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Abstract Advanced model-based control strategies, e.g.,
model predictive control, can offer superior control of key
process variables for multiple-input multiple-output sys-
tems. The quality of the system model is critical to
controller performance and should adequately describe the
process dynamics across its operating range while
remaining amenable to fast optimization. This work
articulates an integrated system identification procedure
for deriving black-box nonlinear continuous-time multi-
ple-input multiple-output system models for nonlinear
model predictive control. To showcase this approach, five
candidate models for polynomial and interaction features
of both output and manipulated variables were trained on
simulated data and integrated into a nonlinear model
predictive controller for a highly nonlinear continuous
stirred tank reactor system. This procedure successfully
identified system models that enabled effective control in
both servo and regulator problems across wider operating
ranges. These controllers also had reasonable per-iteration
times of ca. 0.1 s. This demonstration of how such system
models could be identified for nonlinear model predictive
control without prior knowledge of system dynamics
opens further possibilities for direct data-driven methodol-
ogies for model-based control which, in the face of process
uncertainties or modelling limitations, allow rapid and
stable control over wider operating ranges.

Keywords nonlinear model predictive control, black-box
modeling, continuous-time system identification, machine
learning, industrial applications of process control

1 Introduction

Against a backdrop of data proliferation and a surging
enthusiasm in the applications of artificial intelligence in
industry, there has been a growing interest in the
community to incorporate the latest results reported in
the machine learning (ML) literature to infer dynamical
systems from data more effectively [1]. This inference of
dynamical systems is also known as system identification
(SysID). This discipline has vital industrial pertinence
because it yields representations of the process that, firstly,
improve system understanding, and secondly, enable the
simulation of complex systems to obtain time-series
predictions. While this discipline is anchored in statistics
and applied mathematics and is thus well-situated to take
advantage of the data-driven industry 4.0 revolution, it
remains an art form in practice, not least due to the
numerous design decisions that practitioners encounter as
well as the large number of parameters and hyperpara-
meters that need to be estimated.

1.1 Model predictive control

A prominent application of SysID can be found in
advanced model-based process control strategies such as
model predictive control (MPC). MPC incorporates
knowledge about the process through a system model
and solves a dynamic optimization problem at each time
step to yield an optimal control sequence. It then applies
the first control action in this sequence to the system before
proceeding to re-solve the optimization problem at the next
time step [2]. MPC can be especially useful because, unlike
common applications of conventional process controllers,
it natively supports multiple-input multiple-output
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(MIMO) formulations. It also allows system constraints,
which represent process limits, to be directly included in
the problem formulation, thereby ensuring plant safety and
reliability in an explicit manner [3]. MPC has seen
successful adoption in industry to ensure safe, reliable,
and profitable system operation, with key examples present
in process manufacturing, the control of complex machin-
ery, as well as other value-adding activities [3].
The system model plays a determinant role in MPC. It

should adequately describe the process dynamics across
the controller operating range while remaining simple
enough to allow fast optimization [4]. These models could
either be constructed from first principles, which might be
difficult and costly for complex processes [5], or directly
inferred from empirical data [6]. These models could also
have different forms: linear, nonlinear, hybrid or nonpara-
metric, among others. MPC products have typically relied
on linear models to exploit efficient optimization algo-
rithms [7]. However, such linear MPCs might struggle to
offer effective control outside a limited operating range
[5,8]. Indeed, achieving tight control across a process’
entire operating range is generally difficult, with other
conventional applications of widely-used methods like
proportional-integral-derivative controllers also ill-
equipped to handle systems that are highly nonlinear
around their operating points [9,10]. Nonlinear MPCs
(NMPCs) can overcome these limitations by employing
nonlinear system models and system constraints, which
have more flexible forms that permit better representation
of the process over a wider operating range. This comes
however at the expense of needing to solve non-convex
optimization problems quickly and precisely [11]. Refer-
ences [3] and [12] describe successful applications of
different MPC formulations in a broad class of academic
and industrial problems.
Recent advances in computing and statistics have

generated novel techniques that could further improve
the viability of black-box nonlinear SysID methods for
model-based control. Such black-box methods are useful
when process understanding is limited to begin with, or
when mechanistic models derived from first principles take
prohibitively long to evaluate for fast-sampling applica-
tions. Reference [13] demonstrated the neural network-
based identification of single-input single-output system
models for a pH neutralization process and showed that the
resulting NMPC was able to track set-point changes better
than a linear MPC. References [14] and [15] reported the
use of recurrent neural networks and ensemble techniques
to generate MIMO system models for NMPC of a
continuous stirred tank reactor (CSTR) system, showing
that these NMPCs performed better than linear MPCs at
rejecting process disturbances.

