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GRAPHIC ABSTRACT

* Airborne microorganism detection methods are
summarized.

* Biosensors play an important role in detecting
airborne microorganisms.

* The principle of biosensor detection of airborne
microorganisms is introduced.

*The application and progress of biosensor in
recent years is summarized.

* The future perspectives of biosensor are identi-
fied.
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ABSTRACT

Humanity has been facing the threat of a variety of infectious diseases. Airborne microorganisms can
cause airborne infectious diseases, which spread rapidly and extensively, causing huge losses to human
society on a global scale. In recent years, the detection technology for airborne microorganisms has
developed rapidly; it can be roughly divided into biochemical, immune, and molecular technologies.
However, these technologies still have some shortcomings; they are time-consuming and have low
sensitivity and poor stability. Most of them need to be used in the ideal environment of a laboratory,
which limits their applications. A biosensor is a device that converts biological signals into detectable
signals. As an interdisciplinary field, biosensors have successfully introduced a variety of technologies
for bio-detection. Given their fast analysis speed, high sensitivity, good portability, strong specificity,
and low cost, biosensors have been widely used in environmental monitoring, medical research, food
and agricultural safety, military medicine and other fields. In recent years, the performance of
biosensors has greatly improved, becoming a promising technology for airborne microorganism
detection. This review introduces the detection principle of biosensors from the three aspects of
component identification, energy conversion principle, and signal amplification. It also summarizes its
research and application in airborne microorganism detection. The new progress and future
development trend of the biosensor detection of airborne microorganisms are analyzed.

© Higher Education Press 2021

1 Introduction
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1.1 Hazards of airborne infectious diseases and airborne
microorganisms

The corona virus disease 2019 (COVID-19) is considered
the largest global pandemic since the 20th century, and it
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has not yet been effectively controlled globally. Indeed,
frequent outbreaks of major airborne infectious diseases
have been recently reported, which have had a significant
impact on human life and health and on the global
economy and society. According to the official report of
the World Health Organization, the major infectious
diseases in recent years are summarized, as shown in
Table 1. Every infectious disease is caused by specific
microorganisms, including viruses, bacteria, fungi and
parasites. Among them, microorganisms that spread
through air are called airborne microorganisms (Després
et al., 2012). Airborne microorganisms can be transmitted
through human exhalation (Doremalen et al., 2020) and
show strong survivability in air. Airborne infectious
diseases can be spread from person to person through
airborne microorganisms (Hoehl et al., 2020; Yu et al,,
2020; Jiang et al., 2021). They spread rapidly and
extensively (Setti et al., 2020), which can easily cause
social panic. (Zheng et al., 2018; Wang et al., 2019a).

1.2 Necessity and challenge of airborne microorganism
detection

Timely identification, monitoring, and investigation of
airborne microorganism transmission in the human
environment is particularly important to prevent the
outbreak of airborne diseases in the population. At present,
however, most of the test samples of airborne microorgan-
isms come from clinical samples, which mainly include
upper respiratory tract (nasopharyngeal swab and deep
throat saliva), lower respiratory tract (alveolar lavage fluid
and sputum), and body fluids (Cui and Zhou, 2020). The
collection of different types of samples can affect
microorganism detection. Clinical samples often have
high detection efficiency and accuracy, but they require
professional operation and bring discomfort to the test
subjects. Most technologies require on-site sampling and
further tests in the laboratory, with complex operation
process and long detection time (Wang et al., 2019a).

Table 1 Major incidents of airborne infectious diseases in recent years

Correspondingly, the direct detection of air samples has
received widespread attention in recent years, and air
samples mainly include exhaled breath and aerosols
(Razzini et al., 2020). On-site air sample detection features
a short detection time, flexibility, and convenience.
However, it is easily affected by environmental factors
such as wind speed, temperature, light intensity, and air
humidity. In addition, the content of airborne microorgan-
isms in the environment is low, with a wide variety of
species and large number of impurities, which makes on-
site detection difficult.

