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Abstract Automated flowsheet synthesis is an important
field in computer-aided process engineering. The present
work demonstrates how reinforcement learning can be
used for automated flowsheet synthesis without any
heuristics or prior knowledge of conceptual design. The
environment consists of a steady-state flowsheet simulator
that contains all physical knowledge. An agent is trained to
take discrete actions and sequentially build up flowsheets
that solve a given process problem. A novel method named
SynGameZero is developed to ensure good exploration
schemes in the complex problem. Therein, flowsheet
synthesis is modelled as a game of two competing players.
The agent plays this game against itself during training and
consists of an artificial neural network and a tree search for
forward planning. The method is applied successfully to a
reaction-distillation process in a quaternary system.

Keywords automated process synthesis, flowsheet synth-
esis, artificial intelligence, machine learning, reinforcement
learning

1 Introduction

In chemical engineering, process synthesis can be defined
as the act, where one invents the structure and operating
levels for a new chemical manufacturing process [1].
Computer-aided process synthesis has been an important
field of chemical engineering for decades [2]. There exists
a vast amount of methods in computer-aided process
synthesis, in which the roles of human and computer are
quite different and vary in their proportions. On one end of

the spectrum, humans invent flowsheets, provide mechan-
istic models of apparatus and physico-chemical properties,
and employ computers solely in simulations to evaluate
and check the invented designs; on the other end of the
spectrum, there is automated flowsheet synthesis, which
we call rather human-aided process synthesis by a
computer. Therein, the structure of the process and
operating levels are chosen autonomously by the computer
based on input by the human (typically a problem
statement and the physico-chemical property data).
Siirola [3] classified automated flowsheet synthesis into

three categories: superstructure optimization, evolutionary
modification and systematic generation. In superstructure
optimization, a large flowsheet structure (the superstruc-
ture) is set up in a way, so that a large set of process
alternatives can be obtained by removing parts of that
structure [4,5]. An objective function or cost function is
defined and the optimal configuration for the flowsheet is
determined by an optimization algorithm that uses decision
variables to remove parts of the superstructure. Evolu-
tionary modification works as follows: a process flowsheet
is devised (by any method at hand), analyzed and changed
in one or more ways repeatedly to improve it. The changes
are continued until no further improvement in the
flowsheet can be made [6]. Systematic generation creates
a flowsheet sequentially by adding process units. The
decision process is usually based on heuristics, which are
based on prior knowledge. Alternatively, it is possible to
derive heuristics, by comparing many flowsheets system-
atically with the help of a computer [7]. Prominent
examples of the systematic generation approach are the
expert systems [8,9]. Sometimes two of the three
categories are combined in hybrid synthesis methods
[10,11]. For further reading, concerning the state-of-the-art
of automated process synthesis, we refer to current review
articles [12,13].
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In the present work, a novel machine-learning (ML)
based method for automated process synthesis in the
category systematic generation is introduced. As ML and
artificial intelligence (AI) are rapidly expanding fields, a lot
of research focuses on applying these kind of techniques in
computer-aided process engineering [14–18]. In the area of
process synthesis, ML is for example applied to create
surrogate models for reducing computational time in
simulation and optimization [19–21]. AI offers however
more potential, as stated by Dimiduk et al. [16]: “Or, how
can one best apply the newest advances in ML and AI to
improve materials, processes, and structures engineering
results? Speculating still further, why are there no
emerging AI-based engineering design systems that
recognize component features, attributes, or intended
performance to make recommendations about directions
for final design, manufacturing processes, and materials
selections or developments?” The type of ML techniques,
that could address these kind of problems, seems to be
reinforcement learning (RL). The objective of RL is to
teach an agent, which could for example consist of an
artificial neural network (ANN), to master a given task
through repeated interactions with its environment [22,23].
RL is already applied in process engineering, however
almost exclusively in process control [24]. Among rare
exceptions are Zhou et al. [25], who employed RL to set
experimental conditions for the optimization of chemical
reactions. Khan and Lapkin [26] used a RL approach to
identify promising processing routes in hydrogen produc-
tion.
Outside process engineering, many authors have proven

that RL serves as powerful tool to master difficult problems
like winning the board games of Go and chess by training
an agent only through self-play and RL [27,28]. In the
present work, similar techniques are employed to train an
agent to come up with good process flowsheets on its own.

It solves process synthesis problems using systematic
generation and adds process units sequentially and in a
constructive way to a flowsheet. The agent is trained
without any prior knowledge or heuristics. Through
repeated process simulation during the training phase of
RL, the agent develops artificial process engineering
intuition. The present work is structured as follows: the
problem framework and a basic process engineering
example problem are defined and explained first. A novel
RL method, the agent’s structure and the training
procedure are explained afterwards in detail. In the
“Results and discussion” section, it is shown that the
basic process engineering problem is solved by the
method, proving the concept to work.

2 Experimental

2.1 RL framework

The general RL framework for flowsheet synthesis for an
agent that has zero prior knowledge is shown in Fig. 1. The
flowsheet is set up and evaluated in the environment. For
reasons of time, cost and safety, the environment is not a
real chemical site, but a process simulator (here: a steady-
state process simulator). The environment is partially
observable: the agent is able to observe the state s
comprising the flowsheet connectivity (which process
unit is connected to which) and the stream table that results
from the process simulation. Internal states of the process
units (e.g., the temperature on some stage of some
distillation column) are not part of that state and thus not
observable for the agent. The possible actions that the
agent can perform on the environment are adding new
process units to the flowsheet, setting operational para-
meters of these units if applicable, adding recycles, or

