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1 Introduction

Organohalides refer to an extensive range of organic

compounds containing one or more substituted halogen
atoms, including tetrachloroethylene (PCE), hexachloro-
benzene (HCB), polychlorinated biphenyls (PCBs), poly-
brominated diphenyl ethers (PBDEs) and polychlorinated
dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) (Jugder
et al., 2015). The massive use of these compounds in
industry and agriculture, coupled with their natural
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H I G H L I G H T S

•Bio-RD-PAO can effectively and extensively
remove organohalides.

•Bio-RD alone effectively dehalogenate the
highly-halogenated organohalides.

• PAO alone is efficient in degrading the lowly-
halogenated organohalides.

•The impacts of PAO on organohalide-respiring
microbial communities remain elusive.

•Bio-RD-PAO provides a promising solution for
remediation of organohalide pollution.
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G R A P H I C A B S T R A C T

A B S T R A C T

Due to the toxicity of bioaccumulative organohalides to human beings and ecosystems, a variety of
biotic and abiotic remediation methods have been developed to remove organohalides from
contaminated environments. Bioremediation employing organohalide-respiring bacteria (OHRB)-
mediated microbial reductive dehalogenation (Bio-RD) represents a cost-effective and environmen-
tally friendly approach to attenuate highly-halogenated organohalides, specifically organohalides in
soil, sediment and other anoxic environments. Nonetheless, many factors severely restrict the
implications of OHRB-based bioremediation, including incomplete dehalogenation, low abundance of
OHRB and consequent low dechlorination activity. Recently, the development of in situ chemical
oxidation (ISCO) based on sulfate radicals (SO4

$–) via the persulfate activation and oxidation (PAO)
process has attracted tremendous research interest for the remediation of lowly-halogenated
organohalides due to its following advantages, e.g., complete attenuation, high reactivity and no
selectivity to organohalides. Therefore, integration of OHRB-mediated Bio-RD and subsequent PAO
(Bio-RD-PAO) may provide a promising solution to the remediation of organohalides. In this review,
we first provide an overview of current progress in Bio-RD and PAO and compare their limitations and
advantages. We then critically discuss the integration of Bio-RD and PAO (Bio-RD-PAO) for complete
attenuation of organohalides and its prospects for future remediation applications. Overall, Bio-RD-
PAO opens up opportunities for complete attenuation and consequent effective in situ remediation of
persistent organohalide pollution.

© The Author(s) 2022. This article is published with open access at link.springer.com and journal.hep.
com.cn 2022



formation results in their environmental prevalence
(Fiedler, 2007; Sadowsky et al., 2013; Maucourt et al.,
2020). Owing to their strong chemical stability, recalci-
trance to degradation, global transfer and bioaccumulation
and bioaugmentation via food webs, organohalides are
raising concerns about their side effects on public health
and ecosystems (Johnson-Restrepo B et al., 2005; Xu et al.,
2006; Lu et al., 2019). For example, Japanese rice bran oil
contaminated with PCBs and PCDFs in 1968 caused the
death of 400,000 birds and 500 people (Uenotsuchi et al.,
2005). In addition, the reproductive and immune function
of more than half of the population of killer whales
(Orcinus orca) are affected by PCBs, even though PCBs
have been banned for more than 40 years (Desforges et al.,
2018).
To remove organohalides from contaminated environ-

ments, many different remediation strategies have been
developed, including both biotic and abiotic remediation
methods: (1) physical strategies, e.g., high temperature and
pressure, air sparging, electroremediation, active carbon
adsorption and filtration (Ranck et al., 2005; Yang et al.,
2005); (2) chemical methods, e.g., photocatalysis, metal
catalysis, electrochemical catalysis and persulfate activa-
tion and oxidation (PAO) (Mascolo et al., 2008; Cai et al.,
2020); and (3) biological techniques, e.g., phytoremedia-
tion and bioremediation (Wallace and Kadlec, 2005;
Martinez et al., 2007). Almost all of the above-mentioned
remediation methods can be conducted in situ and ex situ
(pump-and-treat). In particular, in situ bioremediation
employing a diverse range of organohalide-respiring
bacteria (OHRB) is a comparatively effective, economical
and eco-friendly way to remove organohalides from
anaerobic/anoxic contaminated environmental matrices,
including soil, sediment and groundwater (Heavner et al.,
2019). At these anaerobic/anoxic bioremediation sites,
organohalides are generally highly oxidized and electro-
philic, which support OHRB-mediated organohalide
respiration as electron acceptors (Wang et al., 2018;
Willemin et al., 2020). Thus far, many lineages of OHRB
have been identified to employ different reductive
dehalogenases (RDases) to remove halogens from a variety
of anthropogenic organohalides, including chloroethene,
chlorophenols, chlorobenzenes, PCBs, PBDEs, PCDD/Fs
and PFOCs (Fincker and Spormann, 2017; Maillard and
Willemin, 2019). In their organohalide-respiring electron
transport chains, OHRB employs hydrogen or organics as
electron donor and organohalides as electron acceptor to
harvest energy for cell growth (Atashgahi et al., 2018).
Nonetheless, dehalogenation-generated organohalides
become reduced and nucleophilic, which may no longer
support organohalide respiration of OHRB as electron
acceptors and result in accumulation of lowly-halogenated
organohalides (Chen and He, 2018; Dam et al., 2019).
Taking microbial reductive dechlorination of PCBs as an
example, Dehalococcoides mccartyi strains (e.g., CG1,

CG4, CG5, JNA, CBDB1 and 195) as obligate OHRB
dechlorinate hexa- and hepta-CBs in PCB commercial
mixtures (e.g., Aroclor 1260) to di-, tri- and tetra-CBs
(Adrian et al., 2009; Wang and He, 2013; LaRoe et al.,
2014; Wang et al., 2014; Zhen et al., 2014), and their
further dechlorination to biphenyl was seldom observed.
Chemical oxidation based on advanced oxidation

processes (AOPs) with highly reactive free radicals
(OH$, 1.9–2.7 VNHE; SO4

$–, 2.6–3.1 VNHE) has been
extensively applied to degrade various types of recalcitrant
contaminants into innocuous CO2 and H2O (Oh et al.,
2016; Guvenc et al., 2021). OH$ is a short-lived free radical
(with a half-life time of< 1 µs), which is generally
produced in situ during ozone- and UV-activation of H2O2

or other precursors (Bokare and Choi, 2014). By contrast,
the highly reactive (VSO4