1.3 Airborne microorganism detection methods

The detection methods for airborne microorganisms can be
roughly summarized as biochemical, immune, and mole-
cular technologies. After years of development, some
detection methods have become mature and new technol-
ogies are emerging constantly. However, most of the
existing technologies have outstanding performance in
aspects of detection time, specificity, and sensitivity, while
some limitations exist in other aspects, which are difficult
to meet the requirements of airborne microorganism
detection. Several common detection methods are com-
pared in Table 2.

In recent years, in view of the advantages and
disadvantages of different detection technologies, diversi-
fied technology combinations have emerged, greatly
improving the detection capabilities of airborne micro-
organisms (Zheng et al., 2018). As an interdisciplinary
field, biosensors have been extensively studied in recent
years, Figure 1 summarizes technologies that have been
successfully applied to biosensors or have the potential to
be combined with biosensors. They have been widely used
because of their short detection time, fast analysis speed,
and flexible portability. As a routine laboratory microbial
detection technology, biochemical technology is used in
combination with biosensors for the preliminary treatment
of samples (Pelaez et al., 2020). On the basis of the specific

Airborne Airborne . .
diseases microorganisms Parasitifer Duration Impact
SARS SARS-CoV Bat 2002.11-2003.07 8069 confirmed cases and 774 deaths
(as at July 2003)

HINI Flu Influenza virus A Birds and mammals 2009.04-2010.08 68474274 confirmed cases and 18449 deaths

(as at August 2009)
MERS MERS-CoV Camel 2012.09-2018.09 2562 confirmed cases and 881 deaths

(as at September 2020)

H7N9 avian influenza AlV Poultry 2013.03-2017.09 1564 confirmed cases and 609 deaths

(as at October 2017)
COVID-19 SARS-CoV-2 Bat” 2019.12— More than 107 million confirmed cases and 2.3

million deaths (as at February 2021)

Note: *the potential parasitifer.
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Table 2 Comparison of detection methods for airborne microorganisms

Detection method ~ Advantage

Disadvantage

Reference

Culture 1. Relatively simple operation
2. Low cost, and less equipment investment
3. Used for strain typing and drug resistance

detection

1. Short detection time
2. fast analysis speed

Medical imaging

B W N —

Immune technology 1. Medium sensitivity, capable of determining 1.

small or limited amounts of enzymes in samples 2.
2. Medium specificity, not easily affected by 3
impurities

3. Medium detection time, suitable for large number
of samples

Polymerase chain
reaction

1. High sensitivity

3. Used for strain typing and drug resistance
detection
4. Medium detection time

Gene Sequencing . Good stability, and specificity

1
2. High detection accuracy

Biosensor . High sensitivity, and high specificity

. Short detection time, and fast analysis speed

N B R

. Low cost

1. Large workload, and long detection time

2. Low sensitivity

3. Difficult to cultivate some microorganisms or
require high biological safety

. Need professional equipment

. Low specificity

. Invasive

. Not suitable for early-stage patients

Prone to “false positives” affecting the results
Many measurement steps and complicated operation
. High measurement cost

1. High measurement cost
2. High specificity, low sample purity requirements 2. Complex cyclic process, high technical requirements, Paolucci et al., 2010;
and professional equipment

3. Unable to distinguish between living and dead
microorganisms

1. Large workload, and long detection time
2. High measurement cost

1. High sample purity requirements, weak
anti-interference ability

. Flexible and portable, suitable for on-site testing 2. Poor detection stability

3. Poor repeatability

Hudu et al., 2016; Gupta
and Kakkar, 2018

Brenner and Hall, 2007;
Seibel et al., 2020

Phunpae et al., 2014;
Fronczek and Yoon,
2015; Mekonnen et al.,
2020

Weile and knabbe, 2009;

