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Abstract Runt-related transcription factor 1 (RUNX1) is an essential regulator of normal hematopoiesis. Its
dysfunction, caused by either fusions or mutations, is frequently reported in acute myeloid leukemia (AML).
However, RUNX1mutations have been largely under-explored compared with RUNX1 fusions mainly due to their
elusive genetic characteristics. Here, based on 1741 patients with AML, we report a unique expression pattern
associated with RUNX1 mutations in AML. This expression pattern was coordinated by target repression and
promoter hypermethylation. We first reanalyzed a joint AML cohort that consisted of three public cohorts and
found that RUNX1 mutations were mainly distributed in the Runt domain and almost mutually exclusive with
NPM1 mutations. Then, based on RNA-seq data from The Cancer Genome Atlas AML cohort, we developed a
300-gene signature that significantly distinguished the patients with RUNX1mutations from those with other AML
subtypes. Furthermore, we explored the mechanisms underlying this signature from the transcriptional and
epigenetic levels. Using chromatin immunoprecipitation sequencing data, we found that RUNX1 target genes
tended to be repressed in patients with RUNX1 mutations. Through the integration of DNA methylation array
data, we illustrated that hypermethylation on the promoter regions of RUNX1-regulated genes also contributed to
dysregulation in RUNX1-mutated AML. This study revealed the distinct gene expression pattern of RUNX1
mutations and the underlying mechanisms in AML development.
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Introduction

Hematopoietic transcription factors (TFs) are essential
regulators of hematopoiesis, and their genetic alterations,
including mutations and chromosomal translocations,
cause the differentiation blockage observed in many
types of leukemia. These TFs exert their regulatory
activities via downstream targets controlled in coordina-
tion by epigenetic regulations, including DNAmethylation
[1]. Given their essential roles in controlling hematopoiesis
and their genetic abnormalities in the development of

leukemia, elucidating the molecular classification of
hematopoietic TF-associated leukemia with the integration
of the ensemble of genome-wide targets and DNA
methylation status is crucial.
Runt-related TF 1 (RUNX1, also named AML1, CBFA2,

and PEBP2aB) encodes a TF that plays pivotal roles in
normal hematopoiesis, including definitive hematopoietic
stem cell formation and megakaryocyte maturation and
granulocytic differentiation [2,3]. It can form a hetero-
dimeric complex with the core-binding factor β subunit
(CBFB) to exert its transactivation function on target genes
[4]. RUNX1 abnormalities include fusions caused by
chromosomal translocations and acquired mutations,
among which point mutations in RUNX1 are frequently
detected in hematologic malignancies, such as myelodys-
plastic syndromes, particularly acute myeloid leukemia
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(AML). The intensive investigations of the genome-wide
binding maps of RUNX1-associated fusion proteins, such
as RUNX1–RUNX1T1 generated by t(8;21), ETV6–
RUNX1 by t(12;21), and CBFB–MYH11 by inv(16),
have considerably improved our understanding of the
molecular signatures and mechanisms of RUNX1 fusion-
mediated leukemogenesis. In contrast to favorable prog-
nosis-associated RUNX1 fusions, RUNX1 mutations
usually portend poor outcomes and chemotherapy resis-
tance in patients with AML [5,6], suggesting that the
molecular mechanisms underlying RUNX1 mutations are
distinct from those underlying fusion forms. Genetic and
clinical analyses show that RUNX1 mutations rarely
coexist with NPM1 and CEBPA mutations [7]. Given
their independent prognosis, RUNX1 mutations have been
adopted as a new but provisional entity in the latest (2016)
revision of the World Health Organization (WHO) AML
classification to stratify patients for risk-adapted treatments
[8]. However, the molecular signatures associated with
RUNX1mutations are limited, and few common signatures
have been identified to depict the mechanisms of RUNX1
mutations in AML.
In this study, we identified a 300-gene signature for

RUNX1-mutated AML that was highly associated with
genes directly repressed by RUNX1 and genes with the
hypermethylated status. We first investigated the spectrum
of RUNX1 mutations in a large combined AML cohort.
Next, we performed differential gene expression analysis
and developed a gene signature that could distinguish
RUNX1-mutated AML from wild-type cases. Moreover,
we integrated chromatin immunoprecipitation sequencing
(ChIP-seq) data to evaluate the effects of RUNX1
mutations on RUNX1 target genes and analyzed the
association of DNA hypermethylation with RUNX1
mutations. We collectively demonstrated that RUNX1-
mutated AML possessed a distinct gene expression pattern
coordinated by target repression and promoter hyper-
methylation. Our study provides insights into the patho-
genic mechanisms caused by RUNX1 mutations and
suggests promising targets for prognostic and therapeutic
approaches.