$– = 2.6–3.1 VNHEvs VOH
$ = 1.9–

2.7 VNHE) and long lived (with a half-life time of 4 s)
sulfate radicals are produced in situ by cleaving the
peroxide bond of persulfate molecules via energy or
electron transfer reactions (Wacławek et al., 2017; Ike et
al., 2018). Moreover, persulfate-AOP has the following
advantages over H2O2-AOP: (1) a higher radical formation
rate (Anipsitakis and Dionysiou, 2004; Zhiyong et al.,
2013); (2) more flexible activation methods (Duan et al.,
2018; Zhu et al., 2019a; Li et al., 2021); (3) less
dependence on operational parameters, including pH and
initial loading concentration (Luo et al., 2015; Lutze et al.,
2015); and (4) a lower cost of persulfate production,
storage and transportation, e.g., peroxydisulfate (PS) costs
$0.74/kg in contrast to $2.2/kg peroxymonosulfate (PMS)
and $1.5/kg H2O2 (Zhang et al., 2014). In addition, PMS
has two “dead” sulfate salts in its structure that cannot be
activated, yet persulfate is stable and soluble in water,
enabling wide application of persulfate (Zhang et al., 2015;
Ike et al., 2018). Consequently, the comparatively longer
lifetime, higher reactivity and lower cost of persulfate-
AOP relative to H2O2-AOP enable the former method to be
an optimal option for the remediation of lowly-halogenated
organohalides at in situ remediation sites. Consequently,
PAO may complement the OHRB-mediated microbial
reductive dehalogenation (Bio-RD) process for extensive
cleanup of pollutants (Nam et al., 2001; Hrapovic et al.,
2005; Kulik et al., 2006; Ndjou’ou et al., 2006; Sahl and
Munakata-Marr, 2006; Lu et al., 2010; Venny et al., 2012;
Sutton et al., 2014a; Sutton et al., 2014b; Němeček et al.,
2019; Xia et al., 2020). Nonetheless, these studies
employed in situ chemical oxidation (ISCO) as a
pretreatment process to enhance the bioavailability and
biodegradability of pollutants. In this review, we propose
the consequent integration of Bio-RD and PAO (Bio-RD-
PAO) for complete mineralization of organohalides, and
summarize recent research progress of Bio-RD and PAO,
as well as their pros and cons. We also discuss the
feasibility and challenges of applying Bio-RD-PAO and its
prospects for future remediation applications.
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2 Microbial reductive dehalogenation
(Bio-RD)

2.1 Organohalide-respiring bacteria and their organohalide
respiration

Phylogenetically diverse organohalide-respiring bacteria
(OHRB) employ organohalides as electron acceptors to
conserve cell growth energy (Adrian and Löffler, 2016).
After isolation of the first organohalide-respiring bacter-
ium, Desulfomonile tiedjei (DeWeerd et al., 1990),
extensive studies on the isolation and characterization of
OHRB for their potential and limitations in the bioreme-
diation of organohalides have resulted in a long list of well-
characterized OHRB, which can be classified as obligate
and non-obligate OHRB based on their metabolic
flexibility (Hug et al., 2013; Maillard and Willemin,
2019). The obligate OHRB, including Dehalococcoides
and Dehalogenimonas of Chloroflexi, are restricted to
using H2 as electron donors and organohalides as electron
acceptors in their respiratory electron transport chains. In
contrast, non-obligate OHRB of Proteobacteria (e.g.,
Geobacter, Desulfuromonas, Anaeromyxobacter and Sul-
furospirillum) and Firmicutes (e.g., Desulfitobacterium)
are versatile in their metabolism and utilize a wide range of
electron donors (e.g., hydrogen, formate and lactate) and
electron acceptors (e.g., sulfate, nitrate and organohalides)
for their respiration (Fincker and Spormann, 2017).
The key enzyme in OHRB to catalyze halogen removal

from organohalides is reductive dehalogenase (RDase). A
typical RDase homolog (rdh) gene cluster contains rdhA
and rdhB genes encoding the catalytic subunit and a
membrane-anchoring protein, respectively, as well as other
regulatory genes (Türkowsky et al., 2018). For organoha-
lide respiration, OHRB employ several sets of functional
enzymes to derive and transfer electrons from H2 or other
organics (e.g., dehydrogenases) to organohalides (e.g.,
RDases). Nonetheless, specific organohalide-respiratory
electron transport chains for electron transfer from electron
donors to acceptors can be grouped into quinone-
independent populations (e.g., Dehalococcoides relying
on menaquinones as electron shuttles) and quinone-
dependent populations (e.g., non-obligate OHRB of
Proteobacteria and Firmicutes) (Kublik et al., 2016;
Schubert et al., 2018).

2.2 Bio-RD of organohalides

OHRB have multiple RDase-encoding genes and are
consequently capable of removing halogens from various
aliphatic and aromatic organohalides (Table 1). Chlor-
oethenes have been widely used as industrial solvents and
result in environmental contamination, of which trichlor-
oethene (TCE) and vinyl chloride (VC) are ranked #16 and
#4, respectively, on the Substance Priority List (SPL)
(Mayer-Blackwell et al., 2017). Although phylogenetically

diverse microorganisms dechlorinate chloroethenes,Deha-
lococcoides and Dehalogenimonas are the only isolated
and characterized lineages for the complete dechlorination
of chloroethenes to benign ethene (Löffler et al., 2013;
Wang and He, 2013; Mao et al., 2017; Yang et al., 2017b;
Marcet et al., 2018; Zhao and He, 2019). At contaminated
sites, co-existing pollutants or natural matter can affect the
extent of OHRB-mediated dechlorination. For example,
nitrous oxide (N2O), a common pollutant in groundwater,
can decrease dechlorination rates and result in incomplete
dechlorination of chloroethenes (Yin et al., 2019). In
addition, sulfate reduction products, as well as sulfur
oxyanions (e.g., S2O3

2– and SO3
2–), may inhibit microbial

reductive dehalogenation (Townsend and Suflita, 1997;
Heimann et al., 2005; Aulenta et al., 2007; Berggren et al.,
2013). Notably, if provided with enough electron donors
with prolonged incubation time, complete dechlorination
of TCE can be achieved in the presence of high
concentrations of sulfate (Antoniou et al., 2019). In
contrast, the addition of NH4

+ accelerates DCE-to-ethene
dechlorination rates and increases the abundance of OHRB
(Kaya et al., 2019). Other chlorinated aliphatic com-
pounds, including chloroethanes, chloropropanes and
chlorocyclohexane (i.e., α/β/γ/δ-HCH), can also be
completely dechlorinated by OHRB (Table 1) (Qiao
et al., 2020). Their dechlorination extent largely depend
on the growth conditions of the OHRB. Under harsh
conditions, environmental parameters (e.g., temperature,
pH and co-existing heavy metals) affect the dechlorination
activities of OHRB and of other functional populations
(Yang et al., 2017a; Marcet et al., 2018; Puentes Jácome
et al., 2019; Gushgari-Doyle and Alvarez-Cohen, 2020).
Compared with microbial reductive dehalogenation of