1.2 Key contributions

Related works in the SysID literature have typically

focused on presenting methodologies with special proper-
ties. Reference [1] reported a specific methodology for
learning efficient models through sparse regression, for
instance. The present work is instead designed to be
expository and comprehensive in nature, and its main
contribution is to articulate an integrated, overarching
approach for learning the dynamics of continuous-time
systems under control. This work is targeted at interested
or starting practitioners in need of a systematic, integrated,
and rigorous methodology for applying ML SysID
techniques for model-based control purposes.
The key steps of this integrated approach are as follows:

(i) the experimental design for data generation, (ii) the
regression workflow which consists of data preprocessing
techniques and the critical but often overlooked hyper-
parameter optimization (HO) phase, and (iii) the integra-
tion of the learnt model into an ML-NMPC controller. To
formalize the goals at each step of this framework, a
rigorous exposition of the ML techniques employed at
each step, which include feature generation and Bayesian
optimization (BO), is provided. While this framework
imposes a logical structure to the flow of the data-driven
tasks, it remains sufficiently flexible to allow different
techniques to be employed at each stage, which future-
proofs this framework in the face of further advances in
ML.
This approach is exemplified through the case study of a

highly nonlinear MIMO CSTR process. The resulting ML-
NMPCs were evaluated based on both control performance
and solution times on both servo and regulator problems to
ensure the solution’s applicability and practicality in real-
world industrial settings. The resulting ML-NMPCs were
finally benchmarked against an NMPC that employs the
true system model. This NMPC is demonstrated to be able
to solve all the control problems effectively.
This work is organized as follows. Section 2 formalizes

the proposed integrated approach. Section 3 details the
CSTR case study, presents the three control scenarios, and
reports practical details in implementing this approach.
Section 4 presents results and discussions. Section 5
concludes this piece and offers recommendations for future
research.

2 Methodology

In the following exposition, x 2 Kq is a column vector,
with K representing some field and q³1. The notation
½a,b� represents a row vector when ða,bÞ 2 K2, and the T
superscript represents the vector transpose operation, such
that ½a,b�T is a column vector. The ╫ symbol represents
column vector concatenation, and it returns another
column vector, such that x1╫x2 ¼ ½xT1 ,xT2 �T and
╫i2f1,:::,ngxi ¼ ½xT1 ,:::,xTn �T, where xi 2 Kqi . An n� p
matrix with values in K is denoted Mn,pðKÞ, while
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n -order square matrices areMnðKÞ. The╫ symbol is also
used to represent the vertical concatenation of matrices
with the same number of columns, such that
╫i2f1,:::,ngBi ¼ ½BT

1 ,:::,B
T
n �T, where Bi 2 Mqi,pðKÞ. Sets are

represented by f1,:::,kg. Closed intervals are defined as
½α;β�, with α and β real numbers. Left and right half-open
intervals are �α;β� and ½α;β½ respectively, with open
intervals denoted as �α;β½. Given xðtÞ 2 Kq a continuous-
time vector-valued quantity, where t 2 ℝþ, x½k� represents
its value associated with the discrete time-step k, such that
x½k� ¼ xðtkÞ, where tk is the real time associated with the
discrete time-step k. Δ finally represents the difference
operator, such that Δx½k� :¼ x½k þ 1� – x½k�.
Equations (1) and (2) describe a general continuous-time

state representation for a dynamical system.

_x ¼ f ðx,uÞ, (1)

y ¼ gðx,uÞ þ ϵ, (2)

where x 2 ℝa, u 2 ℝb and y 2 ℝc are the state, control, and
output vectors respectively, with f : ℝa � ℝb

↕ ↓ℝa a
general nonlinear state equation and g : ℝa � ℝb

↕ ↓ℝc a
general nonlinear output equation; ϵ is a random variable
corresponding to measurement noise. In what follows, we
assume complete state information, such that y ¼ xþ ϵ.
For a MIMO system, a, b and c are integers that are strictly
greater than 1.
If f is a highly nonlinear function, conventional

applications of widely-used strategies like proportional-
integral-derivative control and linear MPC might not offer
effective control beyond a limited range. This motivates
the study of nonlinear control strategies like NMPC, which
the following subsection describes.

2.1 Nonlinear model predictive control

Given a discrete-time controller, Eq. (3) defines the cost
function J at any given discrete time-step k 2 ℕ:

J ðΔUÞ :¼ trððY – Y *ÞTQðY – Y *ÞÞ þ trðΔUTRΔUÞ, (3)

where ΔU :¼ ½Δu ½k�, Δu ½k þ 1�, :::, Δu ½k þ m – 1��T 2
Mm,bðℝÞ is the control sequence over the control horizon
m 2 ℕ*, Y :¼ ½y½k þ 1jk�,:::,y½k þ pjk��T 2 Mp,cðℝÞ is the
output trajectory over the prediction horizon p 2 ℕ*, Y * 2
Mp,cðℝÞ is the system set-point over p, Q 2 McðℝþÞ and
R 2 MbðℝþÞ are diagonal non-negative weight matrices
whose coefficients reflect the relative importance of the
corresponding terms in the cost function, and trð$Þ
represents the trace of the matrix. The control actions are
applied in a zero-order hold fashion throughout the
sampling interval, such that uðtÞ ¼ u½k�,  8t 2 ½tk ;tkþ1�.
Equations (4–8) formulate the NMPC problem, which is

solved in a receding horizon fashion:

min
ΔU

J ðΔUÞ , (4)

s:t:  Y ¼ F ðx½k�,u½k�,ΔU╫0p –m,bÞ, (5)