Materials and methods

Data resources

The data of patients with AML with mutation information
and clinical features were collected from three public
cohorts containing 1741 qualified AML cases: TCGA
(LAML project, 144 cases), EGA (European Genome-
phenome Archive, EGAS00001000275, 1328 cases), and
GEO (Gene Expression Omnibus, GSE23312, 269 cases).
For the AML cohort from TCGA, RNA-seq, gene
mutation, clinical, and DNA methylation data were

downloaded from the GDC Data Portal website. For the
AML cohort from EGA, gene mutation and clinical data
were downloaded from the supplementary information of
Papaemmanuil’s work [9] and website of Gerstung’s work
[10]. The cohort from EGA contained de novo AML cases
and secondary or therapy-related AML cases given that the
original source (n = 1540) of the EGA cohort contained
8.3% (n = 128) secondary or therapy-related AML cases
[9].
In the analysis of RUNX1mutation distribution, we used

all the 1741 cases from the three cohorts (TCGA,
GSE23312, and EGAS00001000275). In the analysis of
gene expression, we used 413 de novo AML cases with
gene expression data from the TCGA AML cohort and
GEO cohort. In the analysis of DNA methylation, we used
113 de novo AML cases with gene expression and DNA
methylation data from the TCGA AML cohort. In the
analysis of prognostic impact, we used 135 de novo non-
APL cases with gene expression data and detailed survival
information from TCGA, in which the treatment protocols
had a low impact on prognosis (Tables S2–S4).

Data integration and differential gene expression
analysis

For the TCGA AML data, the RNA-seq files of 151 cases
(Level 3, HTSeq counts) were downloaded. The whole-
exon sequencing files of 149 cases (Level 3, somatic
mutations) were downloaded. Mutation calls were retained
if detected by at least two of the following software
packages: MuTect, MuSE, SomaticSniper, and VarScan.
Our analyses were based on the gene expression and
mutation data produced using the updated reference
genome (GRCh38/hg38). For the cohort from GEO
(GSE23312), the microarray data were filtered out to
remove batch effects and failed samples (with > 10%
failed probes) before hierarchical clustering.
Differentially expressed genes (DEGs) were identified by

using RNA-seq read count data and the R package DESeq2
(version 1.22.1) [11]. We identified DEGs with a false
discovery rate of less than 0.05 and absolute LFC (log2 fold
change) of more than 0.5849 (FC > 1.5 or < 2/3).

Sample clustering

Hierarchical clustering based on the gene expression data
of 413 patients (144 from TCGA and 269 from
GSE23312) was conducted by using the pheatmap package
(version 1.0.12). The variance-stabilizing transformation
provided by DESeq2 was used to normalize RNA-seq
count data for calculating sample distances. The complete
linkage method and Euclidean distance were used to
measure the distances. Principal components analysis
(PCA) was conducted with the plotPCA function in
DESeq2.
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ChIP-seq analysis

The target genes of RUNX1 were retrieved from the
published ChIP-seq data of three AML cell lines, U937
(GSM1632640 and GSM1632641), HL60 (GSM2871154
and GSM2871145), and THP-1 (GSM2108052), and
reanalyzed as follows. Raw sequencing data were down-
loaded from the NCBI Sequence Read Archive. Short read
data were aligned to the UCSC human reference genome
hg38 by using Bowtie2 (version 2.3.4.3) [12]. PCR
duplicates were removed by using SAMtools (version
1.9) [13]. RUNX1 binding peaks were called by utilizing
MACS2 (version 2.1.2) [14] at a cut-off of q = 0.05 (data
with input) or P = 10e–6 (data without input). High-
confidence binding peaks were defined as overlapping
regions in at least two cell lines. UCSC RefGene data were
applied to extract gene promoter regions (-2 kb/+0 kb to
transcription start sites (TSS) for genes shorter than 500 bp
and -2 kb/+0.5 kb to TSS otherwise). BEDTools [15],
which assigned binding peaks to RUNX1 target genes,
were used to overlap high-confidence peak regions with
gene promoter regions. The Cistrome Data Browser and
the UCSC genome browser were used for visualization
[16,17].