aliphatic compounds, complete dechlorination of aromatic
organohalides is more challenging, particularly for persis-
tent organohalides, including PCBs, deca-BDE and
PCDD/Fs (Bedard, 2008; Rodenburg et al., 2015; Zhu
et al., 2019b). Taking the reductive dechlorination of PCBs
as an example, several lineages of OHRB (e.g., Dehalo-
coccoides, Dehalogenimonas and Dehalobacter) have
been identified to couple their growth with PCB dechlor-
ination (Fricker et al., 2014; Wang et al., 2014; Wang et al.,
2015; Wang et al., 2019). These OHRB preferentially
attack meta- and/or para-chlorines in PCBs, leaving ortho-
chlorinated PCBs as dechlorination products (Wu et al.,
2002; Fennell et al., 2004; Adrian et al., 2009; Wang and
He, 2013; LaRoe et al., 2014; Wang et al., 2014; Zhen et
al., 2014; Wang et al., 2019). Thus far, several ortho-
chlorine-removing microcosms have been established,
e.g., o-17 culture (Cutter et al., 2001; Xu et al., 2018).
However, the ortho-chlorine attacking OHRB have
continued to elude enrichment and isolation. The char-
acterized OHRB can only remove chlorines from highly-
chlorinated PCBs (e.g., penta- to nona-CBs in commercial
PCB mixtures) to lowly-chlorinated PCBs (e.g., di- to
tetra-CBs), seldom to benign biphenyl (Table 1).
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PCDD/Fs are a group of the most notorious environ-
mental pollutants, particularly the extremely toxic and
carcinogenic congeners with lateral 2-, 3-, 7- and 8-
chlorine substitutions (Bunge et al., 2003). The OHRB-
mediated reductive dechlorination of PCDDs typically
generates less toxic or nontoxic daughter compounds,
which could be further subjected to oxidation via aromatic
ring cleavage (Dam et al., 2019). Several D. mccartyi
strains have been identified to dechlorinate PCDD/Fs,
including strains 195, CBDB1, and DCMB5 (Fig. 1).
Strain 195 dechlorinates 1,2,3,7,8-PeCDD and 1,2,3,4,7,8-
HeCDF by exclusively attacking lateral chlorines, result-
ing in accumulation of tri- and tetra-CDD/Fs (Liu and
Fennell, 2008; Zhen et al., 2014). Strain CBDB1

dechlorinates 1,2,3,7,8-PeCDD to less toxic 2,7-/2,8-
DiCDD via toxic 2,3,7,8-TeCDD as an intermediate
(Bunge et al., 2003). When amended with 1,2,3,4-
TeCDD, strain CBDB1 dechlorinates it to 1,2,4-TrCDD,
1,3-DiCDD and 2-MoCDD (Bunge et al., 2003). The
dechlorination pathways of strain DCMB5 resembled
those of strain CBDB1, particularly the removal of
peripheral chlorines (positions 1 and 4), leaving the 2,3-
DiCDD as dechlorination product of 1,2,3,4-TeCDD and
1,2,3-TrCDD (Pöritz et al., 2015). Interestingly, trace
amounts of MoCDD and non-chlorinated dibenzo-p-
dioxin (DD) were observed as products of 1,2,4-TrCDD
dechlorination (Pöritz et al., 2015). Strain DCMB5 was the
first and only reported OHRB that can completely

Table 1 Dechlorination of typical organohalides and their associated OHRB and RDases

Parent compounds Daughter products Strain RDase Reference

PCE, TCE, DCE Ethene Dehalococcoides PceA, VcrA, BvcA,
TceA

Wang and He, 2013;
Marcet et al., 2018;
Zhao and He, 2019

TCE, DCE Ethene Dehalogenimonas prokka_00862,
prokka_02004

Yang et al., 2017b

(α, β, γ, δ)-HCH Benzene Dehalococcoides ND Bashir et al., 2018

Trichloroethane Ethene Desulfitobacterium CtrA Zhao et al., 2015

Dichloroethane Ethene Dehalococcoides BvcA, VcrA Tang et al., 2013;
Parthasarathy et al., 2015

Dehalogenimonas ND Key et al., 2017

Dichloropropane Propene Dehalogenimonas DcpA Martin-Gonzalez et al., 2015

Trichloromethane Dichloromethane Dehalobacter CfrA, TmrA Heckel et al., 2019

Hepta-, Octa-, Nona-CB,
Aroclor 1260

Penta-, Tetra-,
Tri-CB, Di-CB

Dehalococcoides PcbA1, PcbA4,
PcbA5, JNA_RD8,

JNA_RD11

Wang and He, 2013;
Wang et al., 2015;
Chen and He, 2018;
Yu et al., 2018;
Wang et al., 2019

PeCDD DiCDD Dehalococcoides ND Bunge et al., 2003

TeCDD MoCDD Dehalococcoides CbrA Bunge et al., 2003;
Pöritz et al., 2015

TrCDD DD Dehalococcoides CbrA Pöritz et al., 2015

HeCDF TeCDF Dehalococcoides ND Liu and Fennell, 2008

TeCDF TrCDF Dehalococcoides ND Fennell et al., 2004

Penta-BDE, Tetra-BDE Diphenyl ether Dehalococcoides PbrA1, PbrA2, PbrA3 Ding et al., 2017

Pentachlorophenol Monochlorophenol Desulfitobacterium CprA3 Bisaillon et al., 2010

Trichlorophenol Monochlorophenol Dehalobacter ND Li et al., 2013;
Wang and He, 2013

Hexachlorobenzene Monochlorobenzene Dehalobacter ND Nelson et al., 2014

Pentachlorobenzene Benzene Dehalobacter ND Nelson et al., 2014

TBBPA Bisphenol A Dehalococcoides CbdbA80, CbdbA1092
CbrA, CbdbA1503,

Yang et al., 2015

Bromophenol blue Phenol red Dehalogenimonas ND Rosell et al., 2019

Notes: Abbreviations: ND, not determined; Penta-CB, pentachlorinated biphenyls; Tetra-CB, tetrachlorinated biphenyls; Octa-BDE, octabrominated diphenyl ethers;
Tetra-BDE, tetrabrominated diphenyl ethers; TCE, trichloroethene; DCE, dichloroethene; VC, vinyl chloride; PeCDD, pentachlorodibenzo-p-dioxin; TeCDD,
tetrachlorodibenzo-p-dioxin; TrCDD, trichlorodibenzo-p-dioxin; DiCDD, dichlorodibenzo-p-dioxin; MoCDD, monochlorodibenzo-p-dioxin; DD, dibenzo-p-dioxin;
HeCDF, hexachlorodibenzofuran; TeCDF, tetrachlorodibenzofuran; TBBPA, tetrabromobisphenol A; HCH, hexachlorocyclohexane.
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dechlorinate PCDD. There are enrichment cultures show-
ing dechlorination activities of PCDD/Fs in similar
pathways with those of reported pure cultures (Liu et al.,
2014a; Dam et al., 2017; Dean et al., 2020). Incomplete
dechlorination of PCDD/Fs may generate highly toxic
intermediates, warranting further integration of other
methods to complement Bio-RD for complete dechlorina-
tion or degradation. In contrast to incomplete dechlorina-
tion of PCBs and PCDD/Fs, several other halogenated
aromatic compounds could be completely dehalogenated
by OHRB, including penta-BDEs to diphenyl ether (Ding
et al., 2017) and pentachlorobenzene to benzene (Nelson
et al., 2014). Nonetheless, these complete dehalogenation
activities are limited to specific PBDEs and chlorobenzene
congeners.