Δumin£Δu½l�£Δumax,  8l 2 fk,:::,k þ m – 1g, (6)

umin£u½l�£umax,  8l 2 fk,:::,k þ m – 1g, (7)

ymin£y½l�£ymax,  8l 2 fk þ 1,:::,k þ pg, (8)

where F is a nonlinear function which generates the
discrete-time output trajectory given the system’s initial
state and the control sequence, and 0p –m,b is a zero matrix
of dimension ðp –mÞ � b. The concatenation of 0p –m,b is
equivalent to defining Δu½l�¼0,8l 2 fk þ m,:::,k þ p – 1g,
then appending these zero values to ΔU such that the
resulting matrix has p rows. Therefore, u remains constant
after the control horizon. F can be generated from f as Eq.
(9) shows:

F ðx½k�,u½k�,ΔU╫0p –m,bÞ ¼ ½Gð1Þ,:::,GðpÞ�T, (9)

where GðlÞ :¼ xðtkÞ þ!
tkþl

tk
f
�
xðτÞ,uðτÞ

�
  dτ,8l 2 f1,:::,pg.

Equations (6–8) represent constraints on the control
actions’ rates of change, constraints on their magnitude,
and constraints on system outputs, respectively.
This NMPC problem is a constrained nonlinear

optimization problem which can be solved using active
set or interior point methods. As f and F both return the
same vector Y , they are equivalent from the controller’s
perspective. We thus refer to f as the NMPC system model
in what follows. The continuous-time SysID approach was
pursued here because it may be more intuitive to scientists
and engineers [16]. With that said, the proposed approach
is potentially also amenable to discrete-time formulations
after suitable modifications.
If f or F is not known a priori, it becomes necessary to

first identify it from empirical data. The following
subsection describes how recent advances in ML could
be applied in the context of a broader integrative SysID
approach for nonlinear control.

2.2 Black-box direct continuous-time SysID

Figure 1 illustrates the three-step framework for directly
identifying f as NMPC system models from empirical
data. The data generation procedure involves performing
experiments that perturb the system across the controller’s
operating region to reveal system dynamics. The regres-
sion workflow then proceeds to infer nonlinear continuous-
time functions as NMPC system models. These system
models are finally integrated into the ML-NMPC con-
trollers, which are subsequently tested to evaluate their
closed-loop control performance.
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2.2.1 Data generation procedure

The design of the input signal is critical to generating a rich
data set, and the signal proposed in this work consists of
simultaneous random step changes for all manipulated
variables. The experimental sampling time h is also an
important parameter as the following discussion will show.
To generate an input signal of time length tsim 2 ℝ*þ for a

single manipulated variable, a partition of the interval ½0;
tsim� is first performed by performing a random jump
forward in time from the start of the interval, with the jump
length in time units (tus) sampled from a discrete uniform
distribution Uðflmin,lmin þ h,:::,lmaxgÞ, where lmin and lmax
are the minimum and maximum jump lengths in tus
respectively and are both integer multiples of h, then
repeating these jumps until tsim is reached. The value of the
manipulated variable at each subinterval is then sampled
from a continuous uniform distribution Uð½umin;umax�Þ,

where umin and umax are the lower and upper bounds of the
manipulated variable as specified in the NMPC formula-
tion, respectively. This process is repeated for each
manipulated variable.
Figure 2 shows an example of an input signal and the

system response when the input signal is applied to the
system. As the control values reached are uniformly
represented across the controller’s operating region, it
facilitates the learning of ML models that interpolate well
to give good dynamical predictions within this region.
Given an input signal ðuiÞi2f0,:::,tsim=hg and the system

response ðyiÞi2f0,:::,tsim=hg, where ui and yi are potentially

multidimensional, we pose ~xi :¼ yi╫ui and ~yi :¼
½ðyiþ1 – yiÞ=h�, 8i 2 f0,:::,tsim=h – 1g. ~xi and ~yi represent
data points and their corresponding labels, which are
alternatively the independent and dependent variables
respectively, and this supervised learning task is forma-
lized in Section 2.2.2.

Fig. 1 Integrated data-driven approach for identification of continuous-time NMPC system models.

Fig. 2 Example input signal (green) and system response (red), where t ¼ 10000, lmin ¼ 10, lmax ¼ 100, umin ¼ 0, umax ¼ 1.
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As ~yi contain first-order approximations of the contin-
uous derivatives representing the system dynamics, values
for h that are small with respect to the system’s
characteristic time would be ideal, i.e., at least an order
of magnitude smaller. In this work, the initial process
values are taken to be the set-point values. Combining data
points from multiple experimental runs is also straightfor-
ward, and it is indeed desirable to use as many data points
as could possibly be collected. This is because, in general,
model variance decreases as the number of data points
increases, such that more precise estimates for the model
parameters are achieved.