Eddabra and Ait Ben-
hassou, 2018

Schlaberg et al., 2017

Nidzworski et al., 2014;
Cui and Zhou, 2020

Note: High sensitivity means that the lowest detection concentration is roughly less than 10 CFU/mL, medium sensitivity means that the lowest detection concentration
is roughly between 10 and 1000 CFU/mL, and low sensitivity means that the lowest detection concentration is roughly higher than 1000 CFU/mL; High specificity
means single base mismatches can be detected, medium specificity means that specific identification substances of microorganisms can be detected, low specificity

means that different types of microorganisms can not be detected well.

combination of antibody and antigen, immune technology
introduces biosensors to construct an immunosensor,
which has been extensively used in the detection of
airborne microorganisms (Shen et al., 2009; Mavrikou
et al., 2020). Good results have been obtained for detecting
SARS-CoV (Park et al., 2009), Influenza virus A
(Nidzworski et al.,, 2014), AIV (Huang et al., 2016),
SARS-CoV-2 (Seo et al.,, 2020), and other airborne
microorganisms. Molecular technology, as a new technol-
ogy, can improve sensors, and it is mainly used for the
identification of components and signal amplification of
sensors (Xu et al., 2016; Freije et al., 2019). Zhang et al.
developed a nanosensor combined with RT-PCR amplifi-
cation and achieved the rapid detection of dengue virus
using a PNA probe binding on it (Zhang et al., 2010). As
an interdisciplinary field, biosensors integrate the advan-
tages of many technologies and have bright prospects in
the detection of airborne microorganisms.

2 Biosensor detection principle

Biosensor is a special device that uses component
identification as the biological sensing unit, converting
biological signals into detectable signals using an appro-

priate energy conversion principle. It also uses appropriate
methods to achieve signal amplification with high
selectivity to the target object. Its basic composition is
shown in Fig. 2.

2.1 Components identification

The detection of biosensors is realized by the specificity of
component identification. According to the different
component identification used, biosensors can be divided
into two categories. The first type is the cell-based
biosensor (Mavrikou et al., 2020), which has certain
requirements on the state and activity of the cell. It
monitors and analyzes the changes in metabolites during
cell respiration (Xu et al., 2016). The second category is
the biosensor based on the detection of microbial
metabolites, including sensors based on aptamers (Wu
etal., 2019), antibodies (Seo et al., 2020), and nucleic acids
(Liu et al., 2018c). This type of biosensor has no special
requirements for the survival state of microbial cells and is
a commonly used for the component identification of
biosensors. Gopinath et al. selected the 16 kDa heat shock
protein of Mycobacterium tuberculosis (MTB) for compo-
nent identification and coupled it to gold nanoparticles



Front. Environ. Sci. Eng. 2021, 15(3): 47

STITEITY

CBiochemical detection )

(Eptamer technulugj )
ry N

(Nanomaterials marking)

—— : 5_; :
ntl_ en detection (Eyhrldlzatlun technig D

= 4’ =
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Fig. 2 Principle flow chart of airborne microorganisms detection using biosensors.
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with a detection limit as low as 100 fM (Gopinath et al.,
2016).

Aptamers are artificially synthesized short single-
stranded DNA or RNA, which can develop high-affinity
molecules to specifically recognize the desired target.
Aptamers have many advantages compared with anti-
bodies, such as short generation time, low manufacturing
cost, high variability, good thermal stability and broad
application (Zhang et al., 2019¢). Kwon et al. used aptamer
biosensors to directly detect avian influenza virus in
clinical samples of chicken serum, with a detection limit of
5.9 pM (Kwon et al., 2020).

2.2 Principle of energy conversion

The biosensor uses the principle of appropriate energy
conversion to convert identifiable biological signals into
detectable electrical, optical, acoustic, or thermal signals.
In recent years, electrical and optical biosensors have
developed rapidly.

