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Abstract Seven-degree-of-freedom redundant manipu-
lators with link offset have many advantages, including
obvious geometric significance and suitability for configu-
ration control. Their configuration is similar to that of the
experimental module manipulator (EMM) in the Chinese
Space Station Remote Manipulator System. However,
finding the analytical solution of an EMM on the basis of
arm angle parameterization is difficult. This study proposes
a high-precision, semi-analytical inverse method for
EMMs. Firstly, the analytical inverse kinematic solution
is established based on joint angle parameterization.
Secondly, the analytical inverse kinematic solution for
a non-offset spherical–roll–spherical (SRS) redundant
manipulator is derived based on arm angle parameteriza-
tion. The approximate solution of the EMM is calculated
in accordance with the relationship between the joint
angles of the EMM and the SRS manipulator. Thirdly,
the error is corrected using a numerical method through
the analytical inverse solution based on joint angle
parameterization. After selecting the stride and termination
condition, the precise inverse solution is computed for the
EMM based on arm angle parameterization. Lastly, case
solutions confirm that this method has high precision, and
the arm angle parameterization method is superior to the
joint angle parameterization method in terms of parameter
selection.

Keywords 7-DOF redundant manipulator, inverse kine-
matics, semi-analytical, arm angle, link offset

1 Introduction

Space robots play an irreplaceable role in human space
exploration [1–4]. The Space Station Remote Manipulator
System (SSRMS) [5], special purpose dexterous manipulator
[6], and European Robotic Arm [7] applied to the
International Space Station [8] are all 7-degree-of-freedom
(7-DOF) redundant manipulators. Space robots also include
the Chinese Space Station Remote Manipulator System
(CSSRMS) [9], TianGong-2 manipulator [10], Robonaut 2
[11], Japanese Experiment Module Remote Manipulator
System [12], and ETS-VII manipulator [13]. CSSRMS
consists of a core module manipulator (CMM) and an
experimental module manipulator (EMM) [14], which are
also 7-DOF redundant manipulators with link offset. The
EMM can not only be mounted at the end of the CMM to
perform precise operations but also operate independently.
They work together to maintain CSSRMS. The kinematics
of these manipulators is particularly important when they are
performing given tasks. The manipulator discussed in this
study is the EMM.
Seven-DOF redundant manipulators have more joint

DOFs than the dimension of its operating space. When
they perform given tasks, additional constraints, namely,
obstacle avoidance [15,16], singularity handling [17,18],
joint torque optimization [19,20], and fault-tolerant control
[21–23], must be considered. However, the inverse
kinematic solution of redundant manipulators is more
difficult than that of non-redundant manipulators. The
solution can be solved in the position domain [24] or
velocity domain [25,26]. The precision of the position-
domain solution is high, but multiple solutions need to be
dealt with. The self-motion of manipulators can be
controlled in the velocity domain by adopting the gradient
projection method to optimize the given tasks [27,28].
However, the solution in the velocity domain produces
several numerical errors. This study investigates the
inverse kinematic solution of redundant manipulators in
the position domain.
Seven-DOF redundant manipulators are classified into
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two types: Non-offset spherical–roll–spherical (SRS) and
offset manipulators. For convenience, offset manipulators
are referred to as EMMs. The shoulder and wrist joints of
the SRS manipulator have no offset, and its shoulder and
wrist are spherical joints. The EMM has offsets at the
shoulder and wrist joints. Therefore, its inverse solution is
relatively complex. A few extant studies have examined
the inverse kinematics of EMMs.
Focusing on the SRS manipulator, Lee and Bejczy [29]

proposed a method to solve the analytical inverse
kinematic solution for redundant manipulators on the
basis of joint angle parameterization, but the selection of
joint parameters in this method is difficult. Zu et al. [30]
proposed a quadratic calculation method based on the
errors caused by the gradient projection method and the
accuracy of the joint angle parameterization method. This
method reaches the given trajectory and improves the
precision of the end-effector. Kreutz-Delgado et al. [31]
presented the concept of arm angle. The geometric
significance of the arm angle parameterization method is
more obvious than that of the joint angle parameterization
method. The former is suitable for configuration control of
redundant manipulators. However, this method has two
algorithm singularities, namely, the reference plane and the
arm plane are not unique. The elbows of the SRS
manipulator and the EMM in this work have offsets;
hence, the second singularity does not exist. Shimizu et al.
[32] solved the inverse kinematics of the SRS manipulator
via arm angle parameterization and reported that this
method is suitable for joint limits. Xu et al. [33] proposed
the dual arm angle to avoid the singularity that arises when
the reference plane is not unique and derived the absolute
reference attitude matrix of the elbow. Solving the inverse
kinematics of the SRS manipulator on the basis of arm
angle parameterization is more convenient. Zhou et al. [34]
presented a method for the inverse kinematics of the SRS
manipulator with joint and attitude limits. In accordance
with the arm angle range corresponding to the restriction of
each joint, they obtained the arm angle range of the
manipulator and selected the best arm angle. Then, the
inverse kinematics of the manipulator was solved in the
position domain. Dereli and Koker [35] proposed a swarm
optimization method called firefly algorithm to solve the
inverse kinematics of redundant manipulators. Other
methods can be found in Refs. [36–38]. However, the
previous method based on arm angle parameterization is
only suitable for the SRS manipulator.
Focusing on the EMM, Crane et al. [39] proposed an

inverse kinematic solution method based on spatial polygon
projection. A 6-DOF subchain can be formed by para-
meterizing the value of joint angles �1, �2, or �7. By
projecting it in space, eight solutions can be solved. This
method is inconvenient because it involves the complex
geometry of space. Yu et al. [40] presented a method using a
virtual spherical wrist to replace the real offset wrist of a
redundant manipulator with an offset wrist and assumed that

the two wrists have the same joint angle. The attitude of the
end-effector of the manipulator with a spherical wrist was
calculated by using that of the manipulator with an offset
wrist. Then, the inverse kinematics solution of the
manipulator with a spherical wrist was solved. Simulations
for a single target point and continuous trajectory verified
this method. Abbasi et al. [41] used the arm angle rate as an
additional task constraint and controlled SSRMS by
adopting the augmented Jacobian method. Lu et al. [42]
proposed a method in which the orientation matrices and
arm angle do not need to change during the movement of a
redundant manipulator with link offset. The method is based
on damped least-squares, and the inverse kinematic solution
is solved by iterative calculation in the velocity domain.
This method was verified through a simulation in which the
end-effector tracked a circle with a constant orientation and
arm angle. Jin et al. [43] proposed an optimization algorithm
for determining the optimal elbow orientation on the basis of
particle swarm optimization and solved the inverse kine-
matics by using the relationship between elbow orientation
and joint angles. Xu et al. [44] solved the inverse kinematic
solution of the SRS manipulator through arm angle
parameterization and generalized the results to the EMM
(referred to as the SSRMS manipulator in their paper) in
accordance with the relationship of joint angles between the
EMM and the SRS manipulator. However, the inverse
kinematic solution for the EMM was approximate based on
arm angle parameterization. The arm angles of the eight
solutions had uncontrollable errors.
The geometric significance of the arm angle parameteri-

