
RESEARCH ARTICLE

Design of bio-oil additives via molecular signature descriptors
using a multi-stage computer-aided molecular design

framework

Jia Wen Chong1, Suchithra Thangalazhy-Gopakumar1, Kasturi Muthoosamy2,

Nishanth G. Chemmangattuvalappil (✉)1

1 Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Selangor 43500, Malaysia
2 Nanotechnology Research Group, Centre of Nanotechnology and Advanced Materials, University of Nottingham Malaysia,

Selangor 43500, Malaysia

© Higher Education Press 2021

Abstract Direct application of bio-oil from fast pyrolysis
as a fuel has remained a challenge due to its undesirable
attributes such as low heating value, high viscosity, high
corrosiveness and storage instability. Solvent addition is a
simple method for circumventing these disadvantages to
allow further processing and storage. In this work,
computer-aided molecular design tools were developed
to design optimal solvents to upgrade bio-oil whilst having
low environmental impact. Firstly, target solvent require-
ments were translated into measurable physical properties.
As different property prediction models consist different
levels of structural information, molecular signature
descriptor was used as a common platform to formulate
the design problem. Because of the differences in the
required structural information of different property
prediction models, signatures of different heights were
needed in formulating the design problem. Due to the
combinatorial nature of higher-order signatures, the
complexity of a computer-aided molecular design problem
increases with the height of signatures. Thus, a multi-stage
framework was developed by developing consistency rules
that restrict the number of higher-order signatures. Finally,
phase stability analysis was conducted to evaluate the
stability of the solvent-oil blend. As a result, optimal
solvents that improve the solvent-oil blend properties
while displaying low environmental impact were identi-
fied.

Keywords computer-aided molecular design, bio-oil
additives, molecular signature descriptor

1 Introduction

Biomass is regarded as a relatively clean and renewable
energy source originating from plants and animals, which
has received increased attention as a potential alternative
fuel. A comprehensive review on the state of the art
technologies used for converting biomass to biofuel has
been reported recently by Lee et al. [1] and Lewandowski
et al. [2]. Both these papers review various biomass
conversion pathways including thermochemical (i.e.,
combustion, gasification, liquefaction, pyrolysis and
torrefaction) and biochemical (i.e., anaerobic digestion,
alcoholic fermentation, fermentation and photobiological
hydrogen production). Among these conversion processes,
pyrolysis has the advantage of being a relatively simple
and inexpensive technology [3]. With pyrolysis, solid
biomass can be converted into bio-oil along with biochar
and gaseous by-products. However, problems such as
thermal and chemical instability, as well as immiscibility
with petroleum fuels often hampers the direct application
of bio-oil in diesel engines or gas turbines [4]. Besides,
poor fuel properties of bio-oil from pyrolysis such as
corrosiveness, high viscosity and low heating value limit
its application as a biofuel [5]. Solvent addition is one of
the most popular bio-oil upgrading methods as it is
relatively simple and economically viable [6,7]. Lower
viscosity, higher stability and homogenisation of bio-oil
can be achieved with the addition of solvents [5].
Moreover, the heating value of bio-oil was found to
increase due to the solvent addition [4]. Conventionally,
the design of solvents involves a trial-and-error process
within a large set of candidates which is tedious, time-
consuming and costly [8]. Unlike traditional search and
optimisation techniques, a more efficient solvent design
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can be carried out by utilising computer-aided molecular
design (CAMD) tools where molecules possessing desired
properties are identified based on the pre-determined
product requirements.
CAMD is a reverse engineering approach in which the

optimal molecules can be identified from a given set of
molecular building blocks and a specified set of targeted
properties [9]. In the past, CAMD has been widely
incorporated in designing solvents for various applications
[10]. A comprehensive review on the solution techniques,
applications and future opportunities of CAMD tools are
presented in the review articles of Austin et al. [11] and Ng
et al. [12]. In addition, more detailed discussion on the
development of CAMD applications in the design of
solvents can be found in the review articles of Zhou et al.
[13] and Chemmangattuvalappil [14]. Other than the
abovementioned application areas, the use of CAMD in the
design of biofuel additives was reported as well. Hada et al.
[15] combined property clustering techniques and char-
acterisation-based group contribution (GC) method in a
reverse problem formulation for the design of biodiesel
additives. Khor et al. [16] developed a fuzzy optimisation-
based CAMD approach in the design of alternative
solvents for recovery of palm pressed fibre’s residual oil.
Physical properties of the potential solvent along with
safety and health attributes were optimised in the study.
Yunus et al. [17] applied CAMD in the solvent design for
palm oil residual extraction from spent bleaching earth.
The solvent candidates were screened and evaluated by
using a simulation software. Mah et al. [18] developed a
multi-objective optimisation based CAMD framework for
bio-oil solvent design. The trade-off between low solvent
ratio and high heating value was determined. Due to the
rising awareness on environmental issues and stringent
environmental regulations, the demand for green solvent
has intensified in recent years [19]. Neoh et al. [20]
proposed a two-stage multi-objective optimisation pro-
blem for the design of bio-oil additives where environ-
mental, health and safety aspect and fuel functionality were
optimised simultaneously. However, the environmental,
health and safety aspects considered in this work were
limited to those properties for which GC property
prediction models are available.
Among the different types of property prediction