Fig. 1 Scheme of the RL framework for flowsheet synthesis using only discrete decisions without prior knowledge.
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terminating the flowsheet synthesis. As feedback, the agent
obtains a reward by the environment, which is generally an
improvement in some cost function that is evaluated in the
simulator (e.g., net present value of the process).
Zero prior knowledge of the agent means that it does not

know any property data, thermodynamic model or process
unit model a priori. Further, neither process engineering
heuristics nor any other rule-based schemes are available.
Thus, the agent initially takes entirely random actions on
the environment. Gradually, it learns better decision
policies based on the reward it obtains from the
environment. Of course, substantial amounts of physical
knowledge have to be supplied somehow to the overall
framework. This happens exclusively in the environment:
models of thermodynamic properties and the process units
have to be supplied by the (human) engineer. Great
attention has to be paid to this step, because the agent
might exploit every “loophole” in the models. Think of an
azeotrope that is not modeled properly in the thermo-
dynamics. The agent will eventually learn to select a purely
distillation-based separation if it looks economic, even
though it is not feasible in practice due to the azeotrope.
The described framework is quite general. Different

types of simulators could be used, as well as different types
of agents with various RL methods. In the present work, a
subclass of problems is considered: flowsheet synthesis
using only discrete decisions without placing recycle
streams. This means that the agent solely decides on
placing process units one after another, and if necessary on
their discrete task. For example, the agent can decide to
place a distillation column with the task to separate two
components by a sharp split. It does not specify any
continuous operation parameter of the unit, as these are
specified by its task (the conversion of task to continuous
parameter is done by the environment automatically). The
reason for this limitation is two-fold. On one hand, a robust
simulation environment can be defined (cf. below); on the
other hand, the used RL methods are native in discrete
decision spaces. They would require computationally
expensive extensions for continuous decision spaces.
Despite the limitation to discrete decisions, interesting
design problems can be considered as will be described
below.

2.2 Environment of the case studies

We chose a steady-state flowsheet simulation as the
environment. Starting point is one or more feed stream(s)
specified by a human engineer. In its actions, the agent is
allowed to place a process unit to any open stream (a
stream that has no destination yet). After each action, the
flowsheet is simulated and a stream table is determined.
For the proof of concept in the present work, we kept the
environment simple. The processes operate in a model
system of four compounds A, B, C and D. The system is

zeotropic, thus can be separated by distillation only. If the
mixture is fed to a reactor filled with catalyst, the following
reaction is observed:

Aþ B↕ ↓Cþ D: (1)

The possible actions of the agent are grouped as follows:
a) Place a distillation column with a perfectly sharp

split. The boiling order is ABCD. Thus, the agent has three
discrete options called D1 (split A-BCD), D2 (split AB-
CD) and D3 (split ABC-D).
b) Place a reactor (denoted as action R). The reactor is a

continuous stirred tank reactor with the conversion of A
given by a kinetic of first order in A and B:

_ninA – _noutA ¼ 5  kmol$h – 1xoutA xoutB : (2)

Therein, “out” and “in” specify quantities at the reactor
outlet and inlet, respectively. The variables _ni and xi denote
component i’s molar flow rate and mole fraction,
respectively. The conversion of the other components B,
C and D is calculated by the stoichiometry of reaction (1).
c) Place a mixer for mixing two streams. This action is

denoted as M.
d) Terminate the flowsheet synthesis by action T.
The actions D1, D2, D3 and R can be applied to any

single open stream, whereas M requires two open streams
as input. If more than two streams have to be mixed, the
agent could select multiple mixers in a cascade. Implica-
tions for more complex problems (more components,
detailed apparatus models, complex thermodynamics) are
given in the “Results and discussion” section.
The net present value is used to evaluate the obtained

processes. Since the degree of detail in its calculation is not
relevant for the presented methodology and the process
models are rather basic, a rather simple scheme is used to
calculate the net present value:

NPV ¼
X

u2U
Iu þ ð10aÞ

X
o2O

co: (3)

It combines the investment costs Iu of every unit u with
the yearly operational cash flows co multiplied with 10
years (a factor that lumps the period of depreciation and the
interest rates). The investment costs of the units are
assumed flat and independent of size and operation
parameters, as these quantities are not provided by the
model. The yearly operational cash flows co consider only
cost and revenues from all open material streams o leaving
the process. Further operational costs of the units (e.g.,
steam cost for the distillation) are neglected for simplicity.
The cash flows of the open streams are calculated as
follows. If a stream contains a pure component i:

co ¼ _ni$pi$8000  h$a
– 1, (4)

where _ni is its molar flowrate in kmol$h–1 and pi is the price
of component i. If an open stream is not pure then its yearly
cash flow is:
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co ¼
X

i2fA,B,C,Dg _ni$minðpi,0Þ$8000  h$a – 1: (5)

The minimum function ensures that the cash flow of
mixed streams is never positive. If the stream contains a
compound of negative price pi (e.g., a hazardous
compound for which disposal has to be paid), then the
cash flow becomes negative. The values/costs of the feed
stream(s) are not considered explicitly in the formulas, as
they are constant and therefore have no influence on
finding the optimal process. However, the agent may select
the trivial process of placing no process unit at all. In this
case, any feed is an open stream leaving the process and is
included in the determination of the net present value. In
the examples of the present work, two different cases of the
cost parameters Iu and pi are discussed to demonstrate the
interchangeability of the cost function. The used para-
meters are listed in Table 1.