zation method is obvious, and it is suitable for configuration
control and obstacle avoidance. The precise analytical
solution cannot be solved based on arm angle parameteri-
zation because of the particularity of the configuration for
the EMM, but an approximate solution was solved in Ref.
[44]. No previous study has presented a method to solve the
precise solution for the EMM on the basis of arm angle
parameterization. The current study proposes a high-
precision, semi-analytical inverse solution method for the
EMM. We define nominal arm angle ψ and actual arm
angle ~ψ. The approximate solution based on arm angle
parameterization is corrected by the analytical solution
based on joint angle parameterization. Then, the precise
solution is solved. The superiority of the arm angle
parameterization method in parameter selection is verified
using cases. The studied cases prove that this method has
high precision.
This paper is organized in the following manner. In

Section 2, we establish a model of the EMM and provide
the analytical inverse kinematic solution based on joint
angle parameterization. In Section 3, the approximate
analytical inverse kinematic solution for the EMM is
derived based on arm angle parameterization. In Section 4,
the approximate solution is corrected by a numerical
method, and the high precision of this method is verified
by cases. In Section 5, the superiority of the arm
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angle parameterization method over the joint angle
parameterization method in terms of parameter selection
is analyzed.

2 Analytical solution based on joint angle
parameterization

2.1 Kinematics modeling of the EMM

The configuration of the EMM used in this study is (R–Y–
P)–P–(P–Y–R). ai ði ¼ 0,    1,    :::,    8Þ is the link length of the
EMM. The axes of joints 3, 4, and 5 are parallel. Shoulder
offset a1 and wrist offset a7 are not zero. The D–H frame
[45] is shown in Fig. 1(a). The initial configuration of the
EMM is shown in Fig. 1(b). The D–H parameters are listed
in Table 1. Σi ði ¼ 0,    1,    :::,    7,  EEÞ (EE corresponds to end
coordinate system ΣEE) is the coordinate system of this
manipulator. The axes of base coordinate system Σ0
and end coordinate system ΣEE are parallel to that of

the hand-eye-camera coordinate systems at the beginning
and end of this manipulator, respectively.

2.2 Analytical solution of each joint angle

Define �i ði ¼ 1,    2,    :::,    7Þ as the joint angle of the EMM.
The homogeneous transformation matrix between the
adjacent link coordinate systems of the manipulator is

i – 1T i

¼

cos�i – sin�i 0 ai – 1

sin�icosαi – 1 cos�icosαi – 1 – sinαi – 1 – disinαi – 1

sin�isinαi – 1 cos�isinαi – 1 cosαi – 1 dicosαi – 1

0 0 0 1

2
66664

3
77775:

(1)

For convenience of expression, we define ci ¼ cos�i and
si ¼ sin�i.

Fig. 1 Experimental module manipulator: (a) D–H frame and (b) initial configuration.
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The forward kinematic equation of the manipulator is
0TEE ¼ 0T00

00T1
1T2

2T3
3T4

4T5
5T6

6T7
7TEE : (2)

The homogeneous transformation matrix of end coordi-
nate system ΣEE relative to base coordinate system Σ0 is

0TEE ¼

nx sx ax px
ny sy ay py
nz sz az pz

0 0 0 1

2
6664

3
7775, (3)

where nx ny nz
� �T, sx sy sz

� �T, and ax ay az
� �T

are unit vectors represented by end coordinate system ΣEE

in base coordinate system Σ0, and px py pz
� �T is the

position of the origin of end coordinate system ΣEE in base
coordinate system Σ0.
Given the value of �1, the analytical inverse kinematic

solutions based on joint angle parameterization are as
follows.
�2 has two solutions, namely,

�2 ¼ arcsin
– ða2 þ a4 þ a6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p –f, (4)

�2 ¼ π – arcsin
– ða2 þ a4 þ a6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p –f, (5)

where a¼ a0þpx– a8nx, b¼ ða8ny – pyÞc1 þ ðpz – a8nzÞs1,
and f ¼ arctan2ða, bÞ.
�6 has two solutions, namely,

�6 ¼ �arccos½ – ðnzs1 – nyc1Þs2 – nxc2�: (6)

�7 has only one solution, which is

�7 ¼

arctan2 –
ðazs1 – ayc1Þs2 þ axc2

s6
, 
ðszs1 – syc1Þs2 þ sxc2

s6

� �
:

(7)

When s6 ¼ 0, the axes of joints 5 and 7 are parallel, and
the manipulator is in a singular configuration. Equation (7)
cannot solve �7. We have to solve it by s6 ¼ 0 and
c6 ¼ �1. Then, �7 can take arbitrary values by solving it.
Usually, �7 ¼ 0.
�4 has two solutions, namely,

�4 ¼ �arccos
A2 þ B2 – a23 – a

2
5

2a3a5
, (8)

where

A ¼ a7½c7ððayc1 – azs1Þc2 þ axs2Þ þ s7ððsyc1 – szs1Þc2
þ sxs2Þ� þ a8½ðnyc1 – nzs1Þc2 þ nxs2�
þ ðpzs1 – pyc1Þc2 – ðpx þ a0Þs2,

B ¼ – a1 þ a7½ðays1 þ azc1Þc7 þ ðsys1 þ szc1Þs7�
þ a8ðnys1 þ nzc1Þ – pys1 – pzc1:

�3 has only one solution, which is

�3 ¼ arctan2½Aða3 þ a5c4Þ –Ba5s4,  Bða3 þ a5c4Þ
þ Aa5s4�: (9)

�5 has only one solution, namely,

c345 ¼ – ½ðszc1 þ sys1Þs7 þ ðazc1 þ ays1Þc7�: (10)

When s6≠0,

s345 ¼ –
nzc1 þ nys1

s6
, (11)

�5 ¼ ð�3 þ �4 þ �5Þ – ð�3 þ �4Þ
¼ arctan2ðs345,  c345Þ – ð�3 þ �4Þ, (12)

where c345 ¼ cosð�3 þ �4 þ �5Þ, s345 ¼ sinð�3 þ �4 þ �5Þ,

Table 1 D–H parameters of the experimental module manipulator

Link i ai – 1ðDHÞ /m αi – 1ðDHÞ /(° ) diðDHÞ /m �iðDHÞ /(° )