models, some of the prediction models for environmental
or non-thermodynamic properties are derived based on
semi-empirical quantitative structure-property relationship
(QSPR) and quantitative structure-activity relationship
(QSAR) models. QSAR/QSPRs are predictive models
derived mathematically, which convert the chemical
structures into molecular descriptors that are relevant to a
certain physical property or bioactivity [21]. They can be
described in terms of GC method and topological index
(TI) like connectivity, shape or wiener index. QSAR/
QSPRs are often expressed in terms of more than one TI.
Different properties may be expressed with different TI as

well. However, different TIs exhibit different mathematical
expression, which pose challenges in combining and
solving it simultaneously on a common platform [22]. To
overcome this issue, molecular signature descriptor was
introduced, where various GC models and TIs can be
expressed on a common platform [23].
Molecular signature descriptor is one of the two-

dimensional (2D) fragment-based TI that systematically
captures the structural information of a 2D structural
formula. It describes the molecular atoms in terms of
extended valencies up to a predefined height [24]. Owing
to the fact that molecular signature descriptor is known as
the canonical representation of a molecule, all other 2D
classes of descriptors can be represented in terms of
molecular signature [25]. In the past, molecular signature
descriptors have been applied in various CAMD fields.
QSPR based approach with molecular signature descriptor
was applied in the design of novel polymers [26] and novel
glucocorticoid receptor ligands with pulmonary selectivity
[27]. In Weis and Visco’s [28] work, ethyl lactate was
identified as green industrial solvent by applying the
CAMD approach with molecular signature descriptor.
Chemmangattuvalappil et al. [29] redefined the TIs by
incorporating molecular signature descriptors in the
reverse problem formulation framework. The developed
algorithm was then applied in the design of alkyl
substituent of fungicide. Ng et al. [30] developed a novel
two-stage optimisation approach for optimal mixture
design in an integrated biorefinery.
Previous research on the design of bio-oil additives

focused only on the property targets that can be predicted
using GC prediction models with 1st order GCs. However,
it is important to incorporate contributions from higher-
order molecular groups in CAMD to account for the
interactive effects of molecular groups [31]. In addition,
the nonavailability of the required GC contributions
restricted their applicability in CAMD problem [32].
Moreover, the selected GC model may not have all the
model parameters required for the estimation of property of
a specific chemical [33]. For this reason, TI approaches can
be applied as they are a function of the entire molecular
graph, which reflect the entire nature of the molecular
structure [11]. Several contributions reported on the
application of TIs in the modelling of properties in
environmental, pharmacology and toxicology fields for
its coverage of larger molecular topology [11]. The main
reason for these limitations is because incorporating TI and
GC models with higher-order group contributions together
is computationally challenging. Thus, molecular signature-
based algorithms were introduced in this work to
incorporate higher-order molecular groups from GC
models and multiple TIs on a common platform for
CAMD. Signatures of different height can be used to
represent different TI and GC models with higher-order
contributions. However, coverage of TIs and higher-order
GCs require signatures of higher height due to the
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requirement of higher structural information. Despite the
high accuracy of estimation with the use of signatures of
higher height, the complexity of CAMD increases due to
the combinatorial nature of higher-order signatures.
Having several building blocks will result in a large
number of signatures at higher height, which leads to
difficulties in modelling and solving the CAMD problem.
Hence, the height of signatures has to be lowered in order
to be used in a CAMD formulation. However, not all the
signatures considered in the CAMD problem are consistent
with each other to form a feasible molecule. Thus, a
consistency rule was developed in this work to reduce the
size of CAMD problem by excluding irrelevant molecular
signature at a lower height from the building block sets.
Infeasible signatures (signature that do not fulfil the
consistency rules) are systematically eliminated at different
levels and this can help to keep a manageable problem size.
With the help of consistency rules, it is possible to apply
molecular signature descriptors in designing molecules
with all promising building blocks while also considering
appropriate GC prediction models with higher-order
contributions and QSPRs with different TIs. After
determining all the possible additives, the accuracy of
the estimated higher heating value of solvent candidates
was verified through a database search. Other than the
thermodynamic properties, Gibbs free energy of mixing
was estimated to evaluate the miscibility of solvent-oil
blend. Phase behaviour analysis on solvent-oil-water blend
was presented by plotting the Gibbs phase ternary graphs.
On the other hand, the stability of the solvent-oil blend was
determined by computing tangent plane distance. Sensi-
tivity analysis was conducted on bio-oil’s water content to
investigate its effect on the solvent ratio and miscibility of
the final solvent-oil blend. Finally, an optimum solvent that
improves the solvent-oil blend properties and stability was
generated.

2 Experimental

The main objective of this work is to develop a systematic
multi-stage framework in reducing the size of CAMD
problem due to the combinatorial nature of molecular
signature descriptor. Solvents that form stable blends with
bio-oil and possess optimal properties can be generated
with this framework by considering physical, environ-
mental and thermodynamic properties. An algorithm of
GC method coupled with TI approach was used to solve
the multiple property indexes involved in the CAMD
problem. This framework can be divided into 4 main stages
and their correlated sub-steps are shown in Fig. 1.