2.2.2 Regression workflow

We pose ~X :¼ ~xi½ �Ti2f1,:::,Ng the design matrix with

~xif gi2f1,:::,Ng the data set of size N 2 ℕ*, and ~Y :¼
~yi½ �Ti2f1,:::,Ng the labels matrix with ~yif gi2f1,:::,Ng the set of
labels associated to ~xif g.
Before performing the regression task, the data set is

split into training, validation, and test sets. The training set
contains the data used to fit a given model. The validation
set contains the data used to provide an unbiased
evaluation of a model fit on the training set while tuning
the model hyperparameters. The test data finally contains
the data used to provide an unbiased evaluation of the

tuned models. The validation and test sets are “held out”
from the training set to prevent data leakage, which is when
information outside the training set is used to create the
model. Data leakage causes the estimates of the final
model’s general predictive power to be overly optimistic.
We note Itrain, Ival and Itest the set of indices of ~X
corresponding to these sets, with cardðItrainÞ ¼ Ntrain,
cardðIvalÞ ¼ Nval and cardðItestÞ ¼ Ntest, such that
Ntrain þ Nval þ Ntest ¼ N . ~X train :¼ ~xi½ �Ti2Itrain is the training

design matrix with ~Y train :¼ ~yi½ �Ti2Itrain its labels matrix. ~X val,
~Y val, ~X test and ~Y test are defined similarly.
Data preprocessing encompasses a broad set of

strategies that prepares the data set for the model training
phase in such a way as to facilitate the learning of models
that generalize well. It generally involves data cleaning,
which removes outliers that might have resulted from
sensor faults or data input errors, and feature engineering,
which encompasses other techniques like feature transfor-
mation, feature generation, and feature extraction. In this
work, we focus on the generation of polynomial and
interaction features, which represent higher-order and
coupled nonlinear terms in the system dynamics. We
pose ~X ¼ ~X j

� �
j2f1,:::,Nf g, where ~X j2f1,:::,Nf g are feature

vectors with Nf 2 ℕ the number of features. Equation
(10) formalizes the feature generation procedure of degree
d 2 ℕ*:

~X
ðdÞ ¼ ~X

p1
1
~X p2
1 :::~X

pNf
Nf

h i
ðp1,:::,pNf Þ 2 f0,:::,‘gNf s:t: p1þ:::pNf £‘, 8‘2f1,:::,dg (10)

To illustrate this procedure, suppose that ~X ¼ ~X 1,~X 2

� �
.

A feature generation of degree 2 yields the following
matrix:

~X
ð2Þ ¼ 1,~X 1,~X 2,~X

2
1 ,~X 1

~X 2,~X
2
2

� �
: (11)

Data standardization is also performed to allow all
features to be considered equally during model training.
Equation (12) describes this operation:

~X ðdÞ
%,std ¼

~X
ðdÞ
%,j – ~X

ðdÞ
★,j

�̂★,j

2
4

3
5
j2f1,:::,N ðdÞ

f g
, (12)

where ~X ðdÞ
%,j represents the j -th column of ~X ðdÞ

% , ~X
ðdÞ
★,j the

sample mean of ~X ðdÞ
★,j, �̂★,j the population standard

deviation of ~X ðdÞ
★,j, and N ðdÞ

f 2 ℕ★ the total number of
polynomial and interaction features. $ is a placeholder
referring either to the training, validation, or test sets. If $
refers to either ~X train or ~X val, then ★ refers to ~X train. If $
refers to ~X test, then★ refers to ~X train[ ~X val. This mapping
of $ to ★ is done to prevent data leakage.
The model training phase corresponds to solving for a

prediction function f such that ~y � f ð~xÞ. Suppose that we

have n candidate models, i.e., n different regression forms
for f . For each fi2f1,:::,ng, we solve the mean squared error
(MSE) minimization problem in Eq. (13):

�̂i ¼ arg min
�i 2Θi

1

Ntrain

X
j2 Itrain

~yj – fi,�i ~xj
� �� �2, (13)

where Θi represents the parameter space for fi. fi,̂� i
finally

represents the solution to this regression problem, and this
procedure is repeated for each fi. Let ηi 2 Hi be the set of
hyperparameters for fi. HO involves training fi with
different ηi, then selecting η̂i which satisfies Eq. (14):

η̂i ¼ arg min
ηi 2Hi

1

Nval

X
j2 Ival

~yj – fi,�̂i;ηi ~xj
� �� �2

: (14)

BO is employed in this work for HO, with exhaustive
grid searches used instead if the hyperparameter space is
countable and sufficiently small. BO is a class of
optimization techniques that applies Bayes Theorem to
quickly find the global optima of a general nonlinear
multidimensional function [17]. Unlike grid and random
searches, BO takes past evaluations into account by using
them to build a probabilistic surrogate model of the HO
objective function. It uses this model to select the most
promising hyperparameters at each iteration. The objective
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function is then evaluated at those hyperparameters, with
this result subsequently used to update the surrogate
model. This iterative procedure therefore yields posteriors
that better approximate the HO objective function with
each evaluation, from which the best hyperparameters can
be hoped to be more easily located [17]. As function
evaluations for Eq. (14) are expensive, since an iteration
involves training an entire model, such a principled
approach which balances exploration of the hyperpara-
meter space and exploitation of best found values is
desirable [18,19].
The formalization of BO consists of five key elements.