DNA methylation analysis

We reanalyzed the Illumina Infinium 450k DNA Methyla-
tion Array data of 113 patients from the TCGA AML
cohort from scratch to update methylation profiles on the
basis of the reference genome hg38. The raw IDAT files
(Level 1) for each sample were downloaded from the
online supplementary material of TCGA’s work [18]. The
probe annotation data (released on September 9, 2018) of
hg38 were from Zhou et al.’s paper [19]. The R package
minfi (version 1.28.3) [20] was used to adjust the
background and normalize the red/green dye bias across
samples to produce the beta values of each probe. Poorly
performing probes with detection P < 0.05 and probes on
the sex chromosomes were filtered out first. On the basis of
the probe annotation data, the probes were further removed
if they had SNPs close to the 3′ end, multiple mappable
locations, or partial overlaps with repeated elements in the
bisulfite-converted genome. We finally obtained 407 071
high-quality probes on the array. On the basis of the beta
values of the probes, we performed moderated t-test with
the limma package (version 3.38.3) [21] to evaluate probe-
wise differences. The probe coordinates in the genome
were then used to generate CpG clusters and detect
differentially methylated regions (DMRs) with the bum-
phunter package (version 1.24.5) [22]. We set the
parameter maxGap to 500 bp and the parameter B to
4000 and defined family-wide error rate < 0.1 to be
statistically significant. The gene promoter regions were
extracted as mentioned in the ChIP-seq analysis.

Bioinformatics analyses

Gene Ontology (GO) enrichment analysis was performed
by using the clusterProfiler package [23]. We conducted
gene set enrichment analysis (GSEA) in accordance with
the user guide and ranked all the genes by gene expression
fold change (RUNX1-mutated vs. RUNX1 wild-type).
Survival analysis was conducted by using the packages
survival and survminer. Prognostic impacts were evaluated
with the Kaplan–Meier method and the log-rank test.
Statistical analyses were performed with the environment
R version 3.5.1.

Results

RUNX1mutations were mainly in the Runt domain and
exclusive with NPM1 mutations

To investigate the characteristics of RUNX1 mutations in
AML, we carried out a meta-analysis that included 1741
patients with AML collected from three AML cohorts
(detailed in the section of “Materials and methods”). First,
we found that RUNX1 mutations were mutually exclusive
with frequently occurring fusions in core-binding factor
AML (CBF-AML), including RUNX1–RUNX1T1 gener-
ated by t(8;21) and CBFB–MYH11 generated by inv(16)
(Fig. 1A). Given that RUNX1–RUNXT1 and CBFB–
MYH11, which are both driver fusions that dominantly
inhibit CBF functions, are considered as independent
factors promoting the development of AML [24], the data
indicated that RUNX1 mutations might independently
promote leukemogenesis. Second, the detailed analysis of
the distribution of RUNX1 mutations showed that 125
patients with RUNX1 mutations carried 135 RUNX1
mutations, including 57 frameshifts (42.2%) and 18
nonsense variants (13.3%). Most of the mutations (n =
102, 75.6%) were located in the highly conserved Runt
domain (Fig. 1B) that binds to the Runt-binding DNA
element [25]. Additionally, we calculated the frequency of
mutated loci and found that the top recurrent mutations
included p.R166Q, p.D198G, p.R201*, p.R204*, and
p.R204Q (5 times), and p.R162k (4 times). Interestingly,
RUNX1 mutations were far less frequently observed in the
Runx1 inhibition domain than in the Runt domain (Fig.
1B). Third, we compared the concurrent mutations with
mutant RUNX1 vs. wild-type RUNX1.We used samples
with cytogenetically normal AML (CN-AML) to exclude
the interference of chromosomal abnormalities. As shown
in Fig. 1C, the following genes were more frequently
mutated among patients with AML and RUNX1 mutations
than those with the wild-type counterpart: SRSF2
(P < 0.001, the Fisher’s exact test), ASXL1 (P < 0.001),
BCOR (P = 0.001), and SF3B1 (P = 0.038). By contrast,
significantly fewer NPM1 (P < 0.001), CEBPA (P =
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0.006), and DNMT3A (P = 0.02) mutations were observed
in RUNX1-mutated cases than in other cases.