2.1 Step 1: problem definition

Firstly, the problem definition was formulated, where the
product needs were determined based on the requirements

from regulations and specifications. This usually requires
data on physical and thermodynamic properties as they
contribute to the functionality of the product. In addition,
environmental properties were considered to ensure that
the generated solvent molecules have low environmental
impact. The selected desired properties will serve as the
design objective to generate molecules.
The identified product requirements were then translated

into measurable quantitative target properties. For exam-
ple, the flow consistency of solvent can be expressed in
terms of its density and viscosity. These identified target
properties will either be used as constraints or optimisation
objective in the CAMD formulation stage. Upper and
lower limits were defined for these target properties to
ensure the designed solvents display similar physical
characteristics as a conventional solvent.

2.2 Property prediction models

In this step, suitable property prediction models were
identified to compute the target properties of the solvent. In
this work, property prediction models in terms of GC
method and TI were considered and expressed as a
function of the molecular signature descriptor. For GC-
based property prediction models, higher-order molecular
groups show higher prediction quality compared to the 1st
order approach. In this work, higher-order molecular
groups (2nd and 3rd order groups) along with the basic
molecular building blocks (1st order) have been consid-
ered. Molecular signatures of desirable heights were
generated based on the root atoms and chemical families
selected for the solvent design. The height and number of
signatures required to describe the molecular group in GC
models depend on the number of atoms present for the
molecular structure and the nature of the final molecule.
Thus, maximum signature height for the CAMD problem
can be determined from the available property prediction
models.

2.3 Step 2: CAMD formulation

The CAMD optimisation model was represented using the
following set of generalised mathematical expressions
[11]:

Fobj ¼ maxFðx,pÞ, (1)

p ¼ f ðxÞ, (2)

h1ðp,xÞ£0, (3)

h2ðp,xÞ ¼ 0, (4)

s1ðxÞ£0, (5)

s2ðxÞ ¼ 0, (6)
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pLk£pk£pUk 8k, (7)

xLd£xd£xUd 8d: (8)

For the above expressions, p is the vector of properties
and pk is the property values for each property k.
Meanwhile, n is the vector representing the structural
information of designed molecules. The xd vector indicates
the number of occurrences of each molecular signature d.
The function f then transforms this structural information
into a property estimate using the appropriate QSPR

relationship. Equation (1) is a general objective function
for the CAMD problem. The F(x,p) is known as the vector
of objective function which quantify the performance of
the designed molecule based on its properties p. The F
function can either be maximised or minimised depending
on the design problem. Equation (2) is the function f which
estimates vector of properties p from attributes such as
number of molecular signatures. Equations (3) and (4) are
the general function representing the inequality and
equality constraints, respectively. These equations corre-
spond to product design specifications such as property’s

Fig. 1 Framework for the development of CAMD model for the design of solvent.
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value for thermodynamic and environmental properties. As
the property depends on the presence of signatures, these
constraints can control the number of appearances of
specific signatures in the designed molecule. As for
Eqs. (5) and (6), they are the general function representing
the inequality and equality constraints, respectively, related
to the molecular structure generation. These structural
constraints ensure the generated molecule is structurally
feasible. Equations (7) and (8) are the boundaries set on
property values and the number of signatures. pLk and x

L
d are

the lower bounds for property k and xd , respectively.
Similarly, pUk and xUd are the upper bounds for property k
and xd, respectively.
For the CAMD problem, the function f ðxÞmay be

formulated as a mixed-integer nonlinear program. How-
ever, due to the increasing size of the mathematical
problem, it is usually challenging to solve such a mixed-
integer nonlinear program problems with the structural
information included [34]. In this work, molecular
signature descriptors were used to present the CAMD
problem as an equivalent mixed-integer linear program.
The 2D descriptor (both TI and GCmodels) of moleculeG,
TIðGÞ can be expressed as a dot product between two
vectors, hαg , the vector of occurrence number of atomic

signatures of height h, and TI
�
root h

P� ��
, the vector of

predicted values from the model computed for each of the
atomic signatures as shown in (Eq. (9)):

TIðGÞ ¼ khαg$TI root h
X� �� �

: (9)

By using the signatures, the non-linear part of the
mathematical formulation can be hidden inside the
molecular signature building blocks. As shown in
Eq. (9), the prediction model is expressed as linear
equation, where the only variable is the number of
respective building blocks, which are atomic signatures.
In each of the building blocks, contribution to the property
can be estimated using the original property prediction
model. When GC model was used for property prediction,
the term in the bracket refers to the property contribution
from the signature that represents the set of molecular
groups present in the higher-order groups. In CAMD, since
the structure of molecule is not known prior to the design,
the presence of higher-order groups is not known during
the design. Molecular signatures were used to track the
presence of all possible 2nd and 3rd order contributions by
considering a signature height of 2 or 3. These models can
be linear or non-linear. However, since these non-linear
expressions were only used in the estimation of contribu-
tion of the building blocks, hence it will not be part of the
variables. The only variable involved will be the number of
appearances of each signature. Considering the prediction
model for normal melting point, Tm as an example
(Eq. (10)) [31].

exp
Tm
Tm0

� �
¼

X
i
NiTmi þ

X
i
MjTmj

þ
X

i
OkTmk , (10)

where Ni, Mj and Ok are the number of individual building
blocks from 1st order, 2nd order and 3rd order groups,
respectively. Tmi, Tmj and Tmk are the contributions for 1st
order, 2nd order and 3rd order groups, respectively. Tm0 =
147.45 K; Tm is the normal melting point and was set to be

lower than 298.15 K. The exponential term, exp
Tm
Tm0

� �
at

the left-hand side of Eq. (10) contributes to the non-
linearity of the expressions. By substituting and solving the
left-hand side of the equation, the prediction model is now
a linear equation, as shown in Eq. (11). The only variable
in the equation is the number of building blocks.