1 0 90 a0 0

2 0 90 a1 0

3 0 –90 a2 -90

4 a3 0 a4 0

5 a5 0 a6 90

6 0 90 a7 0

7 0 –90 a8 0

8 0 90 0 90

Note: ai – 1ðDHÞ is the length of link, which is defined as the distance from zi – 1 to zi measured along xi – 1 positive direction; αi – 1ðDHÞ is the torsion angle of link, which is
defined as the angle from zi – 1 to zi measured about xi – 1 positive direction; diðDHÞ is the offset distance of link, which is defined as the distance from xi – 1 to xi measured
along zi positive direction; and �iðDHÞ is the rotation angle of link, which is defined as the angle from xi – 1 to xi measured about zi positive direction. Link 1 is relative to
coordinate system Σí0 , and link 8 is relative to coordinate system Σ7.
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and �345 ¼ �3 þ �4 þ �5.
When s6 ¼ 0, ð�3 þ �4 þ �5Þ can be solved in accor-

dance with �7 ¼ 0.
In summary, when �1 or �2 is given, we can solve each

joint angle of the manipulator in accordance with 0TEE.
Eight solutions are available.

3 Approximate analytical solution based on
arm angle parameterization

The analytical solution cannot be solved based on arm
angle parameterization because of the particularity of the
configuration for the EMM. We can solve the analytical
solution of the SRS manipulator with the same end
position and attitude based on arm angle parameterization
and generalize the results to the EMM in accordance with
the relationship of joint angles between the EMM and the
SRS manipulator. However, these results are approximate,
and the errors are uncontrollable.

3.1 Definition of arm angle and arm plane

Shoulder point S is the intersection point of the rotation
axes of joints 1 and 2, elbow point E is the origin of
coordinate system Σ4, and wrist point W is the intersection
point of the rotation axes of joints 6 and 7. In other words,
S, E, and W are the origins of D–H coordinate systems Σ1,
Σ4, and Σ6, respectively. e is the vector from S to E, and
w is the vector from S to W. Vector V is a unit vector
parallel to the rotation axis of joint 1, and it is defined as
0V ¼ –1 0 0½ �T. Vector d is the projection of vector
e on vector w. Vector p is perpendicular to w and passes
through point E (defined as p ¼ e – d). Vector k is on the
plane that contains vectors V and w and perpendicular to w.
The reference plane is the plane that contains vectors V

and w. The arm plane is the plane that contains points S, E,
and W. Arm angle ψ is the angle at which the reference
plane rotates around vector w to coincide with the arm
plane, as shown in Fig. 2.

If the configuration of the manipulator is known, the arm
angle at the current moment can be calculated. The
calculation processes are as follows:

w ¼ 0SW ¼ 0w

¼ 0PEE – – a0 0 0 �T – 0REE a8 0 0 �T,��
(13)

0T e ¼ 0T00
00T1

1T2
2T3

3T4 –
0T00

00T1

¼
* * * ex

* * * ey

* * * ez

0 0 0 1

2
6664

3
7775, (14)

e ¼ 0SE ¼ 0e ¼ ex ey ez
� �T, (15)

where 0PEE and 0REE are the position vector and rotation
matrix of end coordinate system ΣEE in base coordinate
system Σ0, respectively,

0w and 0e are vectors expressed by
w and e in base coordinate system Σ0, respectively, *
means that the calculation results are not listed.
The projection of vector e on vector w is

d ¼ ŵ ŵTe
� �

,         ŵ ¼ w
kwk, (16)

where ŵ is the unit vector of w, k⋅k denotes the norm of a
vector.
The unit vector perpendicular to w on the arm plane is

p̂ ¼ p
kpk,         p ¼ e – d ¼ I3 – ŵŵ

TÞe,�
(17)

where p̂ is the unit vector of p, I3 is a 3� 3 identity matrix.
The unit vector perpendicular to w on the reference plane

is

k̂ ¼ k
kkk,         k ¼ w� w� Vð Þ, (18)

Fig. 2 Reference plane, arm plane, and arm angle of the experimental module manipulator.
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where k̂ is the unit vector of k.
The expressions of arm angle ψ obtained from Fig. 2 are

cosψ ¼ k̂Tp̂,

sinψ ¼ ðŵ � k̂ÞTp̂ ¼ ŵTðk̂ � p̂Þ:

(
(19)

Therefore, arm angle ψ can be calculated as follows:

ψ ¼ arctan2ðsinψ,  cosψÞ

¼ arctan2 ŵTðk̂ � p̂Þ,  k̂T
p̂

	 

: (20)

3.2 Analytical solution of the SRS manipulator based on
arm angle parameterization

Shoulder offset a1 and wrist offset a7 of the SRS
manipulator are zero. Define �#i ði ¼ 1,    2,    :::,    7Þ as the
joint angle of the SRS manipulator. In the following
derivation, the origin of coordinate system Σ4 is on the
reference plane. When arm angle ψ ¼ 0, the upper right of
each parameter is marked with 0 to distinguish it. Its
inverse kinematic solution diagram is shown in Fig. 3 on
the basis of arm angle parameterization.

3.2.1 Analytical solution of �#4

�#4 has no relation to arm angle ψ. Two solutions of �#4 can
be solved in accordance with the geometric relationship.
As shown in Fig. 3, points E and W are projected onto a
plane perpendicular to the axis of joint 1, which passes
through point S. The feet of perpendicular are E? and W?.

β is the angle between SE? and E?W?. Therefore, the
geometric expressions are as follows:

SW 2
? ¼ SW 2 –WW 2

? ¼ kwk2 – ða2 þ a4 þ a6Þ2,
SW 2

? ¼ SE2
? þ E?W 2

? – 2⋅SE?⋅E?W?⋅cosβ

¼ a23 þ a25 – 2a3a5cosβ:

8>><
>>: (21)

Two solutions of β can be solved as follows:

β ¼ �arccos
a23 þ a25 þ ða2 þ a4 þ a6Þ2 – kwk2

2a3a5
: (22)

Figure 3 shows that �#4 þ β ¼ π, so �#4 also has two
solutions as follows:

�#4 ¼ π� arccos
a23 þ a25 þ ða2 þ a4 þ a6Þ2 – kwk2

2a3a5
:

(23)

3.2.2 Analytical solution of 0R4

When arm angle ψ ¼ 0, the rotation matrix of coordinate
system Σ4 relative to base coordinate system Σ0 is