The first element is Hi, the hyperparameter space, and the
second is the HO objective function, which was present in
Eq. (14) and is explicated here:

J ðηiÞ :¼
1

Nval

X
j2 Ival

~yj – fi,�̂i;ηi ~xj
� �� �2

: (15)

The third element is the surrogate model, which is an
alternative probabilistic representation of the objective
function that is cheaper to evaluate. The fourth is the
acquisition function which is defined over Hi and is
computed from the surrogate model, and it quantifies the
desirability of sampling a given point in Hi next. The final
element is the BO history, which is a set DBO,s :¼
fðηi,v,J ðηi,vÞÞgv2f1,:::,sg containing the s samples drawn
from J so far. The surrogate model is referred to as the
posterior distribution when it is conditioned by DBO,s, and
is represented by pDBO,s

. We also drop the i subscript in an
abuse of notation for the remaining technical development
of BO.
Common acquisition functions include the probability of

improvement, expected improvement (EI), entropy search,
and lower confidence bound. At the ðsþ 1Þ -th iteration,
these functions have the generic form shown in Eq. (16):

Asþ1ðηÞ ¼ EDBO,s
½usþ1ðηÞ�, (16)

where usþ1 : H↕ ↓ℝ is a utility function to maximize. EI is
the most common acquisition function and is used in this
study, and it has the following utility function at the ðsþ 1Þ
-th iteration:

uEI ,sþ1ðηÞ ¼ max
�
0,J *

s –J ðηÞ
�
, (17)

where J *
s :¼ min

v2f1,:::,sg
J ðηvÞ is the best value for J found

after s iterations. The acquisition function AEI ,sþ1ðηÞ at the
ðsþ 1Þ -th evaluation is thus:

AEI ,sþ1ðηÞ ¼ !
1

–1maxð0,J *
s –J Þ  pDBO,s

ðJ jηÞ  dJ

¼ !
J *

s

–1ðJ *
s –J Þ  pDBO,s

ðJ jηÞ  dJ : (18)

This finally yields the following maximization problem
at the ðsþ 1Þ -th evaluation:

ηsþ1 ¼ arg max
η2H

AEI ,sþ1ðηÞ

¼ arg max
η2H

!
J *

s

–1ðJ *
s –J Þ  pDBO,s

ðJ jηÞ  dJ : (19)

This therefore corresponds to finding η 2 H which is
expected to improve on J *

s the most, given the current
surrogate model pDBO,s

ðJ jηÞ.
Common forms for the surrogate model include

Gaussian processes and Tree-Parzen estimators (TPEs),
with the latter being applied in this work. Technical details
for the structure of TPEs and how EI is optimized in the
TPE algorithm can be found in ref. [18]. The degree for
polynomial feature generation is considered as a hyper-
parameter for all candidate models, with di 2 f1,:::,10g,
8i.
Each candidate model fi whose best hyperparameters η̂i

have been found is then trained on ~X train[  ~X val and tested
on ~X test to determine its test MSE, which serves as an
indicator of the model’s general predictive ability with
respect to other candidate models after hyperparameter
tuning. Before integration into ML-NMPC, the models are
initialized with their best hyperparameters η̂i and trained on
the full data set ~X .
In situations where data is sparse, it would be useful to

apply cross-validation techniques to obtain better estimates
for the model’s general predictive power during HO. K-
fold cross-validation involves, firstly, extracting ~X test from
~X , then splitting the remaining data into K equal folds, i.e.,
~X i

� 	
i2f1,:::,Kg, where K£N –Ntest. K number of models

are then trained for each hyperparameter configuration,
with each run l 2 f1,:::,Kg having [ i2f1,:::,Kgnl ~X l as the

training set and ~X l as its validation set. This technique
returns K validation MSEs, which can be averaged to
obtain a less biased estimate of the model’s goodness. K is
typically selected to be 5 or 10. Leave-one-out cross-
validation involves selecting K ¼ N –Ntest and, while it is
the most computationally expensive, returns the least
biased estimate of the model’s goodness. As it is assumed
that enough data has been generated, cross-validation
techniques are not employed in this work.

2.2.3 Integration of ML model into NMPC

In the last step of this framework, the models f
i,̂�i ;̂ηi

obtained from the regression workflow are integrated into
the ML-NMPC as system models and used to generate
predictions for _x, which themselves are used to evolve x in
time to generate Y given ΔU . To solve this system of
first-order ordinary differential equations, numerical meth-
ods like Runge-Kutta methods and linear multistep
methods can be used.
Tuning of the ML-NMPC control parameters is done
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before testing its closed-loop performance on the case
study. In this work, this consists of modifying m to
minimize the weighted integrated absolute error (WIAE)
for a �5% set-point step experiment:

WIAE :¼ !
tf

t0
WkyðtÞ – y*ðtÞk1   dt, (17)

where W 2 McðℝþÞ is a weight matrix, and t0 2 ℝþ and
tf 2 ℝþ are the start and end times of the experiment,
respectively. p ¼ 5 was taken to be fixed in this work. The
WIAE was selected as the figure of merit for its simple
interpretation, though other controller tuning statistics that
explicitly include ΔU or that have more elaborate forms
could also be used without any loss of generality of this
procedure (see ref. [20] for other statistics that could be
used in place of the WIAE). The controller’s sampling time
hNMPC is typically chosen to be 5 to 10 times faster than the
system’s characteristic time as a rule of thumb [21].