7:554 >
X

i
NiTmiþ

X
i
MjTmj þ

X
i
OkTmk:

However, this approach will lead to the generation of a
substantial amount of molecular signature building blocks
to be considered for CAMD. To address this issue, a multi-
level approach has been developed where the amount of
generated molecular signature building blocks can be
controlled.

2.3.1 Feasibility rules

To ensure the feasibility of the final molecule, the selected
signature building blocks should fulfil the requirements to
form effective solvents. An efficient, structured algorithm
for joining groups to form feasible chemical compounds
was integrated into the signature based CAMD [35,36].
Generally, molecules are reported to be unstable if two
heteroatoms are bonded to the same carbon atom, and at
least one of the atoms is also bonded to a hydrogen atom.
Combination like heteroatom bonding with another should
be avoided as these compounds are usually highly reactive
and not suitable to be considered as solvents. Constraints
from the work of van Dyk & Nieuwoudt [36] classified the
groups of molecules according to the type of free bonds as
shown in Table 1. In general, Table 2 can be summarised
based on Eq. (12):

n4 þ n5³n1 þ n2, (12)

where ni is the total number of free bond group i in the
molecule.
As some of the property prediction models used GC

method, signature descriptors were translated and assigned
to their corresponding groups from GC method. Only the
root atom of each atomic signature was considered to
prevent the overlapping issues during the property
estimation. Taking the molecular signature C2(CC), the
root atom C was connected to 2 carbon atoms by single
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bonds and the rest was bonded to hydrogen atoms. Thus
‘CH2’ is the corresponding GC group for this signature. In
another example, the signature C4 (= CCO) has the root
atom C connected to an oxygen and two carbons by single
and double bonds, respectively. To ensure no overlapping
of groups, the simplest equivalent group was chosen. In
this case, the group ‘C = C’ was chosen.

2.3.2 Structural constraints

Structural constraints are essential in a CAMD problem to
ensure the formation of a complete molecular graph with
all signatures connected in order to generate a feasible
solution. The structural constraints used in molecular
signature-based algorithms must follow a few rules in
order to generate a complete structure [29]: (I) Signatures
must be connected without any free bonds in the structure.
Thus, the total number of available degrees (valencies)
should be matching with the total number of vertices
(atoms) in the graph (molecules). (II) The number of bonds
in each signature should be consistent with the bonds of the
rest of signatures.
Table 3 shows the mathematical expressions of

structural constraints for rule (I) and (II). Equation (13)
was developed to express the relation between the number
of signatures and the bonds where n1, n2, n3, and n4 are the
number of signatures xi with valency of one, two, three and

four, respectively. Here NDi, NMi and NTi are the signatures
with one double bond, two double bond and one triple
bond, respectively [29]. Meanwhile, rule (II) can be
mathematically represented as Eq. (14), which must be
fulfilled by all colour sequences, including colour
sequences in which i ¼ j at each height. The expression
ðli↕ ↓ljÞh is for colouring sequence li↕ ↓lj at level h [29].

2.3.3 Consistency rules

The CAMD problem was initially solved at height 1 level
to identify promising signatures generated from the
previous stage. Subsequently, height 2 signatures were
generated based on the identified height 1 signatures.
However, to ensure the final generated molecule is
structurally feasible, only signatures that fulfil the
structural constraints were considered.
To generate a feasible molecular structure from the

signature building blocks, each signature must be con-
nected to another signature that with the same structure at a
level h – 1. An example on the enumeration of molecular
structures from signatures are shown in Table 4. The
collection of signatures presented in this example is one of
the solutions obtained for the bio-oil solvent case study in
section 3.
Firstly, any signature of height 3 was selected. In this

case, signature (1), C1(C3(C1(C)C2(CC)O1(C))) was
selected. Next, it was inferred that there is only one
signature possible from the first layer, which is C3(C1(C)
C2(CC)O1(C)). From Table 4, it is observed that the height
2 signatures for signature (8), C3(C1(C3(CCO))C2(C2
(CC)C3(CCO))O1(C3(CCO))) was exactly same as the
signature from the first layer. Thus, signature (1) was
connected with signature (8). The same procedure was then
repeated on signature (8) to get the next bond. In this study,
an algorithm was developed based on the graph signature
enumeration method by Faulon [37].