Patients with AML and RUNX1 mutations show a
distinct gene signature

Considering that RUNX1 mutations showed marked
distribution characteristics in AML cohorts, we hypothe-
sized that RUNX1-mutated AML might exhibit common
gene expression features. Given that NPM1 mutations
were frequently observed (49%) in patients with wild-type

RUNX1 but rarely observed in patients with RUNX1
mutations (Fig. 1C), DEGs might result from either NPM1
mutations or RUNX1 mutations. Therefore, we removed
NPM1-mutated samples to compare patients with RUNX1
mutations and wild-type RUNX1. DEG analysis
(FDR < 0.01, FC > 1.5 or < 2/3) showed that 476 genes
were significantly upregulated in RUNX1-mutated AML,
whereas 531 were significantly downregulated (Fig. 2A).
On the basis of these DEGs, we further developed a gene
signature for RUNX1 mutations to characterize the most
noticeable differences between patients with RUNX1

Fig. 1 RUNX1 mutations are mainly located in the Runt domain and exclusive with NPM1 mutations. (A) RUNX1 mutations were
exclusive with t(8;21) and inv(16) AML in 1741 patients with AML collected from three published cohorts (GEO, GSE23312; EGA,
EGAS00001000275; and TCGA AML). mut, mutated; wt, wild-type. (B) Distribution of mutations in the different domains of the
RUNX1 protein (NP_001745.2). Frameshift mutations are highlighted in orange. (C) Distribution of mutations in RUNX1 and 25
additional cancer genes in patients with CN-AML. Concurrent mutations are shown for patients with RUNX1mutations (n = 66, left panel)
or wild-type RUNX1 (n = 666, right panel). The starred genes are those with higher mutation frequencies compared to the other group.
Sub, substitution; Ins, insertion; Del, deletion; ITD, internal tandem duplication; PTD, partial tandem duplication.
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mutations and wild-type RUNX1. The clustering perfor-
mance of several gene signature settings (100, 200, 250,
300, and 400 of the most variable DEGs) was compared
(Fig. S1). The 300-gene signature was chosen for the
minimum number of genes that yielded the best classifica-
tion in hierarchical clustering: RUNX1-mutated samples
clustered as a distinct class, except only one RUNX1-
mutated sample (Fig. 2B; Table S1). We performed PCA to
test the capability of the 300-gene signature to identify
RUNX1-mutated samples and found that the RUNX1-
mutated samples separated from the other samples in the

CN-AML cohort (Fig. 2C). Furthermore, we used this gene
signature for hierarchical clustering in the whole TCGA
AML cohort and the GEO AML cohort (GSE23312). As
shown in Fig. 2D, the majority of RUNX1-mutated samples
clustered as one group, confirming the performance of this
signature. Interestingly, the t(8:21) AML samples also
formed a separate cluster (Fig. 2D), demonstrating the
extended utility of this signature. Thus, the gene signature
consisting of the top 300 DEGs represented the distinct
gene expression pattern of RUNX1-mutated AML.
We performed GO enrichment analysis to explore the