3 Case study

3.1 Plant model

The case study, which was also studied in ref. [22], consists
of a single CSTR system which houses a reversible
chemical reaction described in Eq. (20), where A is the feed
species, R the desired product, and S the undesired
byproduct. Non-dimensionalized expressions for the
system’s dynamical behavior are shown in Eqs. (21–23):

AÐk1
k4
RÐk2

k3
S, (20)

dCA

dt
¼ q½CA0 –CA� – k1CA þ k4CR, (21)

dCR

dt
¼ q½1 –CA0 –CR� þ k1CA

þ k3½1 –CA –CR� – ½k2 þ k4�CR, (22)

kj ¼ k0,jexp –
E

RT0


 �
j

1

T
– 1


 �� 
,  j 2 f1,2,3,4g, (23)

where Ci2fA,R,Sg 2 ℝþ is the species’ reactor concentration,
CA0 2 ℝþ is the feed concentration of A, q 2 ℝþ is the feed
and the exit flow rate, kj2f1,:::,4g 2 ℝþ are the reaction rate
constants, k0,j2f1,:::,4g 2 ℝþ are the Arrhenius pre-expo-
nential constants, ½E=RT0�j2f1,:::,4g 2 ℝþ are the normalized
activation energies, and T 2 ℝþ is the system temperature.
q and T are the manipulated variables in this study. The
values for the model parameters are reported in Appendix
A (cf. Electronic Supplementary Material, ESM).
Figure 3 schematizes the CSTR plant and plots the

system’s steady-state conditions as a function of T when q
is 0.8 and at its nominal point. To simplify the system, it is
assumed that the low-level flow and temperature control
loops have negligible dead times and present no steady-
state errors. The system’s set-point was selected to
maximize the ratio of CR to CA. This corresponds also to
maximizing product yield and minimizing any down-
stream separations costs. There are strong non-linearities in
how both CA and CR vary with T at the set-point. There is
also input multiplicity, since two different values of T
could yield the same value for CR, which suggests that
there are sign changes in the determinant of the steady-
state gain matrix within the operating region that make
linear controllers with integral action unstable [23]. The
control of this system at this set-point is therefore a
relevant and interesting problem.
To numerically simulate this system, a linear multistep

method implemented through the LSODA option in
integrate.solve_ivp in the SciPy package (version 1.5)
was used [24]. A Gaussian noise ϵ � N ð0,10 – 3Þ was
included in every measurement of CA and CR to simulate
measurement noise. Given the range of values for CA and
CR, this corresponds to a measurement error of ca. 1%.

3.2 Control scenarios

Controller performance was evaluated based on 3

Fig. 3 (a) Schematic diagram of CSTR plant, where q* and T* represent set-points for q and T respectively; (b) system steady-state
conditions for q ¼ 0:8 (“Reactor startup” and “Upset recovery” refer to start points for the control problems in Section 3.2).
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scenarios. The first scenario was a servo control problem
representing �5% step changes to the CR set-point. This
step size was selected because the control actions needed to
stabilize the system at the new set-points are large enough
to pose a control problem that is challenging enough to be
studied meaningfully. Each experimental run began at the
set-point and was followed by the +5% step and the
– 5% step before reverting to the set-point, such that
the experiment had the following CR profile:
½0:406,  0:426,  0:386,  0:406�. Each step lasted for 5 tus for
a total experimental length of 20 tus.
The second and third scenarios were regulator control

problems corresponding to “reactor startup” and “upset
recovery” respectively. These two process disturbances lay
at opposite sides of the set-point, with the former having
low T and CR values and the latter having an abnormally
high T value. A process controller would therefore need to
optimize correctly for T values within an extended range of
0.8 and 1.1 to perform well in both these scenarios. All
experimental runs for these two scenarios lasted for 10 tus.

3.3 Framework application

To infer f for this case study, we pose ~xi :¼ ½CA,CR,q,T �Ti
and ~yi :¼ ½dCA=dt,dCR=dt�Ti . Note that the polynomial and
interaction features for ~xj up to degree d would be
appended to this vector before the model training phase as
part of the feature generation procedure described in
Section 2.2.2. In this work, h ¼ 0:1 tu, tsim ¼ 1000,
lmin ¼ 1, lmax ¼ 10, qmin ¼ 0:5, qmax ¼ 0:9, Tmin ¼ 0:7
and Tmax ¼ 1:1. 5 runs were performed, and an example of
an experimental run is shown in Fig. 4.
In this work, a 60%, 20%, 20% split for the training,

validation and test sets was used. The polynomial feature
generation and data standardization operations were
performed with preprocessing.PolynomialFeatures and
preprocessing.StandardScaler from scikit-learn (version
0.23) respectively [25]. The scikit-learn package was also
used to perform model training for different candidate

models. The optuna package (version 2.3) in Python 3.8
was used to perform BO [26]. The fi studied in this work
are common regression forms and include linear regres-
sion, which we henceforth refer to as “polynomial”
regression, support vector regression (SVR), decision
tree (DT) regression, extra trees (ET) regression and
gradient boosted (GB) regression. The model hyperpara-
meters ηi for each fi are reported in Appendix B (cf. ESM).
The NMPC problem was solved using the sequential

least squares quadratic programming method which was
implemented in optimize.minimize from SciPy (version
1.5) [24]. The constraints on the control actions’
magnitude and system outputs, which are Eqs. (7) and
(8) respectively, were manifested as soft constraints, with
the coefficients of their penalty terms in the objective
function taken to be 1000. The nonlinear optimizer was
initialized with values sampled from Uð½ – 10 – 3,10 – 3�Þ at
the first time step and was warm-started with the solution
from the previous time step in subsequent time steps. In
this study hNMPC ¼ 0:2 tu.
To evolve the system in time with the ML models in the

ML-NMPC, the RK23 solver in optimize.minimize from
SciPy (version 1.5) was used.W ¼ diagð½1,3�Þ was chosen
for theWIAE to punish CR deviations 3 times more heavily
than CA deviations.