Table 2 Allowed combination of groups

Group I II III IV V

I � � � � √

II � � � √ √

III � � √ √ √

IV � √ √ √ √

V √ √ √ √ √

Table 1 Free bond groups in terms of signature of height 2

Group Description Example

I Bonding atom is a heteroatom bonded to a hydrogen atom O1(C2(CO))

II Bonding atom is a heteroatom bonded to a carbon atom O2(C2(CO)C3(CCO))

III Bonding atom is a carbon atom bonded to a heteroatom, which is bonded to a hydrogen atom C2(O1(C)C2(CC))

IV Bonding atom is a carbon atom bonded to a heteroatom, which is bonded to a carbon atom C2(O2(CC)C2(CC))

V Bonding atom is a carbon atom bonded to another carbon atom C2(C2(CC)C3(CCC))

Table 3 Mathematical expression for structural constraints

Rule Structural constraint Equation

I

Xn1

i¼1

xi þ 2
Xn2

n1

xi þ 3
Xn3

n2

xi þ 4
Xn4

n3

xi ¼ 2
XN

i¼1

xi þ
1

2

XND i

i¼0

xi þ
XNM i

i¼0

xi þ
XNT i

i¼1

xi

0
@

1
A – 1

2
4

3
5

(13)

II

X​

ðli↕ ↓ljÞh ¼
X​

ðlj↕ ↓liÞh (14)
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In the developed approach, signatures of height h were
generated based on the collection of height h – 1 signatures
identified from the CAMD problem. The first layer of
signature generated must contain one of the height h – 1
signatures from the previous result. For example, assuming
the signatures C1(C), C2(CC), C2(CO) and C3(CCO) were
identified as the promising height 1 signature from the
CAMD problem, the generated height 2 signatures based
on C1(C) are shown as below:
1. C1(C2(CC))
2. C1(C2(CO))
3. C1(C3(CCO))
With this approach, the total number of generated height

2 signatures was reduced from 13 signatures to 3
signatures. In another example, taking the collection of
height 2 signatures, the following set is obtained:
1. C1(C3(CCO)
2. C1(C2(CC))
3. C2(C1(C)C2(CC))
4. C2(C2(CC)C2(CC))
5. C2(C2(CC)C3(CCO))
6. C3(C1(C)C2(CC)O1(C))
7. O1(C3(CCO))
In this case, height 3 signatures generated based on the

signature (3), C2(C1(C)C2(CC)) are listed as:
1. C2(C1(C2(CC))C2(C1(C)C2(CC)))
2. C2(C1(C2(CC))C2(C2(CC)C2(CC)))
3. C2(C1(C2(CC))C2(C2(CC)C3(CCO)))
Similar approach was applied to the rest of signatures to

generate the remaining height 3 signatures.

2.4 Step 3: verification

Verification step is crucial to ensure that the molecules
generated from previous steps are feasible and practical. In
this step, generated molecules were verified through
database search from various platforms like ChemSpider,
PubChem, etc. For compounds that exist in the database,
comparison was made to verify the property values
obtained from the CAMD result. As for compounds that

do not exist in the database or proved to be infeasible, the
previous step was repeated by modifying the property
attributes and constraints.

2.5 Step 4: miscibility analysis

It is crucial to ensure the designed solvent is miscible with
bio-oil-diesel blend to avoid phase separation in the final
solvent-oil blend. Phase stability test was conducted by
computing the tangent plane distance. For an n-component
mixture at constant temperature and pressure, the phase
stability analysis employed the Gibbs tangent plane
distance function as shown in (Eq. (15)) [38]:

dðxÞ ¼
Xn
i¼1

xi½lnxiγiðxÞ – lnziγiðzÞ�, (15)

where, z is the compositions of component i in mole
fractions of the tested phase, x is the composition
component i of a trial phase and γ indicates the activity
coefficient of component i in respective phase. For mixture
that is stable and exhibits homogenous single-phase, the
following (Eq. (16)) can be followed [38]:

dðxÞ³0: (16)

The solvent-oil blend was said to be stable if the tangent
plane distance is non-negative. If otherwise, step 1 to step 4
will be revisited by modifying the property attributes and
constraints.

3 Results and discussion

3.1 Defining target properties and constraints

The main objective of the designed solvent is to improve
the physical properties of the bio-oil. The designed solvent
should always be in a liquid state at room temperature for
ease of handling and storage. Thus, the constraints for
normal melting and boiling points of solvent were set at

Table 4 Set of signatures for 2-octanol with its corresponding height 2 signatures

No. Height 3 signature Corresponding height 2 signature

1 C1(C3(C1(C)C2(CC)O1(C))) C1(C3(CCO)

2 C1(C2(C1(C)C2(CC)) C1(C2(CC))

3 C2(C1(C2(CC))C2(C2(CC)C2(CC))) C2(C1(C)C2(CC))

4 C2(C2(C1(C)C2(CC))C2(C2(CC)C2(CC))) C2(C2(CC)C2(CC))

5 C2(C2(C2(CC)C2(CC))C2(C2(CC)C2(CC))) C2(C2(CC)C2(CC))

6 C2(C2(C2(CC)C2(CC))C2(C2(CC)C3(CCO))) C2(C2(CC)C2(CC))

7 C2(C2(C2(CC)C2(CC))C3(C1(C)C2(CC)O1(C))) C2(C2(CC)C3(CCO))

8 C3(C1(C3(CCO))C2(C2(CC)C3(CCO))O1(C3(CCO))) C3(C1(C)C2(CC)O1(C))

9 O1(C3(C1(C)C2(CC)O1(C))) O1(C3(CCO))

174 Front. Chem. Sci. Eng. 2022, 16(2): 168–182



298.15 K and 400.15 K, respectively. On the other hand, a
greater higher heating value is preferable for better fuel
combustion. In present work, higher heating value for the
designed solvent was maximized, which serves as the
objective function. Besides, the final bio-oil-diesel blends
are expected to display good continuous flow. Solvent
additives should exhibit high miscibility in bio-oil to
ensure the homogeneity of the final product. Finally, the
solvent additive should also comply with environmental
regulations set by authorities for low environmental
impact. The generated solvents should possess low toxicity
with minimal accumulation in both land and aquatic
ecosystem. The final bio-oil-diesel blend should be
environmentally sustainable, which is usually measured
by the global warming potential [39]. In order to reduce the
formation of photochemical smog, low photochemical
oxidation potential is expected for the final bio-oil-diesel
blend [40]. Constraints for the properties mentioned above
were defined according to the ASTM D6751 and
EN:14214 standards. Table 5 shows the respective targeted
properties and identified constraints for each product
requirements.