2.2.1 Electrical biosensor

Electrical biosensors are the most widely used and the
earliest developed biosensors in the field (Cesewski and
Johnson, 2020). This type of biosensor mainly uses
electrical signals for detection, such as electrochemistry,
field-effect transistor (FET), and piezoelectric sensors. The
electrochemical biosensor uses the electrochemical signal
generated by the biorecognition process on the electrode
surface for detection. Depending on the signal type,
electrochemical biosensors can be divided into three types
of sensors: volt-ampere (Seo et al., 2020), impedance (Xu
et al., 2016), and ampere (Bhattacharyya et al., 2016). The
FET biosensor uses the biological recognition process to
cause changes in the electronic characteristics of semi-
conductor channels for detection. The Piezoelectric sensor
uses the biometric process to detect surface charges when
piezoelectric materials are pressed. Mavrikou et al. used a
new type of electrochemical sensor to detect the S1 spike
protein expressed on the surface of the virus SARS-CoV-2.
The results are provided within 3 min, and the detection
limit is 1 fg/mL (Mavrikou et al., 2020). Seo et al.
constructed a FET biosensor, detected the spike protein of
SARS-CoV-2 at a concentration of 1 fg/mL, and success-
fully detected the culture medium (detection limit 16 PFU/
mL) and clinical specimens (detection limit 2.42 x 10°
copies/mL) of SARS-CoV-2 (Seo et al., 2020). Zhang
developed a new type of piezoelectric sensor combined
with aptamer technology to detect MTB with a limit of 100
CFU/mL (Zhang et al., 2019b).

The electrical biosensor is an important branch of
biosensor, which fixes the bio-recognition element to the
electrode surface, and converts the chemical or pressure
signal generated by the combination of the target

microorganism and the recognition element into a
measurable electrical signal. It has been widely studied
for its high sensitivity, fast response, high specificity,
portability, and low cost (Cesewski and Johnson, 2020).

2.2.2 Optical biosensor

The optical biosensor is a biosensor that converts the signal
of the detected object into a detectable optical signal.
Optical biosensors mainly utilize the properties of light,
such as fluorescence (Wu et al., 2019), surface plasma
resonance (SPR) (Pelaez et al., 2020) and colorimetric
(Briceno et al., 2019) sensors. The fluorescence sensor
uses the unique photophysical properties of fluorescent
nanomaterials for labeling and detection of microorgan-
isms (Zheng et al., 2019). The SPR biosensor uses the
interaction of biomolecules to cause the instantaneous light
signal change on the surface of the nano-layer metal film
and then convert it into an electrical signal for detection.
The colorimetric biosensor is based on the change in the
number of target microorganisms in the sample, which can
cause the color change of the detection solution to detect
the target microorganisms (Wang et al., 2020a). Wei et al.
developed a fluorescent immunological biosensor that uses
fluorescent dyes to modify DNA probes, which can be
used to detect HSN1 antibodies in serum samples (Wei
et al., 2013). Pelaez et al. used the SPR biosensor for the
direct and label-free detection of the HspX recombinant
antigen of MTB. Moreover, their process involved simple
pretreatment of sputum specimens without any additional
amplification steps, with a detection limit of 0.63 ng/mL
(Peldez et al., 2020). Briceno et al. used a colorimetric
biosensor to complete detection within 20 min and can
reach the sensitivity level of the culture method (Briceno
et al., 2019).

The optical biosensor is an emerging research direction
of sensing in recent years. Through biological or chemical
luminescence sensing, real-time detection of the object can
be realized without modifying the label of the target. The
optical biosensor belongs to the category of traditional
physical sensing, with sensitive response and strong anti-
interference ability.