2.3 Challenges in Bio-RD

Despite the economical and eco-friendly advantages of
OHRB-mediated reductive dehalogenation for the bior-
emediation of organohalides, its application is hindered by
many challenges. OHRB may compete with indigenous
populations for carbon sources, electron donors, nutrients
and other growth-supporting compounds at bioremediation
sites. The phase-out of fastidious OHRB could result from
their long generation time and extremely narrow metabolic
range (Ritalahti et al., 2005; Löffler et al., 2013; Bommer
et al., 2014). The restricted metabolism of obligate OHRB
has been verified by their small genomes (Siddaramappa et
al., 2012; Richardson, 2013). The OHRB in Dehalococ-
coidia cannot synthesize corrinoid de novo as a key

cofactor of RDases and they require external acetate and
hydrogen to support organohalide respiration (Fincker and
Spormann, 2017). Consequently, OHRB need to work
closely with fermenters and acetogens to acquire essential
carbon sources, electron donors, cofactors and other
nutrients to support cell growth. In addition, the low
bioavailability of persistent organohalides (e.g., PCBs and
PCDD/Fs) further restricts the cell growth of OHRB.
Moreover, uncertainties and complexities in biological and
geochemical parameters (e.g., pH, redox potential, tem-
perature, salinity and co-existing pollutants) may severely
inhibit OHRB activity (Lee et al., 2016). Therefore, many
biostimulation and bioaugmentation strategies have been
devised to guarantee dechlorination activities of OHRB at
bioremediation sites (Löffler and Edwards, 2006; Sowers
and May, 2013; Cervantes-Gonzalez et al., 2019), includ-
ing the addition of biosurfactants, slow-releasing carbon/
nutrients and cofactors.
Nonetheless, incomplete dehalogenation is a great

challenge in the OHRB-mediated bioremediation of
persistent organohalides. Possible reasons for the incom-
plete dehalogenation include the following: (1) due to the
high selectivity of RDases, OHRB attack halogens of a
particular position and leave the lowly-halogenated
compounds as dechlorination products (Sowers and May,
2013; Kunze et al., 2017); (2) when removing chlorines
from PCBs, dechlorination compounds become more
nucleophilic relative to their parent PCB substrates (Jugder
et al., 2016; Williams et al., 2020); and (3) accumulation of
dehalogenation intermediates may have inhibitive or other
side effects on subsequent dechlorination steps (Moe et al.,

Fig. 1 Observed pathways for PCDD/Fs dechlorination in Dehalococcoides mccartyi strains and enrichment cultures. Major and minor
dechlorination pathways are marked with thick and thin arrows, respectively.
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2018). The incomplete dehalogenation of organohalides
results in the generation of lowly-halogenated compounds,
which are nucleophilic and may be effectively degraded
through oxidative processes.

3 Persulfate activation and oxidation (PAO)
for extensive degradation of organohalides

3.1 Principles of PAO

PAO is an effective way to remove a variety of organic
contaminants from soil, groundwater and sediment, of
which persulfate activation is a crucial step. Thus far, many
methods have been devised to activate persulfate, which
have been extensively studied and identified with their pros
and cons (Vakili et al., 2021). Compared with persulfate
activation by alkali, transition metals and radiation,
thermal activation and iron-/carbon-based activation are
more environmentally friendly and cost-effective, being
promising for field applications (Li et al., 2020; Ma et al.,
2021). The detailed activation methods have been
comprehensively reviewed very recently (Matzek and
Carter, 2016; Pang et al., 2019; Zhi et al., 2020; Karim
et al., 2021; Tan et al., 2021).
Persulfate activation refers to the reaction of persulfate

with an activator to form SO4
$– radicals (E0 = 2.5–3.1 V,

depending on pH; Eq. (1)) and subsequent generation of
other radicals. Generally, persulfate can be activated by
energy input in the form of photons (e.g., UV photolysis)
and heat (e.g., thermolysis) (Fig. 2), or by direct electron
transfer (e.g., metal-based and activated carbon/biochar-
based electron shuttles) (Zhu et al., 2018c; Chen et al.,
2019; Yao et al., 2019). Then, the newly-born SO4

$– radical
can trigger the propagation of more SO4

$– radical through a
series of chain reactions, and OH$ will be generated upon
the reaction between SO4

$– and H2O/OH
– (Eq. (2)). For in

situ soil remediation, soil organic matter (SOM) contain
various phenolic moieties as persulfate activators (Ahmad
et al., 2013) and play an important role in persulfate
activation (Ahmad et al., 2010). Two mechanisms have
been proposed for the soil phenoxide activation of
persulfate, i.e., direct electron transfer from phenoxide to
persulfate (Eq. (3)) (Behrman, 2006), and nucleophilic
attack of persulfate by phenoxide to generate HO2

–

(Eq. (4)) and subsequent electron transfer from HO2
– to

persulfate (Eq. (5)) (Watson and Serban., 1995; Behrman,
2006). The formation of free radicals usually involves
three steps: initiation, propagation and termination (Petri et
al., 2011). The initiation step generally includes persulfate
activation with activators for the formation of SO4

$– and
other reactive radicals by radical chain reactions (Devi et
al., 2016). The propagation step contains the chain
reactions in which radicals extensively react with organic
pollutants (Huang et al., 2002). The termination step

includes removing radicals by reaction scavengers and
intermediates, or by self-destruction mechanisms.

S2O
2 –
8 þ activator↕ ↓SO⋅ –

4 þ ðSO⋅ –
4 or SO2 –

4 Þ (1)

S2O
⋅ –
4 þ H2O=OH

–
↕ ↓SO2 –

4 þ ⋅OH (2)

S2O
2 –
8 þ PhO –

↕ ↓SO⋅ –
4 þ SO2 –

4 þ PhOox (3)

S2O
2 –
8 þ PhO –

↕ ↓HO –
2 þ 2SO2 –

4 þ PhOproduct (4)

S2O
2 –
8 þ HO –

2 ↕ ↓SO2 –
4 þ SO⋅ –

4 þ O⋅ –
2 þ Hþ (5)

Electron transfer in redox reactions mainly occurs by
bridging mechanisms or outer-sphere mechanisms. The
outer-sphere mode has a faster electron transfer rate than
the bridged mechanism, due to the transient bond
formation during the bridging process (Rastogi et al.,
2009). In particularly, electron transfer for SO4

$–-mediated
organohalide degradation mainly involves the outer-sphere
mechanism, while OH$-mediated organohalide degrada-
tion involves the bridged mechanism (Monteagudo et al.,
2016). In contrast to the OH$ oxidization of organic matter
by hydrogen abstraction or addition, SO4

$– prefers direct
electron transfers and consequently more easily reacts with
aromatic molecules by providing electron substituents
(Mandal et al., 2018).

3.2 PAO for organohalide degradation: pros and cons

3.2.1 PAO for organohalide degradation

PAO has been applied to organohalide degradation and
remediation in different environmental matrices (Table 2),
including soil, sediment, surface water and groundwater, in
which SO4

$– and OH$ coexist as major reactive groups for
efficient degradation of lowly-halogenated organohalides

Fig. 2 Persulfate activation through electron- or energy-transfer
(modified form Lee et al., 2020a).

