 0.23

Acute cardiac insufficiency 15 (22.39) 7 (29.17) 8 (18.60) 0.32

Antibiotic used before samplingd, n (%) 67 (100)

Carbapenems 22 (32.84) 7 (29.17) 15 (34.88) 0.97

β-lactams plus fluoroquinolones only 37 (55.22) 14 (58.33) 23 (53.49)

β-lactams only 5 (7.46) 2 (8.33) 3 (6.98)

Fluoroquinolones only 3 (4.48) 1 (4.17) 2 (4.65)

Vancomycine 11 (16.42) 0 (0) 11 (25.58) 0.02

Oxygen support before sampling, n (%)

High-flow nasal cannula only 26 (38.81) 12 (50) 14 (32.56) 0.16

Mechanical ventilation 41 (61.19) 12 (50) 29 (67.44)

Mechanical ventilation ≥2 days, n (%) 23 (34.33) 6 (25) 17 (39.53) 0.23

Severity variables at sampling

APACHE-II, mean�SD 12.78�5.65 10.17�5.76 14.23�5.10 0.01

PSI risk class IV–V, n (%) 41 (61.19) 12 (50) 29 (67.44) 0.16

CURB-65 risk score 3–5, n (%) 26 (38.81) 4 (16.67) 22 (51.16) 0.005

7-category ordinal scale at sampling, n (%)

5: Hospitalization, requiring HFNC and/or non-IMV 42 (62.69) 18 (75) 24 (55.81) 0.12

6: Hospitalization, requiring ECMO and/or IMV 25 (37.31) 6 (25) 19 (44.19)

Days from illness onset to admission, median (IQR) 5 (4) 5.5 (4.25) 5 (4) 0.91

Hours from admission to samplingf, median (IQR) 21 (13) 21 (17) 21 (11.5) 0.79

ICU outcomes

ICU length of stay, day, median (IQR) 9 (9.5) 7.5 (5.5) 12 (10.5) 0.03

Death in ICU, n (%) 11 (16.41) 0 (0) 11 (25.58) 0.23

Day 14 mortality, n (%) 8 (11.94) 0 (0) 8 (18.60) 0.06

Plasma biomarker on admission, pg/mL, mean�SD

IL-4 5.64�12.6 4.89�6.19 6.06�15.1 0.34

IL-6 336.30�725.60 95.99�133.02 470.42�875.35 0.00

IL-8 61.50�144.24 19.63�23.81 84.87�175.56 0.56�10–6

MIP-1β 169.01�498.12 117.53�194.91 197.75�605.59 0.30

VEGF-A 1343.97�761.88 1269.44�752.93 1385.56�772.50 0.44

MMP-9 142.34�156.14 118.01�83.77 155.92�184.23 0.89

aSmoking status was grouped as nonsmokers, current smokers, and former smokers (defined as previous smokers who had quit at least 6 months before illness
onset).
bTwo patients had positive urinary antigen for Streptococcus pneumoniae with negative bacteria laboratory test results in bronchoalveolar lavage fluid (BALF).
Other microbiology results were obtained from the identification in BALF collected within 48 h.
cAtypical pathogens consisted of Legionella pneumophila and Mycoplasma pneumoniae.
dOnly six patients (8.96%) did not receive antibiotics before admission to ICU. Among the patients, two received carbapenems, and four received β-lactams plus
fluoroquinolones only.
eConsisting of vancomycin, teicoplanin, and linezolid.
fFor patients admitted to ICU on the same day, the order of performing bronchoscopy was arranged on the basis of the time sequence of signing the
bronchoscopy informed consent.
Abbreviations: IFD, invasive fungal disease; ARDS, acute respiratory distress syndrome; AKI, acute kidney injury; IQR, interquartile range; SD, standard
deviation; ICU, intensive care unit.
P values comparing ICU care and no ICU care are obtained from χ2 test, Fisher’s exact test, or Mann–Whitney U test.
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association between clinical factors and lung microbiota.
The plasma MIP-1β level (Bray–Curtis distance; R2 =
0.029; P = 0.03), procalcitonin (PCT) level (R2 = 0.029; P
= 0.026), complicated with AKI (R2 = 0.033; P = 0.012),
positive bacteria laboratory test results (R2 = 0.033; P =
0.013), and the time from admission to sampling (R2 =
0.049; P = 0.018; Fig. 2A–2E) were significantly
associated with the lung microbiota based on the univariate
PERMANOVA. By contrast, age, baseline chronic respira-
tory diseases, antibiotic use, complicated with ARDS, and
septic shock (Fig. S2, Table S3) were not significantly
associated with the lung microbiota.
We performed a multivariable analysis to assess the