0Rψ¼0
4 ,

and the rotation matrix that represents the rotation of arm
angle ψ about vector w is 0Rψ . Rotation matrix 0R4 can be
calculated as follows:

0R4 ¼ 0Rψ
0Rψ¼0

4 : (24)

Therefore, we need to calculate 0Rψ¼0
4 and 0Rψ .

w can be solved from Eq. (13), and 0w0 ¼ w. The

Fig. 3 Inverse kinematic solution diagram of the spherical–roll–spherical manipulator on the basis of arm angle parameterization.
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expression of 0e0 obtained from Fig. 3 is

0e0 ¼ Rðl,  αÞ⋅0w0

k0w0k k0e0k, (25)

where l ¼ V � w, k0e0k2 ¼ a23 þ ða2 þ a4Þ2, and
Rðl,  αÞ ¼ I3 þ ½ul��sinαþ ½ul��2ð1 – cosαÞ. 0w0 and 0e0

are vectors expressed by 0w and 0e when arm angle ψ ¼ 0,
respectively. α is the angle from 0w0 rotation to 0e0 . ½ul��
denotes the skew-symmetric matrix of vector l.
By using the cosine law for the triangle SEW , we obtain

a25 þ a26 ¼ k0e0k2 þ k0w0k2 – 2k0e0k$k0w0kcosα: (26)

Referring to the configuration of the manipulator, we
know that parameter α£90°. Therefore, α has only one
solution, that is,

α ¼ arccos
k0e0k2 þ k0w0k2 – a25 – a26

2k0e0k$k0w0k : (27)

These parameters are substituted into Eq. (25) to solve
0e0 .
In accordance with Fig. 3, the expressions can be

obtained as follows:

a6
0z04 þ a5

0x04 ¼ 0w0 – 0e0,

ða2 þ a4Þ0z04 þ a3
0x03 ¼ 0e0,

(
(28)

where 0x04 ,
0z04 , and

0y04 in the following derivation are unit
vectors of three coordinate axes of coordinate system Σ4
relative to base coordinate system Σ0 when arm angle
ψ ¼ 0, and 0x03 has the same meaning.
From the characteristic of the rotation matrix, we obtain

4R3 ¼ 3R – 1
4 ¼

c4# –s4# 0

s4# c4# 0

0 0 1

2
64

3
75

–1

¼ 4x3
4y3

4z3
� �

, (29)

where 4x3 ,
4y3 , and

4z3 are unit vectors of three coordinate
axes of coordinate system Σ3 relative to coordinate system
Σ4.
Therefore,

0x03 ¼ 0Rψ¼0
4 ⋅4x3 ¼ ½ 0x04 0y04

0z04 �
c40

–s40

0

2
64

3
75

¼ c40
0x04 – s40

0y04 : (30)

0x03 is substituted into Eq. (28). Both sides of these
equations are calculated by cross-multiplication. The new
equation is simplified to

a3a6s40
0x04 þ ½a3a6c4# – a5ða2 þ a4Þ�0y04 – a3a5s400z04

¼ 0w0 � 0e0 : (31)

In accordance with Eqs. (28) and (31), we obtain

0x04 ¼ a3a6s40ð0w0�0e0 Þ – a23a5s402ð0e0 – 0w0 Þ
a23s40

2ða25þa26Þþ½a5ða2þa4Þ – a3a6c4#�
2

–
½a5ða2þa4Þ – a3a6c40�½a60e0þða2þa4Þð0e0 – 0w0 Þ�

a23s40
2ða25þa26Þþ½a5ða2þa4Þ – a3a6c4#�

2 ,

0z04 ¼ 0w0 – 0e0 – a5
0x04

a6
,

0y04 ¼ 0z04 � 0x04 ¼ a3c40
0x04þða2þa4Þ0z04 – 0e0

a3s40
:

8>>>>>>><
>>>>>>>:

(32)

Therefore, the initial attitude matrix is

0Rψ¼0
4 ¼ 0x04

0y04
0z04 �:

�
(33)

From the definition of 0Rψ , we obtain

0Rψ ¼ I3 þ ½uw��sinψ þ ½uw��2ð1 – cosψÞ, (34)

where ½uw�� denotes the skew-symmetric matrix of vector
w.
In summary, 0R4 can be solved by Eq. (24).

3.2.3 Analytical solution of �#1, �#2, and �#3

Joint angle �#4 of the SRS manipulator has been solved, so
3R4 is a known quantity.
On the one hand, 0R3 can be obtained as follows:

0R3 ¼ 0R4
3R –1

4 ¼ 0Rψ
0Rψ¼0

4
3R –1

4

¼
as11 as12 as13
as21 as22 as23
as31 as32 as33

2
64

3
75, (35)

where asij ði, j ¼ 1,    2,    3Þ represent the element of the ith

row and jth column of matrix 0R3 .
On the other hand, in accordance with forward

kinematics,

0R3 ¼ 0R00
00R1

1R2
2R3

¼
– s20s30 – s20c30 – c20

– s10c30 – c10c20s30 s10s30 – c10c20c30 c10s20

s10c20s30 – c10c30 c10s30 þ s10c20c30 – s10s20

2
64

3
75:
(36)

Equations (35) and (36) are equal, and �#1, �#2, and �#3 can
be solved as follows:

�#2 ¼ �arccosð– as13Þ, (37)

�#1 ¼ arctan2ð– as33s20 , as23s20 Þ, (38)
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�#3 ¼ arctan2ð– as11s20 , – as12s20 Þ: (39)

3.2.4 Analytical solution of �#5, �#6, and �#7

On the one hand, EER4 can be obtained as follows:

EER4 ¼ 0R –1
EE

0R4 ¼ 0R –1
EE

0Rψ
0Rψ¼0

4

¼
aw11 aw12 aw13
aw21 aw22 aw23
aw31 aw32 aw33

2
64

3
75, (40)

where awij ði, j ¼ 1,    2,    3Þ represent the element of the ith
row and jth column of matrix EER4.
On the other hand, in accordance with forward

kinematics,
EER4 ¼ ð4R5

5R6
6R7

7REEÞ –1

¼
s50s60 – c50s60 c60

c50s70 þ s50c60c70 s50s70 – c50c60c70 – s60c70

c50c70 – s50c60s70 s50c70 þ c50c60s70 s60s70

2
64

3
75:
(41)

Equations (40) and (41) are equal, and �#5, �#6, and �#7 can
be solved as follows:

�#6 ¼ �arccosaw13, (42)

�#5 ¼ arctan2ðaw11s60 , – aw12s60 Þ, (43)

�#7 ¼ arctan2ðaw33s60 , – aw23s60 Þ: (44)

3.3 Approximate analytical solution of the EMM based on
arm angle parameterization

3.3.1 Relationship of joint angles between the EMM and
the SRS manipulator

The difference between the EMM and the SRS manipu-
lator is that offset a1 and a7 of the shoulder and wrist are
not zero. In accordance with the solutions of the EMM
based on joint angle parameterization in Section 2.2, we
can obtain the relationship of joint angles between the
EMM and the SRS manipulator, as shown in Table 2. With
the same 0TEE, joint angles �1, �2, �6, and �7 of the two
types of manipulators are the same, but �3, �4, and �5 are
different. �3 þ �4 þ �5 is also the same.