2.3 Methods of signal amplification

In the detection of airborne microorganisms, the actual
sample content is particularly low, so analysis and
detection using conventional biological analysis methods
are difficult to achieve. Certain methods are required to
achieve signal amplification and improve the sensitivity of
the sensor. Common signal amplification strategies include
nanomaterial amplification technology (Xiao et al., 2020),
enzyme catalysis amplification technology (Xie et al.,
2019a), and nucleic acid-based amplification technology
(Wu et al., 2019).
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2.3.1 Nanomaterial amplification technology

The physical and chemical properties of nanomaterials are
different from those of macroscopic substances, showing
unique properties in optics, electricity, magnetism, biology,
and other aspects. Nanomaterials have been extensively
applied in the research of biosensors, greatly promoting the
development of biosensors. Nano-functionalized materials
are used as electroactive markers (Xiao et al., 2020),
enrichment materials (Briceno et al., 2019), signal carriers
(Gao et al., 2018), and catalysts (Xie et al., 2019a) for
signal amplification.

In recent years, nanomaterials have been introduced into
sensors to manufacture a large number of high-sensitivity
sensing systems, which have excellent performance and
long-term stability (Gao et al., 2018). Shen et al. combined
sensors with silicon nanowires to develop a real-time
bioaerosol sensing system, which can observe the
conductance changes of H3N2 viruses in a few seconds
(Shen et al., 2011). The hybrid structure of nanomaterials
has attracted much attention due to its synergistic
amplification effects. A platinum nanoparticle hybrid
ZIF-8 composite biosensor can detect Salmonella at 11
CFU/mL (Wang et al., 2020a). The gold nanoparticle
hybrid fullerene nanoparticle/nitrogen-doped graphene
nanosheet biosensor can detect MTB at 3 fM (Bai et al.,
2019).

2.3.2  Enzyme catalysis amplification technology

Enzymes are organic macromolecules with high selectivity
and catalytic ability produced by living organisms. In
biological analysis, enzymes are one of the most common
signal markers. The catalytic effect of enzymes on
substrates can transform the biochemical signals that are
difficult to be detected into optical or electrical signals;
meanwhile, the biological signals can be amplified to
improve the detection sensitivity. Biological enzymes are
subject to certain restrictions in application due to their
high price and easy inactivation. In recent years,
researchers have discovered that immobilizing enzymes
on the surface of nanomaterials can not only increase the
amount of enzyme immobilized, but also immobilize
multiple enzymes at the same time, realizing the further
amplification of the detection signal, and constructing
nanocatalysts with mimic enzyme properties. Enzyme
catalysis amplification technology has been used in the
development of biosensors for its low cost, stable
performance, and adjustable catalytic activity (Xie et al.,
2019a).

2.3.3 Nucleic acid-based amplification technology

Nucleic acid-based amplification technology is an ampli-
fication method that can transform a small number of

nucleic acid molecules into a large number of nucleic acid
amplification products. It is mostly used to detect specific
accounting fragments of airborne microorganisms. Nucleic
acid amplification technology can be divided into non-
isothermal amplification technology (polymerase chain
reaction [PCR] technology) and isothermal amplification
technology (such as chain replacement amplification
technology and rolling circle amplification technology)
depending on reaction conditions. Zhang developed a
biosensor based on Exonuclease III (Exo III)-assisted
target recovery, which can recognize hybrid double strands
and selectively digest DNA capture probes. This process
improved the sensor’s sensitivity, and it can detect 20
CFU/mL MTB (Zhang et al. 2019b). Liu et al. improved
the silicon photonic microcircle sensor using recombinase
polymerase amplification technology, which increased the
detection sensitivity of the sensor by three times (Liu et al.,
2018c¢).

3 Application of sensors to detect airborne
microorganisms

Biosensors have made considerable progress in the
detection of airborne microorganisms. Tables 3, 4, and 5
summarize the applications of biosensors in the detection
of airborne viruses, bacteria, and other microorganisms,
respectively, and present the sensor types, sample types,
detection concentration range, detection limit, response
time and detection target for the detection of different
microorganisms. Figure 3 summarizes the response time
and detection limit of several common sensors for the
detection of specific substances of airborne microorgan-
isms. Thus, the response time of the sensor is mostly
concentrated in the minute level, and the detection limit for
specific substances can be as low as “zM” (10! mol/L).
Compared with other airborne microorganisms, the virus
has a lower detection limit and a shorter response time.
Electrochemical sensors have been extensively used, with
detection limits spanning multiple orders of magnitude of
dynamic range, and can quickly detect low-concentration
microorganisms.