2.3 Flowsheet synthesis in a game environment with zero
knowledge (SynGameZero) method and agent structure

2.3.1 Preliminary analysis

There are numerous methods for solving the RL problem
defined in the framework of Fig. 1. Let us start with some
general analysis of the problem. The observed state of the
environment consists of a list of process units in the
flowsheet, their connectivity and a stream table as a result
of the process simulation. This observed state fulfils the
Markov property, i.e., it is sufficient for solving the
flowsheet simulation and the solution is independent from
the history of state. This means that future decisions of an
optimal agent could be based on the presently observed
state alone. The environment behaves fully deterministic,
i.e., starting from a certain state and applying a certain
action leads always to the same successor state. Thus, an
agent can reliably use look-ahead planning methods to
evaluate a sequence of actions. It is not trivial to reward the
agent after every placement of a new process unit with an
immediate and constructive reward. For example, think of
a multi-step separation sequence that only works success-
fully after a recycle has been closed. After placing the first
unit of the sequence, a constructive reward is hard to
determine. Further, if the agent “forgets” to close the
recycle and terminates the flowsheet synthesis, the process
simply does not work. Which was the unit that caused the
process ultimately to fail? In this case, it is not even
possible to reward or punish individual actions construc-
tively after the flowsheet synthesis has been completed.

Consequently, we suggest not rewarding every single
action, but rather looking only at the final flowsheet and
using its value (e.g., net present value) as the reward for the
agent. This means that the flowsheet always has to be
finished before rewards can be obtained during training of
the agent. The observed state contains continuous variables
(e.g., the concentration of some compound in some
stream), thus there is an infinite number of possible states.
This makes the use of look-up tables (i.e., if state is exactly
equal to ... then do ...) ineffective. Instead, functions are
used by the agent to calculate actions and other quantities
from the observed state. Here, ANNs can be used as
function approximators. The parameters of the ANNs are
learnt during the training phase. Two functions are used by
the agent of the present work: a policy function and a value
function. The policy function (variable π) outputs sugges-
tions for the next actions. The value function (variable v)
outputs the estimated state value that is the expected
reward of the final flowsheet when following the policy
starting from the present observed state. To exploit both
functions, policy-based learning in an actor-critic setup
[22,23] is usually used.
Without going into details, we have naively tried out a

setup in which the policy was a vector with a probability
distribution for selecting one from all allowed actions for
the present state. The value function v was the net present
value of the final flowsheet to be expected when following
that policy. Using an actor-critic method, we have tried to
learn an optimal policy. v was employed as a baseline for
the critic. We have quickly discovered that this approach is
not constructive. It suffers from fast convergence to local
optima, e.g., it produces flowsheets that are only better
than highly similar ones. This result is not surprising given
the characteristics of the flowsheet problem. As there is no
information for the agent on the maximum possible
reward, it is not able to determine, whether the learnt
policy is a global or a local optimum. Further, flowsheet
synthesis is a complex task where one has to think several
steps ahead, almost comparable with playing a strategic
game like chess where certain moves may pay off only
many moves later. In order to suggest breakthrough
process units (winning moves in chess), good exploration
schemes are necessary during training to avoid following
only beaten tracks. Therefore, the present work follows a
more sophisticated approach to RL for flowsheet synthesis:
we embed the flowsheet synthesis into a competitive two-
player game leading to an advantageous learning perfor-
mance. We call this method SynGameZero and describe it
systematically in the following. The method has a couple

Table 1 Investment costs Iu for distillation D, reactor R and mixer M, and prices pi of compounds A, B, C, D used in the determination of the net

present value in the present work

Case ID/k€ IR/k€ IM/k€ pA/(k€$kmol–1) pB/(k€$kmol–1) pC/(k€$kmol–1) pD/(k€$kmol–1)

Case 1 10000 10000 1000 1 1 1 1

Case 2 10000 10000 1000 – 0.125 – 0.125 2 2
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of tuning parameters. The values for these parameters are
given later in the “Results and discussion” section in
Table 2 along the application examples.

2.3.2 State representation

The state of a flowsheet is stored into the flowsheet matrix
F. The construction of F from the simulation results of the
environment is explained along Fig. 2. Every stream in the
flowsheet refers to one row of F. F has a fixed number
Nmatrix of rows and if there are less streams in the flowsheet,
the remaining rows are filled with zeros (01�N in Fig. 2
refers to a row vector of N zero entries). The number
Nmatrix is an upper limit for the size of the flowsheet (i.e.,
the number of streams). If the matrix is full then the process
synthesis will end automatically. This limitation is due to
technical reasons. In practice Nmatrix has to be chosen large
enough to accommodate the optimal flowsheet comfor-
tably. Every row of F is composed of a set of row vectors
that are explained along the first row in Fig. 2 for stream 1
(reactor input) of the shown flowsheet. v1 contains the
molar fractions of all compounds followed by the total
molar flow rate of stream 1. The vector u1 specifies the
process unit at the streams destination. In the present case
study, it has Nunit = 4þ Nmatrix entries. The first four entries
refer to distillation splits D1, D2, D3 and reactor R,
respectively. The last Nmatrix entries are relevant if the

stream’s destination is a mixer. The entry for the
corresponding unit is set to 1 and all other entries are set
to 0. In case of the mixer, the ð4þ kÞ th entry is set to one,
indicating that the other stream to the mixer is stream k. If
no unit is connected to stream i, then ui is set to 01�Nunit

. For
example, u1 in Fig. 2 indicates that stream 1’s destination
is a reactor R. The last four vectors of each row contain
information on the subsequent streams that leave the
process unit and the streams destination. Let us say these
are streams m and n. The first and the third of the four
vectors are copies of vm and vn, respectively. The second
and fourth vector are pointers to the numbers m and n,
respectively. They are vectors with Nmatrix entries, all of
them 0 but the m -th or n -th entry, respectively, which are
1. If there is no destination process unit (see e.g., streams 3
or 4) or the process unit has only one output stream (see e.
g., stream 1), then all four or the latter two vectors are filled
with zeros, respectively. In the present work, only units
with up to two output streams are considered, but of course
it would be possible to extend the flowsheet matrix F to
represent units with more output streams by increasing the
length of each line.
There are many other possibilities for state representa-

tion including much more compact ones without redundant
information. However, the representation above offers a
couple of features that we believe are advantageous for RL:
discrete variables describing the flowsheet structure (such

Fig. 2 Construction of flowsheet matrix F along an example flowsheet (F contains the information of the stream table combined with
structural information on the flowsheet. See text for an explanation of the nomenclature).