3.3.2 Approximate analytical solution of each joint angle

In accordance with the analysis in Table 2 and the solutions
of the SRS manipulator based on arm angle parameteriza-
tion in Section 3.2, the analytical inverse kinematic

solution of the EMM based on arm angle parameterization
can be obtained as follows:

�1 ¼ arctan2ð– as33s20 , as23s20 Þ, (45)

�2 ¼ �arccosð– as13Þ, (46)

�6 ¼ �arccosaw13, (47)

�7 ¼ arctan2ðaw33s60 , – aw23s60 Þ, (48)

�4 ¼ �arccos
A2 þ B2 – a23 – a

2
5

2a3a5
, (49)

�3 ¼ arctan2½Aða3 þ a5c4Þ –Ba5s4, Bða3 þ a5c4Þ þ Aa5s4�,

(50)

�5 ¼ ð�3 þ �4 þ �5Þ – ð�3 þ �4Þ 
¼ arctan2ðs345, c345Þ – ð�3 þ �4Þ: (51)

The expressions of related parameters are shown in
Table 2. The symbol of �4 must be consistent with that of
�#4.
Given the value of arm angle ψ, eight solutions of the

EMM can be solved based on arm angle parameterization.
�3, �4, and �5 calculated by these formulas are different
because the offsets of the two manipulators are different.
Therefore, the actual arm angles corresponding to the eight
solutions are not the given ψ. These errors are uncontrol-
lable.
We define the given ψ as the nominal arm angle, and ~ψ

corresponding to the solution calculated by ψ is called the
actual arm angle.

3.3.3 Case analysis

The position and attitude of the end-effector are given as
follows:

0TEE ¼

– 0:7389 – 0:3815 – 0:5554 1:4348

0:3300 – 0:9236 0:1953 1:9698

– 0:5875 – 0:0390 0:8083 1:0302

0 0 0 1

2
66664

3
77775:

(52)

Given nominal arm angle ψ ¼ 135°, eight solutions of
the EMM can be solved in accordance with Section 3.3.2,
and actual arm angle ~ψ corresponding to each solution can
be calculated in accordance with Section 3.1, as shown in
Table 3.
The actual arm angles calculated by eight solutions have

errors. The maximum actual arm angle error is 9:6177°,
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and its relative error is up to 7.12%. This error cannot be
ignored when precise control is required. Therefore, for the
approximate inverse solution of the EMM based on arm
angle parameterization, we need to correct actual arm angle
~ψ in reference to nominal arm angle ψ. Then, we can
calculate eight precise inverse solutions.

4 Precise semi-analytical solution based on
arm angle parameterization

4.1 Solution process

We propose a numerical method to correct the solution
errors of the EMM based on arm angle parameterization in

Section 3 so that actual arm angle ~ψ is infinitely close to
nominal arm angle ψ. Eight precise solutions can be solved
by this method. The algorithm flowchart is shown in Fig. 4.
The analytical inverse kinematic solution is solved based

on joint angle parameterization in Section 2.2. Given an
arbitrary value of �1, we can calculate the values of �2,
�3, …, �7. Thus, �2, �3, …, �7 are all functions of �1.

�j ¼ fð�1Þ,   j ¼ 2, 3, :::, 7, (53)

where fð⋅Þ is a nonlinear mapping function of each joint
angle �j ðj ¼ 2, 3, :::, 7Þ corresponding to �1 in Section
2.2.
When the configuration of the manipulator is known, we

can calculate actual arm angle ~ψ as

Table 2 Relationship of joint angles between the experimental module manipulator (EMM) and the spherical–roll–spherical (SRS) manipulator

Joint angle EMM SRS manipulator Relationship

�1, �2 ða0 þ px – a8nxÞc2
þ½ða8ny – pyÞc1 þ ðpz – a8nzÞs1�s2
þða2 þ a4 þ a6Þ ¼ 0

ða0 þ px – a8nxÞc20
þ½ða8ny – pyÞc10 þ ðpz – a8nzÞs10 �s20
þða2 þ a4 þ a6Þ ¼ 0

�1 ¼ �#1, �2 ¼ �#2

�6 c6 ¼ – ðnzs1 – nyc1Þs2 – nxc2 c60 ¼ – ðnzs10 – nyc10 Þs20 – nxc20 �6 ¼ �#6

�7 c7 ¼
ðszs1 – syc1Þs2 þ sxc2

s6
,

s7 ¼ –
ðazs1 – ayc1Þs2 þ axc2

s6

8>><
>>:

c70 ¼
ðszs10 – syc10 Þs20 þ sxc20

s60
,

s70 ¼ –
ðazs10 – ayc10 Þs20 þ axc20

s60

8>><
>>:

�7 ¼ �#7

�4
c4 ¼

A2 þ B2 – a23 – a
2
5

2a3a5
c40 ¼

A#2 þ B#2 – a23 – a
2
5

2a3a5

The EMM a1≠0 and a7≠0,
and the SRS manipulator

a1 ¼ a7 ¼ 0. Therefore, A≠A#,
B≠B#, �4≠�#4, �3≠�#3, and �5
≠�#5: �345 has no relationship
with a1 and a7; hence, �345 ¼

�304050 :

�3 s3 ¼
Aða3 þ a5c4Þ –Ba5s4
a23 þ a25 þ 2a3a5c4

,

c3 ¼
Bða3 þ a5c4Þ þ Aa5s4
a23 þ a25 þ 2a3a5c4

8>><
>>:

s30 ¼
A#ða3 þ a5c40 Þ –B#a5s40
a23 þ a25 þ 2a3a5c40

,

c30 ¼
B#ða3 þ a5c40 Þ þ A#a5s40

a23 þ a25 þ 2a3a5c40

8>><
>>:

�5 �5 ¼ ð�3 þ �4 þ �5Þ – ð�3 þ �4Þ
               ¼ arctan2ðs345, c345Þ – ð�3 þ �4Þ