Fig. 2 Patients with AML and RUNX1 mutations have a distinct gene signature. (A) Volcano plot representing the DEGs between the
patients with RUNX1 mutations and wild-type RUNX1. (B) RUNX1-mutated samples were distinguished in the TCGA NPM1 wild-type
CN-AML cohort. Heat map representing the expression (normalized counts) of the 300-gene signature. mut, mutated; wt, wild-type.
(C) PCA results based on the 300-gene signature demonstrated the clear separation of RUNX1-mutated samples from wild-type RUNX1
samples. (D) Hierarchical clustering based on the 300-gene signature separated RUNX1-mutated samples and t(8;21) samples from others
in the TCGA AML cohort (left panel, n = 144) and the GEO cohort GSE23312 (right panel, n = 269). The RUNX1-mutation-associated
cluster is highlighted in pink. (E) GO analysis revealed that neutrophil-associated pathways were downregulated in RUNX1-mutated
AML. (F) Four genes in the neutrophil-associated pathways were repressed in RUNX1-mutated samples of the TCGA AML cohort. P
values were calculated by using the Wilcoxon signed-rank test.
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biological function associated with this signature. The
results obtained for 199 downregulated genes showed the
enrichment of GO terms related to myeloid functions,
including neutrophil degranulation, neutrophil activation,
and neutrophil-mediated immunity (Fig. 2E). Specially, the
expression of four vital genes (AZU1, CTSG, LRG1,
and MPO) in these neutrophil-associated GO-terms were
significantly repressed in RUNX1-mutated cases (Fig. 2F),
suggesting that RUNX1 mutations might dysregulate
neutrophil functions in myeloid cells to contribute to the
development of AML. These findings were also supported
by a recent work showing that RUNX1 mutations could
lead to the blockage of granulocytic differentiation in
in vitro models and primary AML samples [26]. For
upregulated genes, no pathways were significantly
enriched.

RUNX1 target genes were generally repressed in
RUNX1-mutated AML

Given that RUNX1 is a crucial TF in hematopoiesis,
RUNX1mutations in AMLmay impact its target genes. We
analyzed high-confidence RUNX1 binding peaks from the
ChIP-seq data of three AML cell lines without RUNX1
aberrations to identify RUNX1 target genes (Fig. 3A).
High-confidence binding peaks were defined as those
occurring in at least two of the cell lines. Genes with high-
confidence RUNX1 binding peaks in their promoters were
considered as RUNX1 target genes. Accordingly, a total of
1371 RUNX1 target genes were identified.
Next, we performed GSEA to investigate the general

effects of RUNX1mutations on these RUNX1 target genes.
RUNX1 targets were significantly enriched in the genes

Fig. 3 RUNX1 target genes are generally repressed in RUNX1-mutated AML. (A) Heat maps illustrating RUNX1 binding signals in the
regions near the TSSs in AML cell lines. Overlaps represent high-confidence binding peaks. (B) GSEA plot representing the repression of
RUNX1 target genes. A total of 1216 RUNX1 target genes expressed in the TCGA cohort (mean RNA-seq counts > 2) were used as the
gene set. FDR, false discovery rate; NES, normalized enrichment score. (C) Heat map illustrating the expression of 15 RUNX1 target
genes included in the gene signature in CN-AML from the TCGA cohort. (D) Direct binding of RUNX1 on the CTSG promoter in AML
cell lines. The CTSG transcript shown in this plot is NM_001911.2. (E) CTSG was significantly downregulated in patients with RUNX1
mutations (Wilcoxon signed-rank test).
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with the negative log2 fold change in RUNX1-mutated
AML (Fig. 3B), indicating that RUNX1 target genes were
generally repressed in AML with RUNX1 mutations. The
aforementioned 300-gene signature that represented the
distinct expression pattern in RUNX1-mutated AML was
chosen for in-depth investigation to determine the effects
of mutated RUNX1 on the genes with the most differential
expression. The intersection between the RUNX1 targets
and the signature yielded 15 genes that were deregulated
RUNX1 targets in RUNX1-mutated AML (Fig. 3C).
Among these 15 RUNX1 targets, 14 were downregulated
and one was upregulated, suggesting that the direct effect
of RUNX1 mutations on transcription was predominantly
repressive (Fig. 3C). For example, CTSG, which is
associated with neutrophil-associated host defense and
immune response, was a target gene of RUNX1 in all three
AML cell lines (Fig. 3D) and was significantly down-
regulated in patients with RUNX1 mutations relative to in
patients with wild-type RUNX1 (Fig. 3E). Our previously
published study has demonstrated that the suppression of
CTSG in t(8;21) AML is caused by RUNX1–RUNX1T1
direct targeting and plays a critical role in the pathogenesis
of AML [27]. The results of the current work showed that
the role of mutant RUNX1 in transcriptional repression
might be similar to that of RUNX1–RUNX1T1 and might
contribute to the progression of AML by inhibiting the
expression of CTSG.