4 Results and discussion

We report firstly the closed-loop performances of an
NMPC controller with the exact system model, which will
serve as a benchmark for ML-NMPC. The performance of
the ML models from the SysID procedure will be
quantified through their validation and test R2 and MSE
values, following which the closed-loop performances of
these ML-NMPCs on the control scenarios will be
presented.
In what follows, we refer to the NMPC with the exact

system model as the “exact NMPC”. For the ML-NMPCs,

Fig. 4 Example system response (a) to an input signal (b) for the CSTR case study.
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we use the shorthand “polynomial-NMPC” to refer to ML-
NMPCs with a system model that is linear in the
polynomial and interaction features, “DT-NMPC” to
refer to ML-NMPCs with a DT system model, and so on
for the other ML models. All calculations were performed
in a Python 3.8 environment on a computer with 16 GB of
RAM and a 4-core Intel® Core™ i7-4790 CPU running at
3.60 GHz.

4.1 Nonlinear MPC with exact system model

Figure 5 shows the results for the exact NMPC with p ¼ 5
and different values of m, and it can be observed that m ¼
1 offers the lowest WIAE on the step experiments while
also taking the least time to solve. Figure 6 shows the
performance for the tuned exact NMPC on the three
control scenarios. Stable closed-loop performance was
achieved for all control scenarios. The servo, startup, and

recovery problems took 3.65, 2.24 and 1.82 s to solve
respectively for the m ¼ 1 case, demonstrating average
per-iteration solution times in the order of 10 ms. This
therefore validates the use of the exact NMPC as a useful
benchmark for rapid and stable control of this system.
Appendix C (cf. ESM) reports the parameters for this exact
NMPC.
While it is expected that greater values of m provide

tighter control, albeit with longer solution times, m ¼ 1
was shown to give lower values for WIAE. However, this
came with more aggressive control actions, as Fig. 7
shows. The larger the value for m, the smoother the control
profiles, with this demonstrating how the changes in the
control action constitute an important term in the NMPC
objective function. Having selected WIAE as our figure of
merit for the sake of interpretability, we keep m ¼ 1 as the
tuned m value, making again a further mention that other
statistics for tuning m could also be employed which

Fig. 5 (a) WIAE for exact NMPC with p ¼ 5; (b) exact NMPC solution times with p ¼ 5.

Fig. 6 Exact NMPC performance for p ¼ 5 and m ¼ 1: (a) servo problem, (b) startup problem, and (c) upset recovery problem.
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explicitly considers the control actions. The ML-NMPCs
presented in Section 4.3 will also take m ¼ 1 as their tuned
m value.

4.2 HO

Figure 8 plots the validation and test R2 scores, and the test
MSE scores, for each candidate model. Figure 9 presents
more insights into the BO procedure as illustrated through
the optimization history plots and slice plots, taking SVR
as an example. Appendix D (cf. ESM) reports the best
hyperparameters η̂i for each fi found through BO.
The tuned polynomial model gave the highest test R2

value and the lowest test MSE value, suggesting that it
would return better estimates for dCA=dt and dCR=dt than
other candidate models for this case study. The tuned SVR
model gave slightly poorer R2 and MSE scores than the
polynomial model, with the tree-based models, i.e., DT,
ET, and GB, performing even more poorly than SVR. It is
worth noting that different candidate models possess
different structures that permit them to model some
dynamical systems more efficiently than others. The
validation and test results of each model relative to other
models can therefore be expected to differ from one case
study to another.

The optimization history in Fig. 9(a) illustrates how the
BO procedure balances exploration of the hyperparameter
space with the exploitation of best found values. The first
few trials gave models that returned poor validation scores,
and as better hyperparameter configurations were encoun-
tered the validation scores of subsequent models remained
around similarly good values, suggesting that the sampling
strategy began focusing on points close to the best-found
hyperparameters. Figure 9(b) reinforces this observation
by showing how later trials focused on the region around
ϵ ¼ 0:02, with sporadic evaluations at values outside of
that region.

4.3 Closed-loop control results

After HO, the tuned candidate models were integrated into
ML-NMPC controllers and tested against the three control
scenarios. Figure 10 shows the results for ML-NMPC.
Figures 11, 12 and 13 show concentration and control
paths from the polynomial-NMPC and SVR-NMPC for the
servo, startup, and upset recovery problems, respectively.
These paths are compared against those from the exact
NMPC. Figure 14 shows GB-NMPC performance on all
three control problems, with these results being represen-
tative of the performances of ML-NMPC employing tree-

Fig. 7 Exact NMPC performance for m ¼ 1,  3,  5 for the servo problem: (a) output profiles, and (b) control profiles.