�50 ¼ ð�30 þ �40 þ �50 Þ – ð�30 þ �40 Þ
                         ¼ arctan2ðs304050 , c304050 Þ – ð�30 þ �40 Þ

�3 þ �4 þ �5 s345 ¼ –
nzc1 þ nys1

s6
,

c345 ¼ – ½ðszc1 þ sys1Þs7
þ ðazc1 þ ays1Þc7�

8>>><
>>>:

s304050 ¼ –
nzc10 þ nys10

s60
,

c304050 ¼ – ½ðszc10 þ sys10 Þs70
þ ðazc10 þ ays10 Þc70 �

8>>><
>>>:

Note: A ¼ a7½c7ððayc1 – azs1Þc2 þ axs2Þþs7ððsyc1 – szs1Þc2 þ sxs2Þ� þ a8½ðnyc1 – nzs1Þc2 þ nxs2�  þ ðpzs1 – pyc1Þc2 – ðpx þ a0Þs2, B ¼ – a1 þ a7½ðays1 þ azc1Þc7
þðsys1 þ szc1Þs7� þ a8ðnys1 þ nzc1Þ – pys1 – pzc1; A#¼ a8½ðnyc10 – nzs10 Þc20 þ nxs20 � þ ðpzs10 – pyc10 Þc20 – ðpx þ a0Þs20 , B#¼ a8ðnys10 þ nzc10 Þ – pys10 – pzc10 .

Table 3 Eight approximate solutions calculated by nominal arm angle ψ ¼ 135° and their actual arm angle ~ψ in Case 1

Inverse
solution

�1/(° ) �2/(° ) �3/(° ) �4/(° ) �5/(° ) �6/(° ) �7/(° )
Actual arm
angle ~ψ/(° )

1 –75.0144 77.9015 –35.0088 –67.7947 –106.9448 108.4550 78.4236 129.7819

2 –75.0144 77.9015 –32.9623 –93.9476 97.1616 –108.4550 –101.5764 130.1939

3 104.9856 –77.9015 145.4975 –44.7304 –130.5154 108.4550 78.4236 142.4985

4 104.9856 –77.9015 157.5737 –83.3832 76.0612 –108.4550 –101.5764 142.5272

5 65.0858 129.3636 –170.4417 76.7806 –83.3659 87.0906 –58.9323 126.6470

6 65.0858 129.3636 –160.6816 39.4032 124.2514 –87.0906 121.0677 125.3823

7 –114.9142 –129.3636 12.8840 96.8902 –106.8012 87.0906 –58.9323 140.8476

8 –114.9142 –129.3636 10.8205 75.3257 96.8267 –87.0906 121.0677 140.3597
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~ψ ¼ gð�1, �2, �3, �4, �5, �6, �7Þ, (54)

where gð⋅Þ is a nonlinear mapping function with a known
configuration for the manipulator.
When we correct the arm angle error of each solution,

we retain the value of �1 for this solution. In accordance
with the actual precision requirement, we select stride Δ�
of �1. When �1 � Δ�, joint angles �2, �3, …, �7 and actual

arm angle ~ψ can be calculated. The formulas for �2, �4, and
�6 depend on the symbols of the corresponding angles
calculated by Eqs. (4) or (5), (8), and (6), respectively. �3,
�5, and �7 are calculated by Eqs. (9), (12), and (7),
respectively. The change trend of actual arm angle ~ψ is the
trend that is close to or far from nominal arm angle ψ
because actual arm angle ~ψ changes monotonously in a 2π
period of �1 (analysis in Section 4.2). By comparing the
magnitude of j~ψ –ψj in two cases, the change trend of
actual arm angle ~ψ close to ψ is selected. Through stride Δ�
of �1, actual arm angle ~ψ is updated continuously. The
value of termination condition ε is selected reasonably.
When j~ψ –ψj < ε, the calculation stops. In other words,

lim
Δ�↕ ↓0

j~ψ –ψj ¼ 0: (55)

Then, actual arm angle ~ψ and �1, �2, …, �7 are recorded
at this moment. �1, �2, …, �7 are the precise joint angles
after the arm angle error correction. The errors of the eight
solutions are corrected. Then, we obtain eight precise
inverse kinematic solutions based on arm angle para-
meterization.
A summary of the approach is presented as follows:
Step 1: Given nominal arm angle ψ, select stride Δ� and

termination condition ε in accordance with the
actual situation. Select joint angle �1 of each
solution.

Step 2: Calculate actual arm angle ~ψ when �1 � Δ�.
Select the trend where ~ψ is close to ψ.

Step 3: In accordance with this trend, calculate joint
angles �2, �3, …, �7 and ~ψ through �1 and Δ�.

Step 4: Change the value of �1 through Δ� and go to
Step 3. Exit until ε reaches its precision.

Step 5: Record �1, �2, …, �7, and ~ψ.

4.2 Case correction and analysis

Given stride Δ� ¼ 0:001° and termination condition
ε ¼ 0:0006°, eight approximate inverse kinematic solu-
tions obtained by solving the case in Section 3.3.3 are
corrected, as shown in Table 4. The manipulator config-
uration of the first precise solution is shown in Fig. 5.
The actual arm angle ~ψ of the eight solutions are all

infinitely close to nominal arm angle ψ ¼ 135°. The
maximum error is reduced from 9:6177° to 0:0005°. The
minimum error is 0, which satisfies the actual precision
requirement. The eight solutions are the precise inverse
kinematic solutions of the EMM based on arm angle
parameterization.
For analysis convenience, �2 calculated by Eqs. (4) and

(5) are denoted as � –
2 and �þ2 , respectively. When �4 and �6

are calculated by Eqs. (8) and (6), the formulas of the
positive values are denoted as �þ4 and �þ6 , and the formulas
of the negative values are denoted as � –

4 and � –
6 . In Table 4,

the curves for the actual arm angles ~ψ of the eight solutions
corresponding to �1 2 ½–π, π� are shown in Fig. 6.

Fig. 4 Flowchart for the algorithm for correcting the arm angle
errors.
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Regardless of which group of formulas is used for
calculation, actual arm angle ~ψ changes monotonously in
the interval ½–π, π�. When we provide the value of nominal
arm angle ψ, �1 has only one solution. Therefore, only
eight inverse kinematic solutions exist for the EMM based
on arm angle parameterization. The method proposed in
this section is effective.