Association of RUNX1 mutations with DNA
hypermethylation

RUNX1 mutations might also influence epigenetic mod-
ifications, such as DNA methylation. Therefore, the DNA
methylation microarray data of the TCGA AML cohort
were reanalyzed. We improved the analysis accuracy by
utilizing the updated hg38 human reference genome and a
newly developed probe-masking method for Infinium
HumanMethylation450K BeadChip probes [19]. Accord-
ingly, we identified 210 DMRs, among which 183 were
hypermethylated, and 27 were hypomethylated in RUNX1-
mutated AML. This result indicated that RUNX1mutations
might be associated with DNA hypermethylation.
We assigned these DMRs to gene promoter regions and

detected 51 differentially methylated genes (DMGs). Next,
we intersected DEGs and DMGs to investigate whether the
methylation status change caused dysregulated gene
expression. The presence of 10 DEGs among 51 DMGs
might partially suggest the contribution of the altered DNA
methylation levels to gene expression changes caused by
RUNX1mutations. The majority of these genes (8/10) were
in the aforementioned gene signature of RUNX1mutations:
one was hypomethylated and upregulated, whereas seven
were hypermethylated and downregulated due to RUNX1
mutations (Fig. 4A). For example, MS4A3 is involved in
the regulation of innate immune pathways and the G1/S

cell cycle in hematopoiesis [28]. This result suggested that
RUNX1 mutations might lead to promoter hypermethyla-
tion and MS4A3 expression repression (Fig. 4B). These
events might affect cell cycle regulation and contribute to
the differentiation blockage of AML.
Next, the TCGA AML cohort was used to evaluate the

prognostic influence of the expression of hypermethylated
and downregulated genes (see the section of “Materials
and methods”). As shown in Fig. 4C, the low expression of
MS4A3 was associated with increased hazard ratio and a
poor prognosis, indicating that MS4A3 downregulation
might be crippling in RUNX1-mutated AML. Furthermore,
the low expression of two additional hypermethylated and
downregulated genes, namely, CD96 and LTK, was also
correlated with the poor prognosis of patients with AML
(Fig. S2). Additionally, the clinical outcome was
less influenced by treatment choices than other factors
(Table S2, Table S3, and Table S4). In summary, the results
suggested that DNA hypermethylation was associated with
RUNX1 mutations and contributed to gene repression
caused by RUNX1 mutations.

Discussion

Somatic gene mutations constitute key events in AML
pathogenesis, and RUNX1-mutated AML has been added
as a provisional category in accordance with the updated
(2016) WHO classification. In this study, we investigated
the genetic characteristics of RUNX1 mutations in AML
and showed that patients with RUNX1-mutated AML had a
distinct gene expression pattern. We found that RUNX1
mutations generally repressed RUNX1 target genes and
were associated with DNA hypermethylation. Our inves-
tigation helps understand the pathobiology of RUNX1-
mutated AML.
Using a large number of samples helps us obtain an

improved understanding of the characteristics of mutation
distribution. First, we identified several previously unre-
ported recurrent mutations in RUNX1, such as p.R166Q,
p.D198G, p.R201fs, and p.R204fs. In addition to recurrent
mutations, we found some interesting results regarding co-
occurrent or mutually exclusive mutations with RUNX1
mutations. Cases with CN-AML were chosen to analyze
the co-occurrent or mutually exclusive mutations with
RUNX1 mutations because RUNX1 mutations mainly
occur in patients with AML and normal karyotypes [6].
In addition to confirming the previous finding on the
mutual exclusivity of RUNX1 mutations with NPM1
mutations [7], we obtained several novel findings:
(1) mutations previously reported as concurrent, such as
IDH1, IDH2, and DNMT3A [29], did not show a
significantly higher frequency in the RUNX1-mut cohort
than in the RUNX1-wt cohort and (2) DNMT3A mutations
even had a statistically significantly lower frequency in the
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RUNX1-mut cohort than in other cohorts. These new
findings were mainly attributed to the effective analysis
based on CN-AML because the exclusion of AML cases
with abnormal karyotypes removed biases and avoided
underestimating the frequency of mutations, such as
DNMT3A and IDH1/2, that are highly prevalent in CN-
AML [30,31].
We developed a gene expression signature that repre-