Fig. 8 (a) Validation and test R2 scores for each candidate model; (b) test MSE score for each candidate model (“Poly” refers to the
polynomial regression model).
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based system models. The results from the two stable ML-
NMPCs, the polynomial-NMPC and SVR-NMPC, are
finally benchmarked against the exact NMPC in Tables 1
and 2.
Polynomial- and SVR- NMPCs succeeded in achieving

tight control for all three control problems, as Figs. 11–13
show. In the servo problem, CA and CR values took slightly
longer to settle at their new set-point values for the two
ML-NMPCs, with this due to these controllers offering q

control which is less aggressive. This suggests that the
quality of the continuous-time model identified from the
data is sensitive to the selection of the experimental
sampling time h for the data generation procedure. While
h ¼ 0:1 tu was sufficient to generate data that allowed the
polynomial and SVR models to learn the right “signs” for
the time-derivatives characterizing the dynamical system,
smaller h values might offer even better first-order
approximations for these time-derivatives that ML models

Fig. 10 ML-NMPC performance for p ¼ 5 and m ¼ 1: (a) WIAE, and (b) solution times.

Fig. 9 (a) Optimization history for BO of SVR; (b) slice plot for ϵ hyperparameter for SVR (objective value is validation R2).

Fig. 11 Exact, polynomial- and SVR- NMPC performance for the servo problem: (a) output profiles, and (b) control profiles.
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Fig. 13 Exact, polynomial- and SVR- NMPC performance for the upset recovery problem: (a) output profiles, and (b) control profiles.

Fig. 12 Exact, polynomial- and SVR- NMPC performance for the startup problem: (a) output profiles, and (b) control profiles.

Fig. 14 GB-NMPC performance for p ¼ 5 and m ¼ 1: (a) servo problem, (b) startup problem, and (c) upset recovery problem.
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could learn from, potentially allowing the ML-NMPC to
solve more accurately for smaller time-steps to achieve
tighter control. The control paths in the regulator problems
in Figs. 12 and 13 also reveal q and T control for ML-
NMPC which lagged slightly behind those for the exact
NMPC.
These two ML-NMPCs required an order of magnitude

more time per iteration than the exact NMPC, though they
remained fast in the order of 0.1 s per iteration. The SVR-
NMPC required more time than the polynomial-NMPC
due to its increased model complexity, with it taking
between 5 and 7 times longer while not offering any
consistent improvement in WIAE performance over the
polynomial-NMPC. Taking both control performance and
evaluation times into account, the polynomial-NMPC
would be preferable to the SVR-NMPC for this case study.
The tree-based ML-NMPCs were ineffective in control

for all three control problems, as Fig. 14 shows, though an
exception exists in ET-NMPC for upset recovery. Tree-
based models might not be suitable as system models for
ML-NMPC in this study because their piece-wise constant
nature [27] could prevent optimizers like SLSQP, which
depend on local gradient or Hessian approximations, from
functioning well. Understanding this observation for tree-
based models lies beyond the scope of this work and can be
pursued in a future study.
The results above validate the ability of the proposed

integrative SysID approach to identify system models for
NMPC that allow effective control of a highly nonlinear
MIMO CSTR system for control problems across a wider
operating range. Further comments made on observations
from this case study reinforce the importance of selecting a
suitable h for the data generation procedure, highlight the
usefulness of simpler models with shorter ML-NMPC
solution times, and hint towards more advanced applica-
tions of ML that achieve better bias-variance tradeoffs

through this framework. Examples illustrating the latter
point include incorporating expert system knowledge to
impose a prior structure on the candidate models, thereby
reducing model bias. Such models are known as grey-box
models. Feature selection techniques such as principal
component analysis can also be incorporated along with
other model regularization techniques to reduce model
variance.

5 Conclusions

In this work, an integrated SysID procedure for deriving
black-box nonlinear continuous-time MIMO system
models for NMPC was articulated. This procedure was
validated through the successful identification of NMPC
system models that enabled effective control of a highly
nonlinear MIMO CSTR system across a wider operating
range. This framework is sufficiently flexible and allows
practitioners to employ different data generation methods,
apply different HO methods, as well as test different
candidate models. The choices presented here reflect the
current state-of-the-art or what is reasonable, based on the
authors’ experience.
It is hoped that these results can motivate further

research in direct data-driven methodologies for SysID for
MPC. Future directions include the following:
1. Applying more advanced ML techniques to this

framework such as feature selection, model regularization.
Other candidate models that involve local regression or
ensemble methods could also be studied in greater detail.
This abundance of ML techniques could be exploited to
achieve better bias-variance tradeoffs and yield better
system models.
2. Studying the impact of measurement noise, the

amount of data available, and the experimental and
NMPC controller sampling times on this SysID procedure
to quantify its sensitivity to the quality of data and other
design decisions.
3. Exploring how a discrete-time model could be

derived from a well-learnt continuous-time model, which
could serve as a fit-for-purpose NMPC system model
requiring smaller solution times.
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Table 1 Comparison of WIAEs for polynomial- and SVR-NMPCs

against exact NMPC for p ¼ 5 and m ¼ 1

Scenario
Controller performance in WIAE

Polynomial SVR Exact

Servo 0.209 0.200 0.094

Startup 1.090 1.031 0.870

Upset recovery 0.392 0.774 0.326

Table 2 Comparison of solution times for polynomial- and SVR-

NMPCs against exact NMPC for p ¼ 5 and m ¼ 1

Scenario
Solution times in seconds

Polynomial SVR Exact

Servo 11.9 69.0 3.50

Startup 6.63 72.2 2.33

Upset recovery 5.88 41.0 1.83
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