independent association of the clinical factors. Smoking
status (R2 = 0.036; P = 0.185), time on mechanical
ventilator before sampling (R2 = 0.04; P = 0.097), and
sputum production (R2 = 0.021; P = 0.118; Fig. 2F) whose
P value was less than 0.2 were also included. κ test did not
show a severe multicollinearity problem among the eight
factors (K = 4.8; Fig. 2F). The positive bacteria laboratory
test results showed the strongest independent association
with the lung microbiota composition (multivariable

PERMANOVA, R2 = 0.033; P = 0.018), followed by
AKI (R2 = 0.032; P = 0.011) and plasma MIP-1β level (R2

= 0.027; P = 0.044).

Bacteria laboratory test results and lung microbial
taxa

The Prevotellaceae family played the most important role
in distinguishing bacterial samples with positive bacteria
laboratory test results from those with negative results,
followed by the pathogenic taxa, such as, the families
Moraxellaceae, Staphylococcaceae, and Streptococcaceae
(Fig. 3A). In patients with positive bacteria laboratory test
results, the mean relative abundance of the families
Prevotellaceae, Microbacteriaceae, and Actinomycetaceae
decreased, whereas the families Moraxellaceae, Staphylo-
coccaceae, and Streptococcaceae increased (Fig. 3A and
3B), which were in line with their high isolation rate of
typical bacterial culture (Table 2). 16S rRNA gene
sequencing could produce the same results as culture
methods in 61% of patients (Table 2). However, no
significant difference in the relative abundance of the

Fig. 1 Study flow chart. SCAP, severe community-acquired pneumonia; ICU, intensive care unit; AECOPD, acute exacerbation of
chronic obstructive pulmonary disease. *The patients transferred to ICU from normal wards in our hospital because of disease
exacerbation within 7 days of hospital admission were also included.
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family Pseudomonadaceae was observed between the two
groups of patients (Fig. 3A). The samples with bacteria
detected had lower α diversity, and the difference was not
significant (Fig. 3C).

Lung microbiota and clinical improvements

The lung microbial community composition of the patients
on admission was not associated with clinical improve-
ments (PERMANOVA; Bray–Curtis distance; R2 = 0.011;
P = 0.76). The increased Shannon index predicted a faster
decrease of 2 categories, which was analyzed continuously
(adjusted HR 1.43, 95% CI 1.04–1.98, P = 0.03) or by
organizing their value into ranges (adjusted HR 5.73, 95%
CI 1.41–23.26, P = 0.01; Fig. 4B, Table 3). Although
positive bacteria laboratory test results were not associated
with clinical improvement, we found that every 1%
increase in the relative abundance of the families
Prevotellaceae and Actinomycetaceae in the lung micro-

biota of the patients increased the probability for clinical
improvements by 14% and 10%, respectively (95% CI
1.04–1.25, P = 0.006; 95% CI 1.02–1.18, P = 0.01;
Table 3, Fig. 4C and 4D). However, the families
Moraxellaceae, Staphylococcaceae, and Streptococcaceae
were not associated with clinical improvement (Table 3,
Fig. 4C and 4D). The proportions of patients with ARDS,
septic shock, CURB-65 ≥ 3, and PSI ≥ IV were similar
irrespective of the different levels of α diversity or relative
abundance of taxa (Table S4).

Discussion

This prospective cohort study described the composition of
lung microbiota and the important taxa predicting clinical
prognosis in patients with SCAP. The core findings of our
study indicated that positive bacteria laboratory test results
had the strongest independent association with the lung