4 Optimization of biosensor performance

In recent years, some new technologies have been used to
optimize biosensors to detect airborne microorganisms,
and the performance and efficiency of the biosensors have
improved. For example, air sampling technology is used to
solve of low content of microorganisms to be tested in
environmental aerosol samples and improve the sensitivity
of the biosensor. Purification and separation technology
can improve the anti-infection ability of biosensors and
solve the problems of excessive impurities in environ-
mental aerosol samples. Microfluidic technology can
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Table 5 Application of biosensor in airborne bio-substances detection

. . ... R .
Bio-substance Sensor type Sample Range Detection limit etsiifl) ense Detection target Reference
Aspergillus Electrochemical DNA Aflatoxin Bl in I nM - 10 uM 0.55 nM 4h DNA Sedighi-
Aavus biosensor pistachio nuts Khavidak et al.,
2017
Aspergillus Cantilever sensor Fungal strain 4. niger - 10° CFU/mL 4h Fungal spores Nugaeva et al.,
niger 2007
Mycoplasma Cantilever Sensors Cell culture 10> - 107 CFU/mL  10° CFU/mL  Less than 1h Mycoplasma Xu et al., 2010
Electrochemical gene Synthesis 0.1 pM — 20 nM 0.03 pM 2h DNA Liu et al., 2016
sensor
Fluorescence biosensor Sheep serum 10% — 10° copies/uL. 1.042 copies/uL.  Less than Mycoplasma Chen et al., 2017
15 min ovipneumoniae
Lateral flow biosensor Oropharyngeal 60 fg/uL — 60 ng/uL 600 fg/uL 1h DNA Wang et al.,
swab specimens 2019b
Lateral flow biosensor Oropharyngeal 5 fg/ul — 5 ng/uL 50 fg/uL lh DNA Wang et al.,
Swab specimens 2019c¢
Fluorescence biosensor Human saliva 5—-300 nM 3.96 nm 10 min DNA Lietal., 2019
Rickettsia Optical biosensor Blood plasma/Liver 5 x 10" —5 x 10* 5 x 10' copies/ 20 min DNA Koo et al., 2018
biopsy samples copies/reaction reaction
Chlamydia Optical DNA biosensor Human urine 0.25 - 20 nM 0.25 nM - DNA Parab et al., 2010
Nanoplasmonic biosensor Culture/ Urine 10" — 107 CFU/mL 300 CFU/mL - Chlamydia Soler et al., 2017
trachomatis
Leishmania Electrochemical DNA  Genomic sequence of 0.5 — 20 ng/uL 0.07 ng/uL - DNA Moradi et al.,
spp biosensor Leishmania major 2016
Aspergillus flavus - Haemophilus influenzae
- Mycoplasma pneumoniae - Legionella pneumophila
W Chiamydia trachomatis I Mycobacterium tuberculosis
Leishmania I SARS-CoV-2
- Preumococcal SAR-CoV
Yersinia pestis - HINI influenza virus
Staphylococcus aureus [ H7NY influenza virus
A B Bacillus Il H5N 1 influenza virus O - Electrochemical biosensor
N Diphtheria - Rotavirus ) . )
@ Streptococcus B Denguc fever virus O - Field effect transistor based biosensor
.g B Acinetobacter baumannii o % - Piezoelectric Biosensors
9 A v - Fluorescent biosensor
g <> A \VY4 A -Plasmon surface resonance biosensor
? < - Colorimetric biosensor
£ \V4 (Symb_ols from smal! to large represent: viruses,
bacteria and other microorganisms)
min O 6 o O
6 O A 0
: S s° ov
zM aM M pM nM uM