Table 2 Numerical tuning parameters used in the examples

Case Nsteps Nmatrix Nmemory Nbatch Nlayer Nnode K a β

Case 1 5000 10 256 32 2 32 20 – 0.9 0.0001

Case 2 20000 10 256 32 2 64 40 – 0.9 0.0001
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as type of process units and stream numbers) are encoded
as a single 1 in a vector of zeros rather than in single integer
scalars. This method avoids that two different flowsheet
structures are falsely considered similar by the function
approximation that takes F as input. By repeating the
stream information of unit outlets, the states of the input
and output streams of a unit are related to each other. This
captures that these streams are also closely linked in the
environment via the unit’s performance.

2.3.3 Competitive two-player game

The task of creating a profitable flowsheet is modelled as a
two-player game. Each player obtains the same feed stream
(s) and tries to create a more profitable flowsheet than the
opponent does. The game is turn-based and at each turn,
the active player selects one action and applies it to its own
flowsheet. Both players are always able to see their own
and the opponents flowsheet. The game ends when both
players have completed their flowsheets (either by using
the termination action or if the flowsheet matrix F is full).
The winner is the player with the flowsheet that has a larger
net present value. If both players’ flowsheets are equal in
net present value, then the player that has completed the
synthesis first wins the game. The winner obtains the
reward r ¼ 1, the loser r ¼ – 1. The agent is trained to
master this game through self-play and RL. This means
that the agent plays against itself and switches back and
forth between the roles of player 1 and player 2 during the
game. This setup enables using a modified version of the
efficient training techniques to master the game of Go as
proposed by Silver et al. [27,28]. This will be explained in
more detail below. After the training is complete and the

agent has to solve a concrete problem, it will simply play
another game against itself and select the winning
flowsheet.

2.3.4 Agent structure

The agent consists of an ANN and a tree search. The
ANN’s outputs are used as inputs in the tree search that
imitates a planning process. The structure of the ANN is
depicted in Fig. 3. The ANN receives the state vector s as
input, which is constructed as concatenation of all rows of
the flowsheet matrices F1 (current player) and F2 (waiting
player). Further, a vector g is concatenated. It has the
length of one row of F2 and flags whether the waiting
player has already completed his/her flowsheet. g contains
either only zeros (flowsheet of the waiting player is not
completed) or only ones (flowsheet of the waiting player is
completed). The ANN consists of one input layer, Nlayer

fully connected hidden layers. Every hidden layer has
Nnode nodes with ReLu-activation [29].
The ANN’s output layer is fully connected and has two

parts. On one hand, there is a policy head that outputs the
vector π of length Naction. Every entry corresponds to a
probability with which the corresponding action should be
executed by the agent. A softmax activation [30] is used to
ensure that π has entries in the range ½0,1� and sums up to 1.
In the example of the present work, there are three
distillation splits, one reactor and every stream can be
mixed with any one of the remaining Nmatrix – 1 ones. As
the flowsheet can consist of up to Nmatrix open streams
and one termination action is needed, there are Naction =
ðNmatrixð4þ Nmatrix – 1Þ þ 1Þ theoretical actions. The pol-
icy might suggest infeasible actions, i.e., placing a unit at a

Fig. 3 Structure of the agent’s ANN in the SynGameZero method (The ANN has an actor-critic architecture. It calculates from the state
input s both a policy vector π and a scalar value v. To obtain p, infeasible actions are filtered out of the vector π).
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stream that does not yet exist or is already connected to
another unit. Therefore, the policy head π is filtered.
Entries that correspond to infeasible actions are set to 0.
The remaining entries are scaled with a common factor, so
that the resulting filtered vector p also sums up to 1. On the
other hand, there is a value head that outputs a scalar v. Its
output is generated using a tanh-activation [30] to ensure a
value in the range ½ – 1,1�. v can be interpreted as an
estimate of the reward at the end of the game for the current
player.
To improve its performance, the agent does not always

select the action with the highest entry in p. Instead, p and v
are used as the basis for a tree search to plan several actions
in advance. The tree search imitates a typical human
planning process that is made before finally deciding on an
action. To avoid extensive computations, the tree search is
adaptive in depth and does not use a full enumeration of all
actions. Only promising actions are explored, where the
values of p and v are used to quantify the word promising.
The tree search is explained along Fig. 4 and an example in
which the agent (for the sake of simplicity) has only three
possible actions named T, D1 and R, say terminating
flowsheet synthesis, placing a distillation column on the
first open stream, or placing a reactor on the first open
stream. The tree consists of nodes and branches. The nodes
n 2 fI,II,III:::g correspond to states of the two-player
game. The branches ðn,aÞ correspond to the action a that

the current player takes at node n. The origin of the tree is
the root node I. In Fig. 4, the root node I corresponds to the
beginning of the game when both players have an empty
flowsheet. The current player is the one who takes the next
action. His/her flowsheet is shown in the left half of the
nodes. Since the game is turn-based, the order of the two
flowsheets is switched after every action. Each node is
either an explored node (e.g., node I in Fig. 4) or an
unexplored leaf node (e.g., node III). A node is explored if
and only if the corresponding state vector s is known. To
explore an unexplored leaf node, i.e., to obtain its state
vector s, the respective action has to be applied to the
flowsheet of the current player in the parental node and the
flowsheet simulation has to be evaluated. For example, if
node III in Fig. 4 has to be explored, then action D1
(adding a distillation column) has to applied to the left
flowsheet in node I. The resulting flowsheet is evaluated by
flowsheet simulation yielding the flowsheet matrix F2 of
the state of node III. The flowsheet matrix F1 of the state in
node III is equal to F2 of the state in node I. Whenever a
node is explored, it is checked whether it is terminal, i.e., a
node in that both flowsheets are terminated (e.g., node V in
Fig. 4). The termination of a flowsheet may be caused
either by the action T (terminate) or by a full flowsheet
matrix. If at least one player has a non-terminated
flowsheet (for example node VIII), the node is not
terminal. In this case, the branches of all feasible actions