6 Front. Environ. Sci. Eng. 2022, 16(2): 22



(Pan et al., 2018). However, highly-halogenated contami-
nants are recalcitrant to SO4

$–-based degradation (Huang et
al., 2005), including polybrominated diphenyl ethers
(PBDEs), hexachloroethane (HCA), polychlorinated
biphenyls (PCBs) and perfluorooctanoic acids (Teel et
al., 2011; Rybnikova et al., 2016; Zhu et al., 2018b). For
example, the perfluorooctanoic acids with a high oxidation
state are resistance to oxidation (Wardman, 1989; Liu et al.,
2012). In a previous study investigating the degradability
of 51 groups of volatile organic compounds (VOCs) by Fe
(II)-activated PAO, VOCs were classified into three classes
based on their degradation efficiencies, suggesting the
lower degradation rates of the higher halogenated
compounds (Zhu et al., 2016a). For example, the PAO
reaction rates of p-chlorotoluene, 1,2-dichlorobenzene and
1,2,3-trichlorobenzene are 0.0024, 0.00017, and 0.00006
L/μg/h, respectively (Zhu et al., 2016a). By contrast, the
aforementioned OHRB-mediated Bio-RD mainly removes
halogens from highly-halogenated organohalides. There-
fore, PAO can complement Bio-RD and other strategies for
extensive conversion of organohalides. Thus far, PAO has
been widely employed to degrade a diverse range of
organohalides (Table 2):
1) Aliphatic organohalides. PAO has emerged as an

effective and efficient technique for removing chlorinated
aliphatic hydrocarbons, particularly chlorinated olefins and
chlorinated alkanes. For example, thermal activation of
persulfate has been identified as an effective technique to
remediate organohalide-contaminated groundwater, in
which chlorinated olefins (e.g., PCE or TCE) and
brominated alkanes (e.g., HBCD) can be degraded entirely
(Waldemer et al., 2007; Yuan et al., 2014; Wu et al., 2015;
Dong et al., 2019; Li et al., 2019).
2) Polychlorinated biphenyls (PCBs). The lowly-

chlorinated PCBs (e.g., PCB1, PCB3, PCB7, PCB8 and
PCB28) can be completely mineralized to CO2 and H2O in
aqueous solution at near ambient temperature (Fang et al.,
2013). Nonetheless, under the same conditions, the
removal efficiency of PCB30 only reached 78%. More-
over, PAO-based degradation of PCB31, PCB44 and
PCB153 in soil has been reported to range from 67.2% to
97.2% after several days of incubation (Yukselen-Aksoy
and Reddy, 2012; Tang et al., 2015). Therefore, PAO-
based PCBs degradation largely depends on both environ-
mental matrices (e.g., water and soil) and chlorine
numbers, the specific contributions of which await
clarification.
3) Polybrominated diphenyl ethers (PBDEs). At an e-

waste contaminated soil site with 53.8�0.5 mg/kg PBDEs
(from tri- to deca-BDEs), PAO has been identified to be
capable of degrading PBDEs with an efficiency of 49.5%
under optimal conditions (Ma et al., 2020). In another
study, 53.8% of deca-BDE (BDE-209) in soil was
observed to be degraded to short-chain acids, CO2 and
H2O after thermal-based PAO treatment for 360 min (Peng

et al., 2016). Interestingly, Huang and colleagues (Huang
et al., 2016) reported nearly 100% degradation and
mineralization of powdery deca-BDE by employing a
mechanochemical (ball milling) activation of persulfate,
involving stepwise debromination, cleavage of ether bonds
and collapse of benzene rings. The strong oxidation
capacity is due to the mechanochemical enhancement of
persulfate activation for the production of sulfate radicals.
This method provides a promising way to remove solid and
highly-halogenated organohalides.
4) Dichlorodiphenyltrichloroethane (DDT). DDT, as a

toxic pesticide, was included in the first batch of the 12
most hazardous and long-lasting organic compounds
defined by the Stockholm Convention on Persistent
Organic Pollutants (POPs) (Sharma et al., 2014; Asaoka
et al., 2019). Iron-based PAO can achieve 87.9% DDT
degradation, and free radicals (i.e., SO4

$– and OH$)
mediate DDT degradation via stepwise hydrodechlorina-
tion, dehydrochlorination, ring-opening and final miner-
alization (Zhu et al., 2016b).
5) Atrazine. Atrazine is one of the most widely used

pesticides in agriculture. Luo and colleagues (Luo et al.,
2015) investigated atrazine degradation by using UV-based
activation and oxidation of three types of oxidants (i.e.,
H2O2, peroxymonosulfate and persulfate), providing a full
understanding of the role of Cl–, natural organic matter
(NOM) and CO3

2–/HCO3
– on free radicals. The results

showed that Cl– (0.5–10 mmol/L), NOM and CO3
2–/

HCO3
– significantly scavenged free radicals. In addition,

the underlying mechanism of SO4
$–-based degradation of

chlorotriazine has been identified to be similar to that of
OH$ -based oxidation (dealkylation) (Lutze et al., 2015).
The high reactivity of chloroatrizine is primarily due to the
ethyl and isopropyl groups, but the dealkylated products of
chlorotriazine degradation have poor reactivity to SO4

$–.
Based on experiments, atrazine oxidation by free radicals
has been proposed to have three transformation pathways,
i.e., dealkylation, alkyl chain oxidation and dechlorination-
hydroxylation (Ji et al., 2015). It is important to note that
some of theproducts (e.g., di-isopropylatrazine and
diethylatrazine) converted from atrazine by SO4

$– or OH$

have similar levels of toxicity to atrazine (Whalen et al.,
2003).
6) Hexachlorocyclohexane (HCH). HCH, as a pesticide

includes many isomers, of which γ-HCH (lindane) is the
most toxic and hazardous. Experiments show that Fe2+ -
based PAO can altogether remove and mineralize lindane
within 12 h (Cao et al., 2008). Further kinetic studies show
that lindane degradation follows second-order degradation
with a rate constant of 1.3 � 109 M–1 s–1 (Khan et al.,
2016).
7) Chloroaniline. Highly toxic and carcinogenic p-

chloroaniline is a critical intermediate in the synthesis of
pesticides, medicines and dyes. Investigations on the PAO
degradation of p-chloroaniline showed its complete
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degradation and mineralization in waste streams
containing p-chloroaniline (Yuan et al., 2015; Yao et al.,
2019).
8) Chlorophenols. Toxic chlorophenols (e.g., penta-

chlorophenol or PCP) are massively produced and utilized
as fungicides and antiseptics. Investigations on the
degradation of PCP by SO4

$– and OH$ radicals have
shown that approximately 75% of PCP degradation and
mineralization were achieved within 60 min under optimal
conditions (Govindan et al., 2014). By contrast, almost
complete degradation and mineralization of 2,4-dichlor-
ophenol and tetrabromobisphenol A were achieved with
PAO (Kuśmierek et al., 2016; Li et al., 2015; Zhou et al.,
2018; Huang and Zhang, 2019).
Compared with the OHRB-mediated removal of highly-

halogenated organohalides, PAO is relatively more
effective in the degradation and mineralization of lowly-
halogenated organohalides. Therefore, PAO may comple-
ment Bio-RD for the extensive and complete degradation
and mineralization of a wide range of organohalides,
particularly the highly-halogenated organohalides. None-
theless, radicals and their intermediates play pivotal roles
in PAO-based degradation of organohalides, of which
radical scavenging and nonproductive reactions largely
determine the overall remediation efficiency of PAO-based
organohalide degradation (Crincoli et al., 2020). Conse-
quently, future extensive studies are necessary to reveal the
critical parameters affecting the reactive radicals in PAO.
In addition, efforts should also go toward the prevention of
hazardous byproduct formation in PAO.