Specific substance concentration level (c)

Fig. 3 Performance chart of airborne microbial-specific substances of common biosensors.

reduce sample consumption, reduce the size of detection
equipment, and improve detection anti-interference ability;
it is flexible and portable and convenient for field
operations. Multiple detection technology can perform

biosensors.

multiple detections at the same time, thereby improving the
detection efficiency of biosensors. Smart devices can
improve the visual operation and remote operability of the
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4.1 Air sampling technology

Although clinical samples such as nasopharyngeal swabs
can be used for detection, traditional sampling methods can
make patients feel uncomfortable and cause sneezing to
produce aerosols, which can cause potential health risks
(Cui and Zhou, 2020). At present, biosensors use air
sampling systems to directly detect air samples. For
infectious disease hotspots, the rapid detection of airborne
microorganisms in air samples is necessary, and air
sampling is often the first critical step (Shen et al., 2012).
Wen et al. developed an air sampling method for Gram-
negative bacterial marker endotoxin, optimized the
analysis method based on the limulus reagent test (Wen
et al., 2017), and detected 37.9-97.6 EU/m? endotoxin in
the air of a university campus (Liu et al., 2018a). Zheng et
al. used an exhaled air condensing device to obtain 300 pL
of air sample within 3 min, and combined it with
isothermal amplification technology to successfully detect
seven airborne microorganisms from exhaled breath
(Zheng et al., 2018). Rufino de Sousa et al. developed a
large-scale electrostatic air sampler with good air filtration
and sample treatment capabilities, and successfully
detected Bacillus Calmette-Guerin vaccine of about 11
CFU/L-air and MTB of 46 CFU/L-air within 15 min
(Rufino de Sousa et al., 2020). Meanwhile, there are other
applications for the direct detection of air samples.
Bhattacharyya et al. built a titanium dioxide nanotube
array sensing platform for the electrochemical detection of
tuberculosis volatile organic compound biomarkers, which
can detect 0.12 mg/m* of methyl anisate (Bhattacharyya
et al., 2016).

4.2 Purification and separation technology

The actual sample has impurity interference and the
content of microorganisms in environmental aerosols is
low. Directly collecting airborne microorganisms can be
very challenging. Therefore, the samples for sensor
detection must be preprocessed. Immunomagnetic separa-
tion has been extensively used in sample pretreatment.
However, this method has shortcomings such as high
requirements and low efficiency, that limit its application.
Wang et al. used a magnetic grid separation column
without any pre-enrichment of bacteria to complete the
separation of 70% of target Salmonella cells in a 50 mL
bacterial sample in 2.5 h, greatly improving the sensitivity
of the sensor (Wang et al., 2020a). Song et al. proposed an
optimized collection and detection scheme for complex air
samples, which can break the wall of airborne micro-
organisms without destroying the internal structure,
thereby improving the detection efficiency (Song et al.,
2020). Briceno et al. added a magnetic field to the
nanoparticles combined with MTB to achieve separation
and enrichment, and the concentration rate of MTB could

reach 47%, without using any expensive consumables and
equipment (Briceno et al., 2019).

4.3 Microfluidic technology

Existing sensors mostly use the drip method to measure
samples, making the loading and processing of samples
difficult to control. This method is susceptible to
interference from external physical factors such as light,
humidity, and temperature, resulting in inaccurate mea-
surement and poor sensing stability. Microfluidic technol-
ogy integrates sample preparation, reagent manipulation,
biological reactions, and detection steps on a unique
platform, which can simplify complex analysis schemes
and reduce sample volume, detection time, and reagent
costs (Nasseri et al., 2018). Khan et al. integrated graphene
and microfluidic devices to enhance the sensing perfor-
mance, such as detection limit and sensitivity and
continuous monitoring; the detection limit for thrombin
reached 2.6 pM (Khan et al., 2020). Xie et al. used a high-
throughput microfluidic chip to construct an electrical
impedance sensor, and successfully distinguished different
forms of yeast, which can be used as a rapid analysis
technique to airborne microorganisms (Xie et al., 2019b).