Fig. 4 Example tree search at the beginning of the game (flowsheets of both players empty) with three possible actions {T, D1, R}
(Unexplored leaf nodes are shown with dotted frames. Terminated flowsheets and terminal nodes are marked with bold frames. The order
of the two flowsheets is switched after every action. The current player is the one who takes the next action. His/her flowsheet is shown in
the left half of the nodes).
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and the corresponding (unexplored) leaf nodes are added to
the tree below that node.
Four variables (Nn,a,Wn,a, Qn,a, Pn,a) are stored for every

branch ðn,aÞ in the tree. The variable Nn,a counts how often
this branch has been taken during the tree search. The
variable Wn,a is the sum of all estimated and obtained
rewards beneath that branch and Qn,a is defined as
Wn,a /Nn,a. The values of Pn,a are set to the corresponding
value of the vector p that is obtained by feeding the state s
of the node n into the ANN. These variables are updated
while the tree is constructed. They also guide both the
extension of the tree and the final decision of the agent. A
new tree is initialized only once at the beginning of every
game. A root node with the state vector of two empty
flowsheets is placed (cf. node I in Fig. 4) and explored. The
variables Nn,a, Wn,a and Qn,a are set to 0 for the resulting
branches, while the values of Pn,a are obtained as described
above. The tree search proceeds then in four steps:
Step 1: Select. The algorithm starts at the root node and

runs down one path through the tree until it arrives at a leaf
node or a terminal node nbottom. At each node n, the
algorithm greedily selects to follow the branch ðn,aÞ that
maximizes Qn,a +Un,aðαÞ. Un,aðαÞ is defined as follows:

Un,a αð Þ ¼ Pn,a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
b2A

Nn,b

q

Nn,a þ 1
, if  Qn,a>α, (6)

Un,aðαÞ ¼ 0,  if  Qn,a£α, (7)

where A is the set of all actions. If there are two or more
branches, that maximize Qn,a +Un,aðαÞ, the branch among
them with the largest value of Pn,a is taken. To enhance
exploration, the above greedy selection policy is replaced
during training for the root node (and only the root node)
by an ε -greedy policy [22]. With a probability of ε, an
entirely random (i.e., uniform distribution) branch is
selected. With a probability of (1 – ε), the algorithm selects
the branch using the above greedy policy that maximizes
Qnroot,a +Unroot,aðαÞ. In the present work, ε is constant and
equal to 0:2.
Step 2: Explore and/or evaluate. If the node nbottom that

was found in step 1 is an unexplored leaf node, then it is
explored and the resulting state vector s is stored in nbottom.
Two cases might occur: Case 1: The node nbottom is
terminal. The winner of the game is determined by
determining the net present value of both flowsheets. The
reward is determined for the current player of the node
nbottom and stored in the variable V for step 3. Case 2: The
node nbottom is not terminal. In this case, the state vector s
of the node nbottom is fed into the ANN. The value v that
is calculated by the ANN, is stored in the variable V for
step 3.
Step 3: Backup. Starting at the node nbottom that was

found in step 1, the algorithm runs back upwards the tree
until the root node. For every branch (~n, ~a) passed on the

way, the following updates are made to the branch
variables:

N~n,~a ¼ N~n,~a þ 1, (8)

W~n,~a ¼ W~n,~a þ tV , (9)

Q~n,~a ¼ W~n,~a=N~n,~a: (10)

Herein, V is the value that has been stored in step 2. The
variable t takes into account that the agent switches players
after every action when playing against itself. If V has been
determined at a node where player one is the current
player, then V is added (t = 1) at all branches that represent
actions of player one. At the other branches, which
represent actions of player two, V is subtracted (t = – 1).
The opposite is done, when V has been determined at a
node where player two is the current player.
Step 4: Play. Steps 1–3 are repeated K times as a loop,

before the agent finally decides on an action at the root
node of the tree. The decision is based on a probability
vector y with one entry for every feasible action at the root.
The entry for action a is calculated by:

ya ¼
Nnroot,aX
b2A

Nnroot,b

: (11)

During training, the decision is made by randomly
selecting an action using the vector y as probability
distribution. After training, the moves are chosen greedily
by always selecting the action aplay with the largest Nn,a. If
there are two or more branches that maximize Nn,a, then the
algorithm selects the branch among them with the largest
value for Pn,a. After the action is applied to the
environment, the tree is shifted downwards. The node
that is reached by the selected action aplay becomes the new
root node. The tree is cut off above. The values of the
branch variables are retained.
The tree search algorithm is briefly interpreted in the

following. The algorithm generally selects actions with
large values of Nn,a. Nn,a counts how often the branch has
been taken during the selecting in step 1. For success of the
algorithm, it is therefore crucial to select promising actions
in step 1. This selection is based substantially on the value
of Qn,a +Un,aðαÞ. Qn,a is an estimate of the action value of
action a at node n. The action value is the state value v of
the game situation for the current player after he/she has
selected the action a. The state value v can only be
determined with exact certainty at a terminal node. At other
nodes, it is estimated by the ANN. In the backup (step 3),
the best available guess for v is backed up along the search
path to improve the estimation of Qn,a. Using Eqs. (9) and
(10), Qn,a is the average of the best available guesses for
the state values v of all explored nodes below the branch
ðn,aÞ. If the path selection in step 1 would only depend on
Qn,a, then a wrong estimate of Qn,a at the beginning of the
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tree search might lead to inefficient exploration. Therefore,
the function Un,aðαÞ is also considered. This function is
large for actions a that have a large value Pn,a but a small