3.2.2 Advantages of PAO for organohalide degradation

The SO4
$–-based advanced oxidation process (AOP) is a

promising technology for the remediation of organohalide
contamination. Compared with other AOPs, PAO has the
following advantages: (1) high stability; compared with
other oxidants, e.g., O3 and H2O2, persulfate is relatively
more stable in various environmental matrices; (2) high
solubility; persulfate is highly soluble and can be used
for remediation of groundwater polluted by dense
nonaqueous phase liquids (DNAPLs); (3) wide pH
range; persulfate-derived SO4

$– is less sensitive to pH,
and can mediate organohalide degradation in a wide range
of pH conditions; (4) long lifetime; the comparatively
much longer lifetime of SO4

$– relative to OH$ significantly
prolongs the exposure of SO4

$– to organohalides and
enhances their remediation efficiency; (5) low cost and
environmental impacts; PAO is a cost-effective and
environmentally friendly technique for in situ remediation
of organohalides.
Compared with Bio-RD, PAO has the following

advantages: (1) PAO is an efficient chemical reaction
process with high reactivity, which is much faster than Bio-
RD; (2) persulfate-derived SO4

$– with a high redox

potential of 2.5–3.1 V is nonselective to pollutants and
can degrade a wide range of lowly-halogenated organoha-
lides; and (3) PAO is easy to be operated and managed at
remediation sites.

3.2.3 Limitations of PAO for organohalide degradation

Although PAO is very promising in the remediation of
organohalides, there are several significant limitations in
practical PAO applications:
1) Persulfate itself has very low reactivity toward

organohalides, and its activation is critical for improving
the degradation efficiency. Nonetheless, thermal and
chemical activation methods consume much energy and
chemicals, respectively (Zhang et al., 2014). The high
chemical dose and energy input, as well as the long contact
time (usually in days), largely hinder field applications of
PAO (Zhang et al., 2014). Consequently, it is necessary to
develop novel, efficient and cost-effective activation
methods for PAO.
2) SO4

$– as a strong oxidant can non-selectively oxidize
a wide range of organic/inorganic components, which may
generate toxic byproducts (Hori et al., 2005). For example,
ubiquitous chlorine ions are widespread in natural
environments, and they can be oxidized to chlorine-free
radicals (Cl2

$–) by SO4
$–, which not only reduces the

degradation rate but also leads to the formation of harmful
chlorinated products (Zhang et al., 2013). Similar
problems exist for bromide as well (Fang and Shang,
2012). Consequently, preventing the generation of harmful
byproducts has become a concern in applying PAO in the
field remediation of organohalides.
3) The PAO process reduces the pH of contaminated

aquifers and soil in the range of 2.8–6.0 (Liang et al., 2004;
Tsitonaki et al., 2008). In addition, PAO produces a large
amount of sulfate, resulting in the salinization of soil and
groundwater. Therefore, improving the activation effi-
ciency of persulfate and precisely controlling the addition
amount of persulfate is of great significance in alleviating
soil acidification and salinization.
4) PAO-based remediation may change the microbial

community composition and function and biomass abun-
dance at comminated sites. For example, PAO remediation
was observed to result in biomass decline and a consequent
decrease in organohalide biodegradation efficiency (Tsi-
tonaki et al., 2010). To alleviate the negative impacts of
PAO on microbial communities, many different biostimu-
lation and bioaugmentation methods have been developed
and employed to stimulate biodegradation activities
(Sutton et al., 2011), which represent a challenge. For
example, neither OHRB (e.g., Dehalococcoides) nor rdhA
genes have been observed after the biostimulation of the
OHRB community at PAO-treated sites (Sutton et al.,
2015), suggesting the disruption of natural attenuation
capacities after PAO remediation.
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　4 Integration of Bio-RD and PAO
(Bio-RD-PAO) for extensive attenuation of
organohalides

4.1 Bio-RD-PAO for complete removal of organohalides

Both anthropogenic and natural sources of organohalides
result in the wide distribution of massive amounts of
organohalides in different environmental matrices (Xu et
al., 2006; Maucourt et al., 2020). Particularly in anoxic
subsurface environments, highly-halogenated organoha-
lides (e.g., PCBs in commercial PCB mixture Aroclor
1260) need to be reduced first before their subsequent
complete degradation via oxidative processes. Conse-
quently, an ideal bioremediation process for the in situ
removal of organohalides would integrate reductive
dehalogenation with subsequent oxidative degradation/
mineralization. At OHRB-based bioremediation sites,
lowly-halogenated pollutants (e.g., mono- to tetra-CBs
and vinyl chloride) may accumulate as intermediates await
further extensive degradation. In contrast, sulfate radicals
have difficulty in breaking down highly-halogenated
contaminants, but they can efficiently and extensively
degrade lowly-halogenated organohalides (Huang et al.,
2005; Zhu et al., 2016a). Taking PCBs as an example,
OHRB of different lineages have been identified to remove
chlorine atoms from highly-chlorinated PCBs and generate
di- to tetra-CBs, which can be effectively mineralized to
CO2 and H2O by PAO (Yukselen-Aksoy and Reddy, 2012;
Fang et al., 2013; Fang et al., 2017a). Therefore,
integration of Bio-RD with PAO (Bio-RD-PAO) may
provide a feasible process for the efficient in situ
remediation of organohalides at contaminated sites.
Nonetheless, the co-existence of aggressive chemical

oxidants and fastidious OHRB may have many yet-to-
understand interactions (Sutton et al., 2011; Zhang et al.,
2020), hindering Bio-RD-PAO for in situ remediation
applications. Previous studies have investigated the
impacts of chemical oxidation as a pretreatment method
to enhance both the degradability and availability of
organohalides for subsequent biological conversion pro-
cesses (Nam et al., 2001; Hrapovic et al., 2005; Kulik et al.,
2006; Ndjou’ou et al., 2006; Sahl and Munakata-Marr,
2006; Lu et al., 2010; Venny et al., 2012; Sutton et al.,
2014a). Results have shown that aggressive oxidation and
deleterious effects of chemical oxidants significantly
decrease the amount of biomass and change the composi-
tion of the microbial community (Sutton et al., 2014b;
Němeček et al., 2019; Xia et al., 2020). Consequently,
chemical pretreatments with oxidants may not improve the
overall remediation efficiency. For example, the low
abundance of OHRB rather than bioavailability have
ultimately determined the low-rate and incomplete reaction
of dehalogenation (Lombard et al., 2014). In addition,
although regeneration of the microbial communities

occurred after six months of chemical oxidation pretreat-
ment, neither D. mccartyi strains as key OHRB nor any
rdhA genes were observed (Sutton et al., 2015). These
results suggest that consequent treatment of organohalides
with Bio-RD and PAO, rather than PAO pretreatment and
then Bio-RD, may be feasible to combine the strengths of
Bio-RD and PAO and to prevent shortages, as well as their
side effects simultaneously. In Bio-RD-PAO, various
biostimulation and bioaugmentation strategies can be
employed to enhance OHRB-mediated halogen removal
from the highly-halogenated organohalides (Tyagi et al.,
2011; Roy et al., 2018; Xu et al., 2019). For example,
bioaugmentation with anaerobic microorganisms has been
employed to enhance the conversion of highly-chlorinated
PCBs to lowly-chlorinated PCBs. In addition, after
completion of Bio-RD-PAO remediation at contamination
sites, microbial communities may be regenerated by
biostimulation and bioaugmentation (Dogan-Subasi et al.,
2013; Martínez-Pascual et al., 2015).