4.4 Multiple detection technology

To improve the detection efficiency of biosensors and the
portability of outdoor operations, multiple samples or
multiple target microorganisms need to be detected at the
same time to increase practicability and flexibility (Liu
et al., 2018b). Liu et al. combined four micro-ring sensors
to realize real-time measurement and multiplexing of four
samples, greatly improving the detection speed (Liu et al.,
2018c). Kumar et al. used peptide nucleic acids to induce
color changes caused by aggregation of gold nanoparticles,
which can be used to simultaneously detect multiple
influenza viruses (Kumar et al., 2020).

4.5 Smart device linkage

The combination of biosensors and smart devices can
make them flexible and portable; capable of real-time,
continuous, and rapid detection; and has unique advan-
tages such as miniaturization, high sensitivity, and absence
of tags (Yang and Gao, 2019; Xing et al., 2020). The
introduction of smart devices has greatly improved
microorganism detection and provided convenient data
processing and transmission for demonstration purposes
(Nasseri et al., 2018). Mavrikou et al. combined a
biosensor with a customized portable readout device
operated by a smart phone/tablet computer for the portable
detection of the new coronavirus spike protein within 3
min, with a detection limit of 1 fg/mL (Mavrikou et al.,
2020). Zheng et al. developed a new type of biosensor and
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used a smartphone imaging APP to monitor the color
changes of AuNPs to determine the number of bacteria.
The detection limit for Escherichia coli in chicken samples
was 50 CFU/mL (Zheng et al., 2019).

5 Future perspectives

The current recurrence of airborne infectious diseases is
not optimistic, and the COVID-19 pandemic threatens to
interfere with public health services. Reversing the recent
progress in reducing the burden of airborne infectious
diseases will lead to a reduction in the detection of
infectious diseases and an increase in deaths. Therefore,
rapid detection and point-of-care (POC) analysis of
airborne microorganisms that cause these diseases are
important. Among the various methods used to detect
airborne microorganisms, biosensor technology is at the
forefront of POC device development. In recent years,
scientists have conducted extensive research on biosensor
technology. Some biosensors have been gradually used to
detect microorganisms in air, and good results have been
achieved. However, some challenges in sensors need to be
further resolved in the future:

1) The detection of air samples requires further research.
Most of the biosensor samples used for the detection of
microorganisms in air are tested under laboratory condi-
tions, and the test samples are usually limited to ideal
samples, such as recombinant proteins or cell culture
fluids, which are often different from actual samples.

2) An intelligent integrated system of sensor air
collection and detection should be developed. Such a
system integrates air collection, sample pretreatment,
specific detection, and other steps. It also minimizes errors
caused by manual operation, improves detection efficiency,
and realizes fast and portable detection. An integrated
system is essential to determine whether the sensor can
leave of the laboratory to be tested.

3) Reduce costs, improve stability, and realize commer-
cial production. Given the current outbreak of global
infectious diseases, to expand the detection range, costs
should be reduced, standardized sensor preparation and
functionalization should be carried out, and more sensor
characterization methods, such as expressing sensor
detection performance in advance through the working
characteristic curve, should be developed. Thus, large-
scale commercial production can be realized.

4) Optimize the repeatability of the sensor. Given that
the recognition and binding of biomolecules is often
irreversible, most existing sensors are disposable products,
and rebirth is difficult to achieve. The current rebirth effect
is also uneven, and there is no unified standard that defines
it. This is an important reason for limiting the large-scale
application of sensors.

5) Further improve the specificity and sensitivity of the
sensor. As a result of the low concentration of air

microorganisms, detection is difficult, which affects the
detection sensitivity of the sensor, and impurities are likely
to cross-react and affect the detection specificity. New and
more sensitive specific biological recognition elements
must be developed.
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