value Nn,a compared to
X

b2ANn,b. These actions are
favored by the ANN, but have not been explored so far. If
these promising actions would not be explicitly considered
using Un,aðαÞ, they might be overlooked by chance at the
beginning of the tree search. Later in the tree search, if such
an action has turned out to be not constructive (the estimate
Qn,a falls below the threshold α that is typically chosen
rather low, e.g., –0.9), then the exploration function
Un,aðαÞ is no longer considered. This ensures that short-
sighted recommendations of the ANN do not bias the tree
search on the long run.

2.4 Training

The goal of the agent training is to adjust the parameters of
the ANN, so that the ANN ideally predicts the con-
sequences of a potential action up till the end of the game.
The ideal ANN should output a value v that correctly
predicts the chances of the current player to win the game.
The output p should be ideally a sharp distribution with a
maximum at the action that maximizes the chances to win
the game. The training procedure for approaching such
behavior is outlined in the following. At the start of the
training procedure, the ANN is initialized with random
weights. In training, the agent plays a large number Nsteps

of games against itself. The given feed stream(s) in the
games can be varied randomly to obtain an agent that is
able to solve a broad class of problems. For example, if an
agent is desired that can separate a quaternary mixture for
all possible feed compositions, then the feed compositions
should be broadly sampled in the entire composition space
during the training process. At the beginning of every
game, the search tree is initialized with the given feed(s).
Then the agent plays the game until the end (both players
terminated their flowsheets). Thereby, every decision that
had been made in step 4 of the tree search is stored. Stored
are the state vector s at the root and the vector y of the
decision. After finishing the game, the decision data is
augmented by the final reward r that has been obtained at
the end of game. The tuples of the form (s,y,r) are stored in
a memory of size Nmemory. The oldest tuples are replaced in
the memory, if the memory is full. After every game, a
batch of Nbatch tuples is sampled randomly out of the
memory. With this batch, the parameters of the ANN are
optimized using stochastic gradient descent (SGD) [31].
Two optimization steps are performed. The first one with
respect to the loss function l1 and the second one with
respect to the loss function l2:

l1 ¼ ðv – rÞ2, (12)

l2 ¼
XNaction

i¼1
ðπi – yiÞ2: (13)

2.5 Implementation

The flowsheet simulation, the agent, and the training were
implemented with the programming language Python. For
the ANN, the methods from the package Tensorflow
(version 1.9.0) [30] were used. The SGD steps were
performed using the Adam optimizer [30] with a learning
rate β (Table 2). The gradients are transformed by the
function tensorflow.clip_by_global_norm [30] (with the
argument ‘clip_norm’ equal to 5), which prevents the
gradients of growing too large and causing instabilities
during training.

3 Results and discussion

3.1 Preliminary remarks

The results are shown along the quaternary system (A+ B
+ C+ D) and the process units described in the above
subsection about the environment. Two case studies are
done, which differ in the cost function and the number of
feed streams. The cost function and number of feed streams
were varied to obtain some variation in the results. The
parameters for the cost functions are given in Table 1. The
numerical tuning parameters of the algorithms are listed in
Table 2.
The composition of the feed streams in the example

problems are not fixed. Instead they are varied randomly to
check the agent’s performance over a wide range of feed
compositions. To evaluate the success of the training the
following procedure is used. One benchmark flowsheet is
defined. This could be for example an educated guess by a
human. Further, an evaluation set of 1000 problems is
created. These problems differ in the composition of the
feed stream(s) that are determined randomly. The trained
agent synthesizes flowsheets for all 1000 problems. The
flowsheets provided by the agent are compared to the
respective benchmark flowsheets using the net present
value. It is expected to design flowsheets that have the net
present value of the benchmark flowsheets or a better one
(the benchmark might not be the optimal flowsheet for all
possible feed compositions). The success rate of the agent
is defined using the following metrics.

R1 ¼
Ns

1000
, (14)

R2 ¼

X1000

j¼1

wj

bj
1000

, (15)
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R3 ¼

X
j2Λ

wj

bj
jΛj , (16)

R4 ¼

X
j2Γ

wj

bj
jΓ j , (17)

where Ns is the number of problems for which the agent
reached at least the net present value of the benchmark
flowsheet; R1 is the overall success rate; wj is the net
present value of the agent’s flowsheet and bj the net present
value of the benchmark flowsheet in problem j, respec-
tively. Thus, R2 is the average of the agent’s net present
value relative to the benchmark. Λ is the set of all
problems, where the agent performed at least as good as the
benchmark (jΛj is the number of elements in Λ). Γ is the set
of all other problems, i.e., where the agent performed
worse than the benchmark (jΓ j is the number of elements
in Γ ). Thus, R3 and R4 are similar to R2 but they measure
how well the agent succeeded or how bad it failed,
respectively.

3.2 Case 1

In case 1, there is one single feed stream and all
components have the same prices. For most feed
compositions, a reactor does not increase the value of
stream and a distillation sequence should provide the most
profitable process. During the training, random quaternary
and ternary feed mixtures out of the following feed types
were selected: [xA; xB; xC; xD], [0; xB; xC; xD], [xA; 0; xC;
xD], [xA; xB; 0; xD], [xA; xB; xC; 0]. The mole fractions of
the non-zero components were chosen randomly. The total
molar flow rate of the feed was always set to 1 kmol$h–1.
Figure 5 shows examples (as training is a stochastic
process) for the flowsheet that is proposed by the agent at
different stages during training.
For evaluation of the trained agent, the benchmark

flowsheet of three distillation columns as shown in the
right panel of Fig. 5 is defined. The training procedure was
repeated 5 times. Each time, the resulting agent surpassed
an overall success rate R1 = 0.98.