4.2 Challenges in Bio-RD-PAO for in situ remediation of
organohalides

Bio-RD-PAO may synergistically combine advantages of
Bio-RD and PAO for extensive remediation of a wide
range of organohalides, particularly highly-halogenated
organohalides that cannot be effectively remediated by
Bio-RD or PAO alone. Nonetheless, there are several
major challenges for remediation applications of Bio-RD-
PAO:
1) Substrate addition in biostimulation may affect the

subsequent PAO process. The fastidious growth require-
ments and long generation time of OHRB, and compli-
cated microbial interactions result in difficulties in
maintaining efficient organohalide respiration. To enhance
the microbial reductive dehalogenation efficiency, many
biostimulation strategies have been devised and employed,
including the addition of vegetable oils as slow-releasing
organic carbons and electron donors to support organoha-
lide respiration of OHRB (Herrero et al., 2019). These
biostimulation materials are left or transferred into other
organic matter as intermediates, which may consume
sulfate radicals and decrease the efficiency of subsequent
PAO in organohalide remediation (Ouyang et al., 2017;
Fang et al., 2018). In addition, a variety of minerals, ions
and organic matter in soil and subsurface environments
also consume persulfate-derived sulfate radicals, which has
been comprehensively reviewed by Lee and colleagues
(Lee et al., 2020a). The authors suggested to establish
field-proven operating procedures to minimize the side
impact of by-products and associated reactions on PAO
(Lee et al., 2020a). Both experimental and computational
evidences suggested that minerals containing iron/manga-
nese-oxides decompose persulfate and produce active free
radicals to accelerate persulfate decomposition upon
contaminant’s exposure (Liu et al., 2014b; Pari et al.,
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2017). It is the distance between contaminants and
persulfate that may affect the diffusion rate of active free
radicals and the pollutant removal efficiency. Therefore,
the effects of biostimulation substrates-derived matter on
subsequent PAO are different under varied environmental
conditions, on which the detailed information remain
elusive.
2) Mechanisms underlying the oxidative PAO process in

aerobic and anaerobic environments may be different from
each other, which remain elusive. Persulfate activation is
generally performed under aerobic conditions, and there
are limited reports of persulfate activation in anaerobic
environments. Recently, both reductive dechlorination and
consequent oxidation of hexachloroethane were observed
during the PAO process under anaerobic conditions (Zhu et
al., 2018b), in which persulfate radicals (S2O8

$–) were
identified to play a significant role in hexachloroethane
degradation. Interestingly, in another study on PAO under
anaerobic conditions, persulfate-derived alcohol radicals
(ARs) with low redox potential were proposed to
reductively dechlorinate trichloroacetic acid (TCA) and
carbon tetrachloride (CCl4) (Zhu et al., 2018a). Other
oxidative radicals (e.g., SO4

$– and OH$) were generated in
the subsequent radical chain reactions, which further
reacted with lowly-chlorinated intermediates and con-
verted them into CO2 and chloride ions (Zhu et al., 2018a;
Zhu et al., 2018b). Therefore, under anaerobic conditions,
persulfate can be activated to generate both reductive
radicals and oxidative radicals through radical chain
reactions, which warrants more experimental and mechan-
istic investigations.
3) A third challenge is that of the effective integration of

Bio-RD and PAO for complete degradation of organoha-
lides. Theoretically, Bio-RD can remove halogens from
highly-halogenated organohalides, and then PAO can
effectively and extensively degrade the dehalogenation
products. Nonetheless, during Bio-RD, various parameters
work together to determine the number of removed
chlorine compounds, particularly the OHRB and their
growth conditions, resulting in the varied extent of
dehalogenation (Nijenhuis and Kuntze, 2016; Wang et
al., 2018). For example, recently isolated and characterized
D. mccartyi CG1 and CG5 could dechlorinate PCB180
(2345-245-CB) to hexa-CB (245-245-CB) and tetra-CB
(24-24-CB), respectively (Wang et al., 2014). Subsequent
PAO-based degradation of the generated hexa- and tetra-
CBs has different efficiencies, and PAO is more effective in
degrading the lowly-chlorinated PCBs (Rybnikova et al.,
2016).
4) The hydrophobic properties of organohalides severely

restrict their bioavailability and in situ chemical oxidation
efficiencies. The hydrophobicity of organohalides results
in their low availability, which leads to the low and
incomplete degradation of organohalides by Bio-RD-PAO.
Particularly in organohalide-contaminated subsurface
environments, the organohalides may be adsorbed to soil

organic matter. To enhance the desorption and dissolution
of organohalides, soil heating strategies were investigated
to improve microbial reductive dehalogenation and sub-
sequent activation of persulfate (Peng et al., 2016). The
heating temperature is a critical parameter, and high
temperature may inactivate the OHRB and result in
persulfate decomposition. Nonetheless, soil heating is an
energy-intensive process. Recent studies showed that
biostimulation with nutrients and surfactants promoted
cell growth of OHRB by increasing the bioavailability of
hydrophobic organohalides (Jasmine and Mukherji, 2014),
which may be a feasible way to enhance the efficiency of
Bio-RD-PAO in organohalide remediation.
5) The integrated Bio-RD-PAO process may affect the

abundance of biomass, microbial community composition
and physiochemical properties of remediated soil by
increasing redox potential and decreasing pH (Sutton
et al., 2014b; Sutton et al., 2015). Although the regenera-
tion of microbial communities can be achieved through
biostimulation and bioaugmentation, unpredictable side
effects may occur at remediation sites (Sutton et al., 2011;
Cycoń et al., 2017). For example, microbial activities have
been changed even after microbial community regenera-
tion (Sutton et al., 2015). Therefore, it is challenging to
alleviate the side impacts of persulfate oxidation on
microbial communities and their activities. Although it
has been reported that the impacts of persulfate activation
oxidation on bioremediation are reduced by optimizing the
molar ratio of persulfate and pollutants, as well as of
persulfate and activators (Xia et al., 2020), the specific
mechanism is still unclear.