Fig. 2 Clinical factors associated with lung microbiota on ICU admission. Principal Coordinate Analysis (PCoA) plot based on Bray–
Curtis distance revealed that the lung microbial community composition was significantly associated with the concentration of MIP-1β (A)
and procalcitonin (B). The lung microbiota was associated with the presence of acute kidney injury (AKI) on ICU admission (C), positive
bacteria laboratory test results (D), and the time from ICU admission to sampling under bronchoscopy (E). The co-association among the
eight clinical factors was calculated by Pearson correlation analysis (F). The circles were proportional to the absolute value of the
correlation coefficients. The squares represented the P values. “X” represented the P values larger than 0.05. AKI, acute kidney injury;
PCT, procalcitonin; bac, positive bacteria laboratory test results; MV, time on mechanical ventilator before sampling; bron, the time from
ICU admission to sampling under bronchoscopy; sputum, sputum production.
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microbiota composition on patients’ ICU admission,
followed by AKI and plasma MIP-1β level. The increased
α diversity and the enrichment of the families Prevotella-
ceae and Actinomycetaceae in the lung microbiota were
associated with clinical improvements.
In this study, the positive bacteria laboratory test results

on admission were the most important factor associated
with patients’ lung microbiota. The bacteria that could be
identified by the laboratory tests used in this study
(primarily culture-based methods) might be more abundant
in the lower respiratory tract [26]. This finding might
explain why these taxa (e.g., Acinetobacter baumannii and
Staphylococcus aureus) dominated the lung microbiota in

patients with positive bacteria laboratory results as
revealed by 16S rRNA gene sequencing. Although the
results of 16S rRNA sequencing and culture-based
methods were consistent with regard to dominant bacteria,
the results related to Pseudomonas aeruginosa differed in
these two technologies. Although culture-based methods
had high isolation rate (33.33%) of Pseudomonas
aeruginosa, 16S rRNA sequencing did not show a
significant difference in the relative abundance of the
family Pseudomonadaceae between the positive bacteria
laboratory test and negative bacteria laboratory test groups.
The ICU environment might be the reason behind the
phenomenon. P. aeruginosa is a primary nosocomial

Fig. 3 Bacteria laboratory test results and lung microbial taxa. The top 15 biomarker taxa associated with positive bacteria laboratory
test results were listed (A). The black points represented significant difference in the relative abundance of the species between the two
groups. The squares represented the median relative abundance (–log10) of the biomarker taxa across the groups. *The variation of the
relative abundance in the family Pseudomonadaceae, which was not included in the top 15, was shown. (B) The positions of the ZOTUs
on the Y-axis were determined by –log10 (P value from the comparison of the mean relative abundance in ZOTUs among the groups). The
size of circles was proportional to the relative abundance of the ZOTUs in microbiota. (C) The boxplots represented the diversity measures
(Shannon index and Richness) for the patients (center line, median; box limits, interquartile range; whisker limits, maximum/minimum).
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pathogen in ICU. The risk factors for P. aeruginosa
acquisition consisted of antibiotic pressure, mechanical
ventilation use, length of hospitalization, cross-transmis-
sion among patients and medical staffs, and environmental
factors, such as contamination of tap water [27–29]. All of
our patients had received antimicrobial treatments, and
more than half were exposed to mechanical ventilation
before bronchoscopy. Thus, these patients might have the
same risk of obtaining P. aeruginosa colonization under
the ICU status. Although 16S rRNA gene sequencing had a
low accuracy for pathogen identification, it could capture
all the information related to bacterial species, including
fastidious bacteria in the respiratory tract, which might
explain the different results between culture-dependent and
culture-independent analysis in our study [30,31].
AKI was common in SCAP patients [32]. Many studies

had suggested a complex cross-talk between the lung and
the kidney [33]. Cigarette smoking could induce endothe-
lial cell injury with increased AGEs-RAGE levels in the
lung and kidney [34]. In critically ill patients, mechanical
ventilation was proven to be a risk factor for AKI by a
meta-analysis [34]. A study in mice with sepsis established
by cecal ligation and puncture showed that ventilator-
induced lung injury increased the renal expression of
VEGF, VCAM-1, and angiopoietin-2 [35]. In our study,
we observed that the presence of AKI on admission was
associated with lung microbiota of the patients. However,

few studies described the effect of AKI on lung microbiota.
The plasma MIP-1β level was significantly associated with
the abundance of the Streptococcaceae family. In vitro
experiments confirmed that S. pneumoniae D39 could
induce the upregulation of MIP-1β gene in human
monocytes [36]. Similar conclusions, that is, the increased
level of MIP-1β in BALF was related to the enrichment of
S. pneumoniae in the lung microbiota, were drawn from
patients with asthma [37]. The enrichment of Streptococ-
cus spp. in the lung microbiota was associated with high
plasma MIP-1β level in our patients. The ZOTU4,
belonging to the family Streptococcaceae, was signifi-
cantly higher in the high MIP-1β level group (Fig. S3).
In our study, after adjustment for microbiology results