5 Superiority of the arm angle
parameterization method in parameter
selection

In Section 2, we solve the inverse kinematics of the EMM
based on joint angle parameterization. If we provide the
homogeneous transformation matrix of the end-effector in
the reachable operating space, several given �1 2 ½–π, π�
cannot solve the other six joint angles. With �2 as an
example, when �2 is calculated by Eqs. (4) and (5), the
condition must be satisfied as follows:

– 1£
– ða2 þ a4 þ a6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p £1: (56)

If �1 does not satisfy this condition, the manipulator will

be unsolvable. Therefore, the joint angle parameterization
method has limitations on the given joint angle.
However, the arm angle parameterization method does

not have these limitations on the given arm angle. In the
case analysis in Section 3.3.3, given the homogeneous
transformation matrix of the end-effector by Eq. (52),
arbitrary �1 2 ½–π, π� can solve the other six joint angles.
As shown in Fig. 6, arm angle ~ψ and joint angle �1 exhibit
one-to-one correspondence in the interval ½–π, π�.
When several given �1 2 ½–π, π� cannot solve the other

six joint angles, we give the position and attitude of the
end-effector as follows:

0TEE ¼

0:5187 0:4184 0:7456 – 0:8786

– 0:6013 – 0:4415 0:6660 1:7019

0:6078 – 0:7938 0:0226 1:1783

0 0 0 1

2
66664

3
77775:

(57)

When the EMM has solutions, the range of �1 can be
solved by Eq. (56) as follows:

�1 2 ½ –180°, –137:1457°� [ ½ –79:2755°, 40:8543°�

[ ½100:7245°, 180°�: (58)

Given nominal arm angle ψ ¼ 135°, eight approximate
solutions can be solved in accordance with Section 3.3.2,
as shown in Table 5. The actual arm angles calculated by
the eight solutions have errors. The maximum actual arm
angle error is 12:2831°, and its relative error is up to
9.10%. Given stride Δ� ¼ 0:001° and termination condi-
tion ε ¼ 0:002°, the correction results in accordance with
Section 4.1 are shown in Table 6. The maximum error of
actual arm angle ~ψ is reduced from 12:2831° to 0:0020°.
The minimum error is 0:0004°, which already satisfies the
actual precision requirement. The manipulator configura-
tion of the first precise solution is shown in Fig. 7.
The curves for the actual arm angles ~ψ of the eight

Table 4 Eight precise solutions corrected to nominal arm angle ψ ¼ 135° and their actual arm angle ~ψ in Case 1

Inverse
solution

�1/(° ) �2/(° ) �3/(° ) �4/(° ) �5/(° ) �6/(° ) �7/(° )
Actual arm
angle ~ψ/(° )

1 –79.6594 80.0057 –31.7645 –68.5655 –107.4127 112.4957 81.6077 134.9996

2 –79.2564 79.8118 –29.8156 –94.8141 96.7095 –112.1390 –98.6737 135.0003

3 111.1286 –75.5521 143.0353 –46.8091 –128.5043 103.3635 74.3511 135.0000

4 111.4466 –75.4437 154.0291 –84.2827 77.8483 –103.1072 –105.8565 134.9999

5 57.8508 124.0487 –170.7387 75.5782 –86.7634 81.7248 –53.1516 135.0002

6 56.9938 123.3800 –162.8315 40.3714 119.9489 –81.0841 127.5950 134.9995

7 –109.5662 –132.8739 14.2388 97.0154 –104.6965 90.9200 –62.6529 134.9997

8 –109.8352 –132.7062 12.9465 74.4857 98.9454 –90.7312 117.5244 135.0001

Fig. 5 Experimental module manipulator configuration of the
first precise solution in Case 1.
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Fig. 6 Curves of actual arm angles ~ψ correspond to �1 in Case 1: (a) �
þ
2 , �

–
4 , �

þ
6 ; (b) �

þ
2 , �

–
4 , �

–
6 ; (c) �

–
2 , �

–
4 , �

þ
6 ; (d) �

–
2 , �

–
4 , �

–
6 ; (e) �

þ
2 , �

þ
4 ,

�þ6 ; (f) �
þ
2 , �

þ
4 , �

–
6 ; (g) �

–
2 , �

þ
4 , �

þ
6 ; and (h) � –

2 , �
þ
4 , �

–
6 .

Table 5 Eight approximate solutions calculated by nominal arm angle ψ ¼ 135° and their actual arm angle ~ψ in Case 2

Inverse
solution

�1/(° ) �2/(° ) �3/(° ) �4/(° ) �5/(° ) �6/(° ) �7/(° )
Actual arm
angle ~ψ/(° )

1 –74.5529 41.1411 59.0447 –147.0799 39.7875 96.3458 –25.6682 135.8676

2 –74.5529 41.1411 33.3418 –123.9961 –137.5933 –96.3458 154.3318 122.7169

3 105.4471 –41.1411 –127.4815 –121.8101 21.0440 96.3458 –25.6682 146.4159

4 105.4471 –41.1411 –151.1755 –97.6415 –159.4307 –96.3458 154.3318 136.0138

5 25.7588 113.7663 103.5857 97.3836 139.3401 121.8922 98.1554 138.8542

6 25.7588 113.7663 85.7979 125.7015 –51.1899 –121.8922 –81.8446 131.6935

7 –154.2412 –113.7663 –99.9945 121.7516 138.5523 121.8922 98.1554 139.3173

8 –154.2412 –113.7663 –124.9401 145.1176 –39.8680 –121.8922 –81.8446 125.0305

Table 6 Eight precise solutions corrected to nominal arm angle ψ ¼ 135° and their actual arm angle ~ψ in Case 2

Inverse
solution

�1/(° ) �2/(° ) �3/(° ) �4/(° ) �5/(° ) �6/(° ) �7/(° )
Actual arm
angle ~ψ/(° )

1 –74.2549 40.5634 58.1106 –147.0877 40.4691 96.8771 –25.9693 135.0011

2 -77.9949 51.0466 43.4482 –125.4135 –143.7159 –87.7922 159.8987 134.9980

3 113.0101 –31.4347 –137.9357 –123.3949 26.0090 105.8662 –30.5921 135.0012

4 105.9051 –40.2642 –151.8906 –97.6617 –159.0967 –97.1529 153.8738 135.0007

5 23.3078 116.7033 100.6682 97.9066 140.0811 118.3647 96.9436 135.0007

6 27.5818 111.2742 88.3354 125.4589 –52.2753 –124.7980 –80.9160 134.9985

7 –156.4982 –116.4861 –103.1285 121.4000 140.5163 118.6301 97.0378 135.0014

8 –150.2092 –107.8211 –117.2833 146.4267 –46.1905 –128.7216 –79.7563 135.0004
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solutions corresponding to �1 2 ½–π, π� are shown in
Fig. 8. For this case, the change interval of �1 is not
continuous. For the eight groups of formulas, the changes
in actual arm angle ~ψ in the interval ½–π, π� are shown in
Table 7.
Therefore, for ~ψ 2 ½–π, π�, the arm angles ~ψ solved by

four groups of formulas have non-solution intervals and
those solved by the four other groups of formulas have
repetition-solution intervals.
When formulas � –