5 Conclusions and future perspectives

Bio-RD and PAO are two efficient techniques for in situ
remediation of highly-halogenated and lowly-halogenated
organohalides, respectively. Bio-RD-PAO via sequential
integration of Bio-RD and PAO can provide a solution for
remediation of a wide range of organohalides, which is not
only feasible but extensive, efficient and cost-effective, if
properly implemented, compared with Bio-RD and PAO
treatment alone. To enhance the efficiency of Bio-RD-PAO
in remediation of organohalide pollution, the following
perspectives are proposed for future studies:
1) Novel surfactants should be developed to improve the

availability of hydrophobic organohalides for Bio-RD-
PAO. Hydrophobic organohalides may bond to soil
organic matter, which severely decreases their availability
and results in low dechlorination efficiency. Surfactants
can enhance the organohalide removal by improving the
organohalides’ bioavailability and the interaction between
cell surface and reactants (Mulligan and Gibbs, 2004; Liu
et al., 2021). A variety of surfactants (e.g., anionic,
cationic, zwitterionic and nonionic surfactants) have been
developed and applied in soil remediation (Fountain et al.,
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1996; Mao et al., 2015), including bioremediation (Pacwa-
Plociniczak et al., 2011), phytoremediation (Aioub et al.,
2019) and electrokinetic remediation (Fardin et al., 2021;
Chen et al., 2021). To develop novel surfactants for
enhanced remediation of organohalide-contaminated soil,
especially for the Bio-RD-PAO process, the following
properties of the surfactants should be considered:
(a) The surfactants cannot inhibit the microbial activity.

Although surfactant-amended bioremediation has been
widely applied, the impact of surfactants on the organo-
halide degradation have been controversial in the past
years, and little is known about the effect of emulsifiers on
the biodegradation of complex hydrocarbon mixtures. To
clarify the effect of surfactant addition on microbial
activity and pollutant removal efficiency, Liu et al.
(2016) compared the effects of three surfactants
(Tween80, TritonX-100 and Brij30) and found that
Tween80 promoted the growth and activity of microorgan-
isms (Sphingomonas sp. GY2B), and improved the
pollutant degradation efficiency. By contrast, slight and
severe inhibitions were observed in cultures amended with
TritonX-100 and Brij30, respectively (Liu et al., 2016).
(b) There is a good compatibility of surfactants with the

microorganisms and oxidants. Several studies testing the
chemical compatibility between surfactants and pollutants
suggested that alcohol-based surfactants were more likely
to react with pollutants and not conducive to use with the
oxidants (Zhai et al., 2006).
(c) The surfactants should not quench the persulfate-

derived free radicals. Previous studies showed that removal
of organohalides were improved by combining nonionic
surfactants (e.g., TX-100, Brij-35 and E-Mulse 3®) and
oxidants (Mulligan and Eftekhari, 2003; Villa et al., 2010;
Rios et al., 2013; Dominguez et al., 2019). Interestingly, a
recent study comparing the effect of three nonionic
surfactants (E-Mulse 3®, Tween80 and a mixture of
Tween80-Span80) and an anion surfactant (sodium
dodecyl sulfate, SDS) on PAO degradation of organoha-
lides demonstrated that combining SDS and Emulse-3®
consumed less persulfate, but was more efficient, relative
to SDS (García-Cervilla et al., 2021).
Therefore, interactions among surfactants, oxidants and

organohalides are complicated, and the selection of
optimum surfactants for ISCO treatment is challenging.
The compatibility of surfactants with oxidants, the
solubility of surfactants, and the oxidation rate of
organohalides in aqueous surfactant emulsion warrant
future investigation.
2) Multifunctional materials and techniques can be

devised for simultaneous stimulation of Bio-RD and
persulfate activation. For example, glucose was recently
utilized to activate persulfate and, at the same time, provide
a carbon source for indigenous microorganisms, which
work together to effectively degrade nitrobenzene and
chloroethane (Watts et al., 2018). Moreover, surfactant
foam could be an effective carrier for OHRB and persulfate

in the vadose zone, which has been successfully employed
to enhance remediation of contaminated soil (Zhang et al.,
2012; Bajagain et al., 2018; Bouzid et al., 2019; Bajagain
et al., 2020). Consequently, new materials with multiple
similar functions should be developed specifically to
enhance the organohalide remediation efficiency of Bio-
RD-PAO.
3) Strategies should be developed to alleviate the side

effects of Bio-RD and PAO, which include capsulation of
OHRB and their growth-requiring nutrients and substrates
for Bio-RD-PAO-based in situ remediation. The OHRB-
dwelling and nutrient-slow-releasing capsules can alleviate
the strong-oxidative damaging effects of PAO on the
OHRB by preventing direct contact of the OHRB with
persulfate-derived oxidative species. Many other novel
materials have been developed to protect anaerobic
bacteria from exposure to oxygen and other oxidative
species. For example, Ji and colleagues (Ji et al., 2018)
recently developed a cytoprotective metal-organic frame-
works (MOFs) material to wrap anaerobes and to
decompose reactive oxygen species, which decreased
anaerobic cell damage by 5-fold upon oxygen exposure.
4) To completely mineralize highly-halogenated orga-

nohalides, it is crucial that the OHRB can effectively
remove halogens from highly-halogenated substrates. For
a specific organohalide pollutant, the proper organohalide-
respiring bacterial candidate may be different. Of the
currently-characterized OHRB, Dehalococcoides repre-
sents a unique lineage for reductive dechlorination of a
wide range of organohalides, and is an optimal candidate
for applying the Bio-RD-PAO process. For example,
Dehalococcoides is one of the only two organohalide-
respiring genera able to dechlorinate hexachlorocyclohex-
ane (HCH) (Doesburg et al., 2005; Maphosa et al., 2012;
Bashir et al., 2018). Dehalococcoides transforms (α, β, γ,
δ)-HCH to monochlorobenzene and benzene (Bashir et al.,
2018), which enables their efficient and complete degrada-
tion via subsequent PAO. For reductive dichlorination of
PCBs, Dehalococcoides, Dehalogenimonas and Dehalo-
bacter can remove flanked meta-/para-chlorines from
PCBs with different specificities and generate a variety of
lowly-chlorinated PCBs for subsequent degradation using
PAO. Therefore, the overall efficiency of degrading PCBs
and other organohalides in the Bio-RD-PAO process may
be optimized by screening and selection of proper OHRB
based on extensive cultivation studies.
5) For the complete degradation of highly-halogenated

organohalides, dehalogenation products of Bio-RD may be
further degraded by aerobic microorganisms (Rieger et al.,
2002), which has been observed in natural environments
for attenuation of organohalide pollutants (Abramowicz,
1995). The stepwise anaerobic-aerobic coupled process
has been employed for the removal of a variety of
organohalides, including chloroethenes (Yoshikawa et al.,
2017), HCB (Kengara et al., 2013), TBBPA (Ronen and
Abeliovich, 2000), PCBs (Tsuneta et al., 2008; Pathiraja
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et al., 2019), and PBDEs (Pan et al., 2019). For example,
approximately 70% of Aroclors can be effectively
degraded by coupling an anaerobic PCB-dechlorinating
culture with an aerobic culture containing Burkholderia
xenovorans LB400 (Evans et al., 1996; Master et al.,
2002). Nonetheless, compared with Bio-RD-PAO, the
sequential anaerobic-aerobic coupled process may have
disadvantages, including a long remediation time (Liu
et al., 2013) and high substrate selectivity (Sowers and
May, 2013). For example, PCB dechlorinating products
with ortho-chlorines are recalcitrant to aerobic degrada-
tion, but can be easily degraded by PAO. Compared with
the sequential anaerobic-aerobic coupled process and the
detailed pros and cons, as well as how to prevent its
drawbacks, in-depth studies are needed to further inves-
tigate Bio-RD-PAO.
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