and severity of illness, multivariate analysis showed that
clinical improvements were associated with increased
relative abundance of the families Prevotellaceae and
Actinomycetaceae. The results of our study were sup-
ported by several previous studies. Based on previous
studies, the relative abundance of Prevotella was inversely
associated with the extent of airway inflammation in
patients with cystic fibrosis [38]. An increase in the
abundance of Prevotella in nose/throat microbiota was
related to lower susceptibility to influenza A infection [39].
As the families Prevotellaceae and Actinomycetaceae
usually resided in the healthy respiratory tract or oral
cavity [40–42], the protective role of these families might

Table 2 Comparison between positive bacteria laboratory test results and sequencing results
MV≥2 daysa Bacteria The most abundant ZOTU in sequencing

Yes Acinetobacter baumannii ZOTU4_f_ Streptococcaceae (38.43%)c

Yes Acinetobacter baumannii ZOTU5_f_ Moraxellaceae (87.82%)

Yes Acinetobacter baumannii, Klebsiella pneumoniae ZOTU5_f_ Moraxellaceae (37.71%)

Yes Pseudomonas aeruginosa ZOTU1_f_ Pseudomonadaceae (98.5%)

Yes Pseudomonas aeruginosa ZOTU1_f_ Pseudomonadaceae (83.84%)

Yes Staphylococcus aureus ZOTU18_f_ Streptococcaceae (54.3%)

Yes Staphylococcus aureus ZOTU10_f_ Staphylococcaceae (29.84%)

No Pseudomonas aeruginosa ZOTU18_f_ Streptococcaceae (13.98%)

No Pseudomonas aeruginosa ZOTU1_f_ Pseudomonadaceae (69.33%)

No Pseudomonas aeruginosa ZOTU1_f_ Pseudomonadaceae (83.92%)

No Pseudomonas aeruginosa ZOTU1_f_ Pseudomonadaceae (36.14%)

No Staphylococcus aureus ZOTU13_f_ Corynebacteriaceae (15.91%)

No Staphylococcus aureus ZOTU10_f_ Staphylococcaceae (59.17%)

No Streptococcus pneumoniaeb ZOTU4_f_ Streptococcaceae (98.02%)

No Streptococcus pneumoniaeb ZOTU1_f_ Pseudomonadaceae (27.86%)

No Acinetobacter baumannii ZOTU5_f_ Moraxellaceae (50.41%)

No Klebsiella pneumoniae ZOTU59_f_ Bacteroidaceae (12.28%)

No Escherichia coli ZOTU44_f_ Corynebacteriaceae (13.28%)

aThe patients who had more than 2 days on ventilator were defined as “Yes,” and those who had less than 2 days or never received mechanical ventilation were
defined as “No.”
bTwo patients had positive urinary antigen for Streptococcus pneumoniae with negative bacteria laboratory test results in bronchoalveolar lavage fluid (BALF).
cThe relative abundance of the most abundant ZOTU was shown.
The bold font represented different results between positive bacteria laboratory test results and sequencing results.
Abbreviation: MV, mechanical ventilation.
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stem from its ability to inhibit the growth of pathogenic
bacteria. For example, coculture experiments observed that
Prevotella spp. could inhibit Hemophilus influenzae-
induced IL-12p70 in dendritic cells [43]. Nevertheless,
another set of research showed that the enrichment of lung
microbiota with Prevotella enhanced the level of BALF
inflammatory cytokines, which was associated with the
development of asthma in children and ARDS in severe
patients [13,40,44]. The findings in current studies
appeared to be inconsistent probably because of the
observational nature and potential confounders in these

studies. In addition, the disease type and population in
these studies were different, and the result of current
studies had limited generalizability. Therefore, the actual
role of these taxa in disease severity and prognosis of
patients with respiratory diseases should be further
explored.
Different from some respiratory microbiome studies in

critically ill patients, our study found that the composition
of lung microbiota at sampling was not associated with the
presence of ARDS or septic shock. For example, unlike the
report in two previous published studies [13,14], the