3.3 Case 2

In case 2, the cost function is changed so that A and B have
a negative price. C and D are high-value products. Thus, it
is worth to react A and B to C and D. Four different feed
situations are considered. Situation 1 considers two feed
streams of the types: [ _nA; _nB; 0; 0], [0; 0; _nC; _nD]; situation
2 considers two feed streams of the types: [ _nA; 0; _nC; 0], [0;
_nB; 0; _nD]; situation 3 considers one feed stream of the
type: [ _nA; 0; _nC; _nD]; situation 4 considers one feed stream
of the type: [0; _nB; _nC; _nD]. For every game during training,
one of the four situations is selected randomly. The given
molar flowrates _ni are sampled randomly out of ½0:2,1:2�
kmol$h–1. Figure 6 shows examples (as training is a
stochastic process) for the flowsheets that were proposed
by the trained agent, depending on the feed situation. The
panels (1), (2), (3) and (4) refer to feed situations 1, 2, 3
and 4, respectively.
The evolution of the agent during the training process

for situation 1 (feed streams: [ _nA; _nB; 0; 0], [0; 0; _nC; _nD])
is shown in Fig. 7. The rows correspond to different stages
of training. The right panel shows an example for the
flowsheet that was proposed by the agent at this stage. The
left panel shows a 3-dimensional (3D) plot of three
highlighted entries of the vector p (which depends on the
ANN’s output π) at the beginning of the flowsheet
synthesis, i.e., the ANN’s suggestions for the very first
action. The data is plotted over possible process feeds.
Since the space of process feeds is 4-dimensional, we
restrict us for the sake of illustration to a 2-dimensional
subspace in which _nA = _nB holds in the AB feed stream and
_nC = _nD holds in the CD feed stream. Action 1 is mixing
both feed streams. Action 2 is placing a distillation column
of type D3 at the CD feed stream. Action 3 refers to placing
a reactor R at the AB feed stream.

Fig. 5 Illustrative example for the evolution of the agent during the training process in case 1 (Flowsheets proposed by the agent to
separate an equimolar quaternary mixture are shown).
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At the beginning of the training, the actions of the agent
are random. The suggested probabilities of the three
highlighted actions are small as they are not significantly
larger than the probabilities of any other feasible action
(there are 10 feasible actions for the move). None of the
shown actions is selected by the agent. Through feedback
during training, the ANN favors (as first action) placing a
distillation column that splits C and D at the CD feed
stream (action 2) after 2000 training steps. After 6000
training steps, the agent has learnt to complete the reaction
part of the flowsheet before distillation is done. At the
shown training example, the agent prioritizes mixing
(action 1) before reaction. At the end of training, the agent
has learnt that bypassing the reactor with the products C
and D yielding a higher conversion. C and D are separated
only later together with the reactor outlet.
The agent’s performance is evaluated individually for

all four feed situations. The flowsheets that are shown in
Fig. 6 are defined as the respective benchmark flowsheets.
The training process was repeated 5 times. Table 3 shows
the average of the performance metrics.
In situation 1, the agent meets or beats the benchmark in

84% of the cases. In the successful cases, the possible gain
over the benchmark is not large (R3 = 1.12), indicating that
the benchmark is already quite good. Although the agent is
worse than the benchmark in 16% of the cases, its average
net present value is still slightly better than the bench-
mark’s (R2 > 1). In situation 2, the agent is almost always
as good as the benchmark. At the cases, in which it is
worse, it is only slightly worse. This indicates that there are

several flowsheets with very similar net present values.
Thus, the performance of the agent is still quite good. In
the situations 3 and 4, there is either A or B missing in the
process. Thus, there is no use for a reactor. The optimal
flowsheets are distillation sequences for separating the
ternary mixtures. The trained agent solves the problems in
these situations without any difficulty.

3.4 Discussion

The present work shows an RL-based approach to train an
agent to solve basic flowsheet synthesis problems without
the use of prior knowledge or heuristics. The agent consists
of an ANN and a tree search in which the planning process
is modelled within a two-player game. This setting allows
the usage of a modified version of the training algorithm of
Silver et al. [27,28]. The trained agent mostly succeeds at
the given problems, by combining discrete actions to
synthesize a flowsheet using systematic generation. To
assess the efficiency of the approach, the total number of
possible flowsheets for a fixed feed composition has to be
determined as follows for a matrix size of (Nmatrix = 10). To
the first stream, one could connect three distillation
columns, one reactor or a mixer to one of the streams 2
to 9 (not to stream 10, as this would result in a new stream
11, which exceeds the size of the flowsheet matrix).
Additionally it is possible to let the stream leave the
process, which results in 13 possibilities. For the second
stream one arrives at 12 possibilities (as mixing to stream 1
was already counted in beforehand). This calculation can

Fig. 6 Example for the flowsheets proposed by the trained agent after the training process (The panels (1), (2), (3) and (4) refer to feed
situations 1, 2, 3 and 4, respectively).