sented the most distinguishable expression features of
patients with RUNX1 mutations and could separate these
patients from patients with wild-type RUNX1 in sample
clustering. The performance of this signature had improved
compared with that of a previously reported signature [6]
because the effects of NPM1 mutations were excluded.
High-frequency NPM1 mutations were almost exclusively
enriched in RUNX1 wild-type AMLs. The removal of
NPM1-mutated cases prior to gene signature development
could clearly identify the differences caused by RUNX1
rather than the combinatory effects of RUNX1 and NPM1

mutations. Moreover, compared with the noncommercial
microarray data used in previous studies [6,32], we used
the updated TCGA RNA-seq data of hg38 (release on
September 27, 2018), which covered more of the genome
and had high levels of reproducibility. In addition, GO
enrichment analysis based on our gene signature showed
that pathways related to neutrophil functions were down-
regulated in RUNX1-mutated AML; this result was
consistent with the finding of a recently published work
showing that RUNX1 mutations lead to a blockage in
granulocytic differentiation in human CD34+ progenitor
cells [26].
Our results offer insights into the mechanisms under-

lying gene expression alterations in cases with RUNX1
mutations. First, we considered that RUNX1 mutations
might lead to the dysfunction of RUNX1 in transcriptional
regulation. When we took all the expression differences
into consideration using GSEA, RUNX1 target genes
tended to be downregulated in RUNX1-mutated AML.

Fig. 4 RUNX1 mutations are associated with DNA hypermethylation. (A) Heat map representing the gene expression of eight DMGs
included in the gene signature of RUNX1mutations. A total of 113 patients from TCGAwere included in the analysis. DMR represents the
DNA methylation status of the gene promoters. Target represents RUNX1 binding status on the promoters. mut, mutated; wt, wild-type.
(B) Schematic of the hypermethylated promoter region ofMS4A3. The scatter plot represents the levels of DNAmethylation beta values in
the TCGA AML cohort. Beta values for specific CpG residues are shown as a proportion ranging from 0 (unmethylated, 0%) to 1 (fully
methylated, 100%). (C) Kaplan–Meier plot of the overall survival of patients with AML from TCGA grouped by the expression levels of
MS4A3. The hazard ratio was calculated by utilizing univariate Cox regression. Gene expression levels were evaluated by using FPKM
values converted from read counts by DESeq2. The cut-off value (log2FPKM = 4.31) was selected via the method of maximum selected
rank statistics provided in the survminer package.
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When we used relatively loose cut-offs to conduct
differential gene expression analysis (FDR < 0.05,
FC > 1.5 or < 2/3), approximately 7.3% (n = 100) of
RUNX1 targets were found to be differentially expressed
with statistical significance and generally downregulated
(n = 68). This result was suggestive of noticeable direct
gene repression caused by RUNX1 mutations. Second, we
investigated the effects of RUNX1 mutations on DNA
methylation. We found that 10 out of 1007 DEGs were
differentially methylated, indicating that DNA methylation
partially accounted for the altered gene expression levels.
Three DEGs, namely, MS4A3, PLPPR3, and C20orf197,
were found to be RUNX1 targets that were hypermethy-
lated and downregulated in RUNX1-mutated AML. In
normal hematopoietic cells, RUNX1 regulates DNA
demethylation by recruiting the DNA demethylation
enzymes TET2, TET3, TDG, and GADD45 [33]. We
may reasonably hypothesize that in RUNX1-mutated
AML, RUNX1 mutations led to a mechanism that blocked
the recruitment of demethylation modifiers. This effect
increased the methylation of RUNX1 target genes and
reduced their gene expression. However, only bioinfor-
matics analyses were conducted in our study, and further
wet experiments on regulatory targets and methylation
status are required for in-depth investigation.
Our work not only indicates that RUNX1-mutated AML

is an entity with a distinct gene expression pattern but also
provides insights into the pathogenic mechanisms caused
by RUNX1 mutations. Furthermore, the repression of
RUNX1 and its targets has been reported to inhibit growth
and induce the apoptosis of AML cells expressing mutant
RUNX1 [34], suggesting that expression mimickers that
deplete RUNX1 and its target gene expression levels may
become novel therapeutic agents. Therefore, our findings
on the gene signatures that are especially dysregulated in
RUNX1-mutated AMLmay help identify promising targets
with prognostic and therapeutic utilities.
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