4 and �þ6 are used for calculation, �þ2
corresponds to the non-solution interval of ~ψ, and � –

2
corresponds to the repetition-solution interval of ~ψ. The
ranges of the two intervals are the same. Therefore, when ~ψ
takes an arbitrary value in the interval ½–π, π�, although the
change intervals of ~ψ are not continuous, two solutions can
be solved after the two situations are combined. Similarly,
we combine �þ2 and � –

2 corresponding to � –
4 and � –

6 , �
þ
4

and �þ6 , and �
þ
4 and � –

6 . When ~ψ takes an arbitrary value in
the interval ½–π, π�, two solutions can also be solved for
each situation. For the eight situations, we can solve the
eight solutions of the EMM for arbitrary ~ψ 2 ½–π, π�.
In summary, when we provide the arbitrary position and

attitude of the end-effector in the reachable operating
space, several given �1 2 ½–π, π� cannot solve the EMM
based on joint angle parameterization. However, arbitrary
~ψ 2 ½–π, π� can solve the EMM based on arm angle
parameterization. That is, the arm angle parameterization
method has great superiority over the joint angle
parameterization method in parameter selection.
The approximate solutions are solved for the EMM

based on arm angle parameterization in Section 3.3.3. The
numerical correction method uses �1 of the approximate
solutions as the initial calculation value. By selecting the
appropriate stride Δ�, we can solve the precise solutions

Fig. 7 Experimental module manipulator of the first precise
solution in Case 2.

Fig. 8 Curves of actual arm angles ~ψ correspond to �1 in Case 2: (a) �
þ
2 , �

–
4 , �

þ
6 ; (b) �

þ
2 , �

–
4 , �

–
6 ; (c) �

–
2 , �

–
4 , �

þ
6 ; (d) �

–
2 , �

–
4 , �

–
6 ; (e) �

–
2 , �

þ
4 ,

�þ6 ; (f) �
–
2 , �

þ
4 , �

–
6 ; (g) �

þ
2 , �

þ
4 , �

þ
6 ; and (h) �þ2 , �

þ
4 , �

–
6 .
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quickly. If the initial value �1 of calculation is selected
arbitrarily, for the situation where arbitrary �1 2 ½–π, π�
can solve the other six joint angles, the amount of
calculation will increase greatly although the precise
solutions can be calculated by the correction method.
The efficiency will be decreased greatly. For the situation
where several given �1 2 ½–π, π� cannot solve the other six
joint angles, the change intervals of �1 are not continuous.
If the calculation reaches the end of an interval, it will be
stopped, and the program will report errors. Therefore, the
precise solutions cannot be calculated in this situation.
When stride Δ� is too small, although the method has

high precision, the amount of calculation increases greatly.
In general, the higher the resolution we select, the lower
the efficiency and the more optimal the solution we obtain.
In accordance with the actual situation, we select stride Δ�
that not only satisfies the precision of calculation but also
makes efficiency the highest.

6 Conclusions

This study proposes a high-precision, semi-analytical
inverse method for 7-DOF redundant manipulators with
link offset on the basis of arm angle parameterization.
Previous studies could not solve precise inverse solutions
by using arm angle parameterization because of the
particularity of the configuration for the EMM, and the
solutions that generalize the analytical results of the SRS
manipulator to the EMM are approximate. In addition, the
errors are uncontrollable. We propose a semi-analytical
method and define the nominal and actual arm angles. The
approximate solutions based on arm angle parameteriza-
tion are corrected by the analytical solution based on joint
angle parameterization. After selecting the stride and
termination condition in accordance with the actual
situation, the precise inverse solutions are calculated
based on arm angle parameterization. The high precision
of this method is verified by cases, and the minimum error
approaches zero. The arm angle parameterization method
has great superiority over the joint angle parameterization
method in parameter selection.

Nomenclature

Abbreviations

Variables

CSSRMS Chinese Space Station Remote Manipulator System

CMM Core module manipulator

EMM Experimental module manipulator

7-DOF 7-degree-of-freedom

SSRMS Space Station Remote Manipulator System

SRS Spherical–roll–spherical

Table 7 Changes in actual arm angle ~ψ in the interval ½–π, π�
Combination of joint angles Type of interval Interval of actual arm angle ~ψ/(° )

�þ2 , �
–
4 , �

þ
6 Non-solution ð16:1116, 26:2073Þ[ ð168:8087, 172:7647Þ

� –
2 , �

–
4 , �

þ
6 Repetition-solution ½16:1116, 26:2073� [ ½168:8087, 172:7647�

�þ2 , �
–
4 , �

–
6 Non-solution ð31:4828, 36:0285Þ [ ð151:4337, 162:3077Þ

� –
2 , �

–
4 , �

–
6 Repetition-solution ½31:4828, 36:0285� [ ½151:4337, 162:3077�

� –
2 , �

þ
4 , �

þ
6 Non-solution ð–166:8049, –160:3144Þ [ ð–29:4358, –17:4838Þ

�þ2 , �
þ
4 , �

þ
6 Repetition-solution ½–166:8049, –160:3144� [ ½–29:4358, –17:4838�

� –
2 , �

þ
4 , �

–
6 Non-solution ð–167:1600, –156:2214Þ [ ð–31:5175, –25:6658Þ

�þ2 , �
þ
4 , �

–
6 Repetition-solution ½–167:1600, –156:2214� [ ½–31:5175, –25:6658�

ai ði ¼ 0,   1,  :::,  8Þ Link length of the EMM

asij ði,  j ¼ 1,  2,  3Þ Element of the ith row and jth column

of matrix 0R3

awij ði,  j ¼ 1,  2,  3Þ Element of the ith row and jth column

of matrix EER4

d Vector which is the projection of
vector e on vector w

e Vector from shoulder point S to elbow
point E

0e Vector expressed by e in base coordi-
nate system Σ0

0e0 Vector expressed by 0e when arm
angle ψ ¼ 0

I3 3� 3 identity matrix

k Vector which is on the plane that
contains vectors V and w and perpen-
dicular to w

k̂ Unit vector of k

l Multiplication cross vector of V and
w, defined as l ¼ V � w

p Vector which is perpendicular to w and
passes through point E, defined as
p ¼ e – d

p̂ Unit vector of p

0PEE Position vector of end coordinate
system ΣEE in base coordinate system
Σ0
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