3.2 Selecting appropriate property prediction model

Based on the target properties identified in the previous
section, the respective property prediction models were
selected to estimate the properties of the designed solvents
as shown in Table S1 (cf. Electronic Supplementary

Material, ESM). In this case study, the chosen property
prediction models were expressed in terms of GC method
and connectivity index. These property prediction models
require different degree of details on the structural
knowledge to estimate the properties of the designed
molecules. Different TI and GC models require different
levels of structural information. Thus, the targeted
signature height depends on the required structural
information of the TI or GC models. Signatures with
higher height contain more structural information of the
molecules. It is possible to enumerate the lower order
signature from a higher-order signature. Thus, signatures
of lower height can be estimated as the sum of higher-order
signatures. For GC models, higher-order (2nd and 3rd
order) groups were considered as they can provide a better
description on the interaction between 1st order groups and
the effects of certain molecular group combinations to the
property of a molecule. Despite the higher accuracy of
estimation for complex compounds, higher-order GC
groups require more details on structural knowledge.
Generally, a 2nd order group from GC method can be
represented in a molecular signature of height 2 or 3, with
examples shown in Table 6. Other than GC models, the
height of signature also dependents on the TI models. For
instance, 1st order connectivity index requires signature of
height 2; 2nd order connectivity index requires signature of
height 3, etc. From Table S1, the prediction model for
octanol/water partition coefficient requires connectivity
index of 3rd order. Therefore, the maximum signature

Table 5 Translation of product requirements into target properties and constraints

Requirement/need Targeted property Constraint

Liquid state at room temperature Normal boiling point/K > 400.15

Normal melting point/K < 298.15

Fuel combustion quality Higher heating value To be maximised

Fuel flow consistency Viscosity/(mPa$s) 1>�> 6

Density/(kg$m–3) 800>�> 1000

Homogenous form Tangent plane distance To be determined

Environmental related properties and toxicology Aquatic acute toxicity, LC50 > 100

Aquatic acute toxicity, EC50 > 100

Oral acute toxicity, LD50 > 100

Bioconcentration factor < 1000

Soil-water partition coefficient/(L$kg–1) < 31622

Global warming potential < 10

Photochemical oxidation potential < 10

Table 6 Example of 2nd order group expressed in terms of signature of height 2 or 3

2nd order group Molecular signature

(CH3)2CH C3(C1(C)C1(C)C2(CC))

CH(CH3)CH(CH3) C3(C1(C3(CCC)) C1(C3(CCC)) C3(C3(CCC)C1(C)C1(C))

CH3COOCH C4(C1(C4(= OOC) = O2(= C4(= OOC) O2(C4(= OOC)C2(CO)))
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height required in this problem was set at 4. However, all
possible height 4 signatures need to be generated to solve
the CAMD problem using molecular signature descriptor.
As the height of signature increases, the possible
combination of molecular signature increases as well. In
this case study, the number of generated height 4 signatures
was expected to exceed 100000 signatures. Pre-screening
was conducted by applying feasibility rules on the
generated signatures. As a result, the total number of
height 4 signatures was reduced to around 10000
signatures.

3.3 CAMD formulations

The atoms that are commonly present in solvents, which
includes: H, C, N and O were chosen for the design of bio-
oil additive. The hydrocarbon groups considered in this
study were limited to alkanes, alkenes, alcohol, carboxylic
acid, ketones, aldehyde, esters, ethers and nitriles which
can be predominately found in solvents. The chemicals
groups are listed in Table S2 (cf. ESM) [32].
In the first step, the signatures of height 1 were generated

based on the selected atoms’ type and chemical families,
resulting in a total of sixty five different molecular
signature combinations. By applying feasibility rules
mentioned in section 2.3.1, the set of height 1 signatures
was then reduced to a total of twenty four signatures. As
some of the property prediction models were expressed in
GC method, signature descriptors were translated and
assigned to their corresponding groups from GC method as
shown in Table S3 (cf. ESM). The CAMD problem was
then solved using global solver by LINGO extended
version 18.0.56. By solving the CAMD problem, five
height 1 signatures were identified as promising signature
candidates as shown in Table 7.
Next, height 2 signatures were generated based on these

five identified signatures of height 1. From Fig. 2, a total of
one hundred and fourty seven height 2 signatures were
generated if only pre-screening step was conducted.
Taking C1(C) from the resulting signature of height 1

candidates as an example, a total of twenty three signatures
were generated by considering only the feasibility rules.
However, not all these twenty three signatures were
consistent with each other to form a feasible molecule.
By applying the consistency rule, only three signatures out
of the twenty three signatures can fulfil the requirement,
which include:
1. C1(C3(CCO))
2. C1(C2(CC))
3. C1(C2(CO))
Same approach was applied to the remaining four height