Fig. 4 Lung microbiota and clinical improvements. Survival curves were plotted using the Kaplan–Meier method. The primary outcome
was the rate of clinical improvements (defined as a decrease of 2 categories and above on a 7-category ordinal scale) within 14 days
following bronchoscopy. Richness (A), Shannon index (B), and the relative abundance of the families Prevotellaceae (C) and
Actinomycetaceae (D) were protective of the clinical improvements after adjusting for sampling season, plasma IL-8 level, CURB-65,
APACHEII scores, presence of shock at sampling, oxygen index on admission, creatinine level, and microbiology results. The categorical
cut-offs were consistent with those in Table 3.
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relative abundance of the family Enterobacteriaceae was
not associated with disease severity and clinical outcomes
in our study probably because these studies primarily
focused on patients with ARDS caused by severe trauma,
cardiac arrest, or cerebral vascular events but not severe
infection. In Robert P. Dickson et al.’s study, patients with
pneumonia or sepsis merely accounted for 13% (12/91),
and in Ariane R. Panzer’s study, the ARDS in patients was
due to trauma [13,14]. Thus, the conclusions of the studies
might not be applied to SCAP patients.
Our study has several limitations. First, the lung

microbiota analysis was only performed on ICU admis-
sion. The variation of lung microbiota during patients’

hospitalization and the association of lung microbiota with
clinical improvements could not be analyzed. Second, the
sample size of the included patients was small compared
with studies for other diseases. Further studies are needed
to validate the conclusions.

Conclusions

In this study on respiratory microbiome of SCAP patients,
we found that the positive bacteria laboratory test results,
AKI, and plasma MIP-1β level were associated with the
composition of lung microbiota on patients’ ICU admis-

Table 3 Association of lung microbiota with clinical improvements in multivariable analysis

Variable Adjusted HRa 95% CI P value

Pathogen identifiedb

Bacteria only Reference

Viral–bacterial co-infection 0.37 0.04–3.20 0.37

Virus 0.90 0.18–4.60 0.90

Others 0.79 0.21–3.02 0.73

Richness (continuous) 1.01 1.00–1.02 0.17

Richness (categorical)c

<150 Reference

199–150 0.65 0.15–2.87 0.57

≥200 3.51 0.84–14.64 0.08

Shannon (continuous) 1.43 1.04–1.98 0.03

Shannon (categorical)c

<2 Reference

4.5–2 2.65 0.73–9.67 0.14

>4.5 5.73 1.41–23.26 0.01

Prevotellaceae, 1%d (continuous) 1.14 1.04–1.25 0.006

Prevotellaceae, % (categorical)c

<0.3 Reference

2.4–0.3 3.54 1.06–11.84 0.04

>2.4 8.58 2.15–34.26 0.002

Actinomycetaceae, 1% (continuous) 1.10 1.02–1.18 0.01

Actinomycetaceae, % (categorical)c

<0.005 Reference

0.5–0.005 2.40 0.74–7.77 0.15

>0.5 10.25 2.77–37.87 0.0005

Moraxellaceae, 1% (continuous) 1.00 0.96–1.04 0.89

Staphylococcaceae, 1% (continuous) 0.98 0.94–1.03 0.40

Streptococcaceae, 1% (continuous) 1.01 0.99–1.04 0.35

Pseudomonadaceae, 1% (continuous) 0.99 0.98–1.01 0.23

Enterobacteriaceae, 1% (continuous) 0.95 0.78–1.15 0.58

aMultiple cox regression analysis adjusted for sample season, plasma IL-8 level, CURB-65, APACHEII scores, presence of shock at sampling, oxygen index on
admission, creatinine level, and microbiology results.
bMultiple cox regression analysis adjusted for sample season, plasma IL-8 level, CURB-65, APACHEII scores, presence of shock at sampling, oxygen index on
admission, and creatinine level.
cWe changed the continuous variables into categorical variables by organizing their values into ranges. First, according to the value of the variable, 67 samples
were arranged in order. Second, we divided the samples into 10 groups evenly. Finally, we combined the neighboring groups that had the similar probability for
the event happened.
d1% referred to the probability for clinical improvements of every 1% increase in the relative abundance of taxa.
Abbreviations: HR, hazard ratio; CI, confidence interval.
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sion. The increased α diversity and the enrichment of the
families Prevotellaceae and Actinomycetaceae in the lung
microbiota were associated with clinical improvements.
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