Table 3 Average performance metrics as defined in Eqs. (14)–(17) for 5 training processes in case 2a)

Metric Situation 1 Situation 2 Situation 3 Situation 4

R1 0.84 0.99 1 1

R2 1.08 1.13 1 1

R3 1.12 1.13 1 1

R4 0.88 0.99 – –

a) The metrics are evaluated individually for the feed situations 1–4. The corresponding benchmark flowsheets are shown in Fig. 6.
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Fig. 7 Example for the evolution of the agent during the training process for situation 1 (The 3D plots show the value of three highlighted
actions of the ANN’s output vector p over a subset of the feed space ( _nA = _nB, _nC = _nD) for the first action of the agent. Action 1 is mixing both
feed streams. Action 2 is placing a distillation column of type D3 at the CD feed stream. Action 3 refers to placing a reactor R at the AB feed
stream).
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be continued until stream 8 (6 possibilities). At stream 9
there is only the possibility of placing a reactor or letting
that stream leave the process (distillation columns are not
possible as the state matrix can only contain one more
stream). At stream 10 no unit can be placed, therefore this
stream leaves the process. This results into 2� 13!=5!
possibilities, which is slightly above 100 million different
flowsheets. This does not even count in that the feed
compositions are sampled from a continuous range and
therefore the state space for the agent is infinitely big (of
course an engineer knows that sometimes different feed
compositions can be approached by the same flowsheets,
but the agent certainly has to learn this first). The tree size
cannot exceed 2� K � Nmatrix (which is equal to 800 for
case 2). In the examples, the trees contained actually only
an average of around 200–300 flowsheets in every training
step, many of them visited several time from step to step. It
is estimated that the number of total distinct flowsheets
visited during the tree search is significantly smaller than 4
million. The ANN of the agent shows clear learning
behavior (Fig. 7). Thus, it can be concluded that the
winning flowsheets are not found by luck through massive
enumeration in the tree search.
The process units and possible processes that were

considered in the training are few in number and very basic
in their modelling. This is enough for a proof-of-concept of
the presented approach. However, the examples have
several limitations that have to overcome in future work:
First, a larger number of process units and chemical
compounds would require a larger flowsheet matrix. This
would blow up both the agents input and the action space.
The present work’s representation of state and actions is
mostly not scalable to very large problems. Alternative
formulations and techniques might have to be used or
developed. This may include feature extraction and
convolutions for large inputs or the use of hierarchical
agent decision structures like hierarchical neural networks
[22]. Second, only processes without recycles were
considered. Recycles are not a problem for the agent’s
structure or the RL method. They are just additional
discrete action possibilities. Contrary, recycles are rather
challenges for the simulation environment. Processes with
recycles remain hard to simulate in automated fashion,
although novel simulation methods let us be optimistic
[32,33]. Besides robustness, another challenge arises from
recycles. If one would formulate the process units as we
did in the present work (sharp splits in the distillation), then
flowsheets with recycles would become infeasible or at
least would make the simulation very stiff. Thus, the tasks
of the process units have to be defined in a more tolerant
way. Another increase of complexity is the introduction of
continuous parameters of the process units (e.g., pressures,
temperatures, other specifications). This would lead to a
hybrid discrete-continuous action space or at least to
parametrized action spaces with discrete actions on a top
level with subordinate continuous parameters. The algo-

rithm of the present work only operates in a discrete action
spaces and is not suited for these types of problems. There
is already research on mixed action spaces in RL models
[34–36], however it is not straightforward to integrate
these methods in our framework. Again, different agent
structures or different ANN structures might be advisable
for this type of problem.
The presented SynGameZero method that models the

RL problem as a two-player game improved the efficiency
of the RL significantly in the present work. It has two
advantages: on one hand, it eliminates the absolute value of
the environment’s native reward function (here: net present
value); on the other hand, it has strong exploration abilities.
Especially for player two who starts second, there is a
strong motivation to explore novel actions instead of losing
the game by just copying the actions of player one. This is
because player two has the systematic disadvantage to lose
the game if it is tied. During the training examples of the
present work, player two lost the majority of all games as
expected due to this disadvantage. However, it could be
often observed that player two wins more games during the
training phases is when new breakthrough actions are
learnt. This indicates that these actions were found first by
player two. Player one adopts these actions quickly by
observing player two and benefits therefore as well. These
beneficial features make the SynGameZero method
certainly attractive also for other planning processes
beyond chemical engineering.

4 Conclusions

A novel framework for automated synthesis of flowsheets
was presented. The framework enables using RL for
flowsheet synthesis. The physical knowledge of the
chemical system and the process units is provided via
process simulation. An agent without any prior knowledge
or heuristics is successfully trained using RL to synthesize
flowsheets by sequentially placing process units to an
initially empty flowsheet. The net present value of the
process is used as reward.
For the training of the agent, a novel RL method called

SynGameZero was developed to efficiently master RL
planning problems that have discrete action spaces and
many local optima and, thus require good exploration
schemes. The method models the RL problem as a turn-
based game in that two-player compete to synthesize the
best flowsheet. The method combines an ANN with
classical actor-critical structure with an adaptive tree
search for forward planning. Using relative instead of
absolute rewards and systematic disadvantages of one of
the players ensure good exploration abilities.
The framework and the SynGameZero method were

tested in example synthesis problems. Therein, process
simulations with four chemical compounds and simple
short-cut models for the process units (reactor, distillation
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column and mixers) were evaluated. The agent’s actions
comprise placing a process unit or terminating the
synthesis. The successfully trained agents of the examples
demonstrate that both the overall framework for process
synthesis by RL and the SynGameZero method work
satisfactorily.
The presented approach for automated flowsheet synth-

esis is promising. In future work, extensions to more
complex synthesis tasks should be studied. This includes,
on the one hand, extensions of the process problems (e.g.,
larger processes, more process units, continuous para-
meters, recycles, etc.); on the other hand, improvements
and extensions of the RL algorithm (e.g., hierarchical
decisions, hybrid or parameterized action spaces, feature
extraction) will be necessary to keep up with the process
problems.
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