1 signatures as shown in Fig. 2. As a result, a total of
seventeen height 2 signatures were generated by applying
both feasibility and consistency rules. The generated
height 2 signatures together with their corresponding GC
group are shown in Table S4 (cf. ESM). The CAMD
problem was then solved again for the seventeen height 2
signatures set. As a result, seven signatures from the height
2 set were identified as promising signature candidates.
Similar methodology was then applied to generate height 3
and height 4 signatures. List of generated height 3 and
height 4 signatures are shown in Tables S5 and S6 (cf.
ESM). With this approach, the signature set size was
reduced from a set of more than ten thousand height 4
signatures to the final twenty one height 4 signatures.
Finally, the CAMD problem was solved and promising
molecular signatures of height 4 identified are tabulated in
Table 7.
The molecular structures of promising solvents were

generated from the identified height 4 signature building
blocks. Database search for the feasible molecules was
then carried out. The feasible solvent molecules were
identified as 2-octanol, 2-heptanol, 2-hexanol and 2-
pentanol, respectively. Higher heating value of the
identified solvent candidates were verified through
NIST’s (National Institute of Standards and Technology)
database as shown in Table 8 [41]. The higher heating
value estimated in present work for the abovementioned
solvent candidates were close to the actual higher heating
value obtained from NIST database, with less than 1%

Fig. 2 Generation of height 2 signature based on the height 1 signature, CI(C).
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Table 7 Potential height 1, 2, 3 and 4 signatures generated

No. Signature

Height 1

S1 C1(C)

S4 C2(CC)

S5 C2(CO)

S11 C3(CCO)

S22 O1(C)

Height 2

D1 C1(C3(CCO))

D2 C1(C2(CC))

D4 C2(C1(C)C2(CC))

D7 C2(C2(CC)C2(CC))

D9 C2(C2(CC)C3(CCO))

D14 C3(C1(C)C2(CC)O1(C))

D17 O1(C3(CCO))

Height 3

T1 C1(C3(C1(C)C2(CC)O1(C)))

T2 C1(C2(C1(C)C2(CC)))

T4 C2(C1(C2(CC))C2(C2(CC)C2(CC)))

T7 C2(C2(C1(C)C2(CC))C2(C2(CC)C2(CC)))

T9 C2(C2(C2(CC)C2(CC))C2(C2(CC)C2(CC)))

T10 C2(C2(C2(CC)C2(CC))C2(C2(CC)C3(CCO)))

T12 C2(C2(C2(CC)C2(CC))C3(C1(C)C2(CC)O1(C)))

T13 C3(C1(C3(CCO))C2(C2(CC)C3(CCO))O1(C3(CCO)))

T14 O1(C3(C1(C)C2(CC)O1(C)))

Height 4

Q1 C1(C3(C1(C3(CCO))C2(C2(CC)C3(CCO))O1(C3(CCO))))

Q2 C1(C2(C1(C2(CC))C2(C2(CC)C2(CC))))

Q3 C2(C1(C2(C1(C)C2(CC))C2(C2(C1(C)C2(CC))C2(C2(CC)C2(CC))))

Q7 C2(C2(C1(C2(CC))C2(C2(CC)C2(CC)))C2(C2(C2(CC)C2(CC))C2(C2(CC)C2(CC))))

Q12 C2(C2(C2(C1(C)C2(CC))C2(C2(CC)C2(CC)))C2(C2(C2(CC)C2(CC))C2(C2(CC)C3(CCO))))

Q15 C2(C2(C2(C2(CC)C2(CC))C2(C2(CC)C2(CC)))C2(C2(C2(CC)C2(CC))C3(C1(C)C2(CC)O1(C))))

Q18 C2(C2(C2(C2(CC)C2(CC))C2(C2(CC)C3(CCO)))C3(C1(C3(CCO))C2(C2(CC)C3(CCO))O1(C3(CCO))))

Q20 C3(C1(C3(C1(C)C2(CC)O1(C)))C2(C2(C2(CC)C2(CC))C3(C1(C)C2(CC)O1(C)))O1(C3(C1(C)C2(CC)O1(C))))

Q21 O1(C3(C1(C3(CCO))C2(C2(CC)C3(CCO))O1(C3(CCO))))

Table 8 Higher heating values obtained from NIST’s database and present work for respective solvent candidates

Molecular name Higher heating value from NIST/(MJ$kg–1)[41] Higher heating value/(MJ$kg–1)

2-Octanol 40.66 40.89

2-Heptanol 39.72 40.00

2-Hexanol 38.98 38.92

2-Pentanol 37.72 37.50
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differences. According to Eq. (17), the higher heating
value for the final solvent-oil blend was expected to
increase as the amount of solvent fraction increases.
However, the solvent-oil blend will be mixed with a large
portion of diesel, forming a solvent-oil-diesel blend. Thus,
effect of the amount of solvent added on the higher heating
value of solvent-oil blend will be negligible as compared to
the amount of diesel present in the blend.

HHVmix ¼
X​

xiHHVi: (17)

Other than contributing to the higher heating value of
bio-oil, the solvent candidates also play a major role in
improving the miscibility of the final blend. With the
absence of solvent, strong intermolecular forces of the bio-
oil will attract the molecules instead of dispersing in
aqueous phase and petroleum fraction [42]. However, the
amphiphilic properties of the identified solvent candidates
are capable to help in dispersion of the bio-oil. Phase
stability was conducted by computing the tangent plane
distance for the four identified solvent molecules.
Sensitivity analysis on the phase behaviour of solvent-oil
blend was also conducted for different water content. The
average water mass fraction for crude pyrolysis bio-oil was
reported to be around 38%–42% [43]. Thus, crude
pyrolysis bio-oil containing 40 wt-% of water was
considered as the maximum water content. In order to
investigate the effect of water content on the final blend’s
miscibility, bio-oil with reduced water content will also be
considered in the analysis. The water content in bio-oil can
be reduced to 16 wt-% by eliminating the aqueous phase.
In addition, water content of 25 wt-% was taken as the
median value and considered in the sensitivity analysis.
Figure 3 shows the Gibbs energy and tangent plot for 2-
octanol-oil blend at 16% (Fig. 3(a)), 25% (Fig. 3(b)) and
40% water content (Fig. 3(c)), respectively. The optimal
mole fraction obtained for 2-octanol was 0.805, 0.83 and
0.85 at bio-oil’s water content of 16%, 25% and 40%,

respectively. The amount of solvent required in the
solvent-oil blend increases slightly as the water content
in bio-oil increases. Similar trends were obtained for
2-heptanol-, 2-hexanol- and 2-pentanol-oil blends where
the Gibbs energy and tangent plots for these solvent-oil
blends are shown in Figs. S1–S3. From Figs. 3(a), 3(b) and
3(c), the blend of 2-octanol and bio-oil is stable and exhibit
homogenous single-phase as the tangent line was plotted
below the Gibbs curve. This could be explained by the
presence of –OH group in the solvent’s molecular structure
which aids in promoting miscibility of the blend.
Besides, a ternary phase diagram was plotted for the

mixtures of bio-oil, water and 2-octanol (solvent) to
evaluate the miscibility of final blend at various mixing
compositions. In the phase diagram (Fig. 4), the red dots
represent the immiscible blend while the green dots
represent the miscible blend. The solvent-oil-water blend
was miscible over most of the composition range.
However, the blend was immiscible at the mixing ratio,
2-octanol:bio-oil:water of 0:10:90 and 10:0:90. Similar
results were obtained for 2-heptanol-, 2-hexanol- and 2-
pentanol-oil-water blends, as shown in Fig. S4.
Table 9 summarises the key properties and information

of the identified candidate solvents. All the resulting
molecules possess a higher heating value of at least 37.5
MJ$kg–1. The solvent-oil blends were expected to be
homogenous as the tangent plane distance calculated is
non-negative for all solvent candidates. It can be concluded
that 2-octanol is the most suitable solvent candidate with
the highest higher heating value at 40.89 MJ$kg–1.

4 Conclusions

In this work, CAMD tools were developed to design an
optimal solvent that can upgrade bio-oil while possessing
low environmental impact. At the initial stage, additive
requirements were determined and translated into target

Table 9 The identified feasible solvent candidates

Molecular name Formula Molecular structure Higher heating value/(MJ$kg–1) Miscibility

2-Octanol CH3(CH2)5CH(OH)CH3 40.89 Miscible

2-Heptanol CH3(CH2)4CH(OH)CH3 40.00 Miscible

2-Hexanol CH3(CH2)3CH(OH)CH3 38.92 Miscible

2-Pentanol CH3(CH2)2CH(OH)CH3 37.50 Miscible
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properties. Suitable property prediction models to estimate
the targeted physicochemical and environmental properties
were identified. Different property prediction models
possess different structures and require different topologi-
cal information. In this work, GC and TI based property
prediction models were used for property estimations.
Molecular signature descriptors were then applied in the

problem to represent different indices in the prediction
models. In addition, relevant structural constraints were
incorporated in the model to ensure the feasibility of the
designed molecules. To represent higher-order of GC
groups, higher height of signature building blocks were
needed. Multi-stage approach was used to reduce the size
of problem due to the combinatorial nature of higher-order

Fig. 3 Gibbs energy and tangent plot for 2-octanol and bio-oil (a) 16% water content, (b) 25% water content, and (c) 40% water content.
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signatures. Moreover, consistency rules were applied to
ensure only relevant and consistent signatures are
generated. After generating feasible molecules, tangent
plane distance was computed to evaluate the miscibility
and stability of the solvent-oil blend. From the case study,
2-pentanol, 2-hexanol, 2-heptanol and 2-octanol were
identified as the promising solvents candidates. Database
verification was conducted on the higher heating value for
all solvent candidates. Among the identified solvents,
2-octanol was selected as the most promising solvent
candidate with a higher heating value of 40.89 MJ$kg–1

along with other desirable attributes. To conclude, the
developed methodology in this work can be applied in the
design of solvents for any application. Further improve-
ments can be made by considering the addition of
emulsifiers and/or reactive solvents in the design of
additives for bio-oil upgrading purposes. In addition, life
cycle sustainability assessment should also be conducted to
ensure the sustainability of solvent-oil blend.
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