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Abstract Modeling and optimization is crucial to smart
chemical process operations. However, a large number of
nonlinearities must be considered in a typical chemical
process according to complex unit operations, chemical
reactions and separations. This leads to a great challenge of
implementing mechanistic models into industrial-scale
problems due to the resulting computational complexity.
Thus, this paper presents an efficient hybrid framework of
integrating machine learning and particle swarm optimiza-
tion to overcome the aforementioned difficulties. An
industrial propane dehydrogenation process was carried
out to demonstrate the validity and efficiency of our
method. Firstly, a data set was generated based on process
mechanistic simulation validated by industrial data, which
provides sufficient and reasonable samples for model
training and testing. Secondly, four well-known machine
learning methods, namely, K-nearest neighbors, decision
tree, support vector machine, and artificial neural network,
were compared and used to obtain the prediction models of
the processes operation. All of these methods achieved
highly accurate model by adjusting model parameters on
the basis of high-coverage data and properly features.
Finally, optimal process operations were obtained by using
the particle swarm optimization approach.

Keywords smart chemical process operations, data gen-
eration, hybrid method, machine learning, particle swarm
optimization

1 Introduction

The chemical processing industry manufacturing products
by mixing, separating, forming, and chemical reactions, is
being promoted for its greatly important contribution to
economic development, providing high quality products to
many sectors, such as building, transportation, construc-
tion and health [1]. It is also the largest energy consumer
among industrial sectors with 1078 million tons of oil
equivalent of energy consumption in the year 2016 [2].
Unlike general artificial intelligence which builds compu-
terized systems possessing intelligence like humans,
industrial intelligence is more concerned with the applica-
tion of technologies to build a smart system that can adapt
to the changes in industrial environment. This requires
process optimization by adjusting key operating para-
meters to maximize/minimize one or more of the process
specifications (such as profit/cost and efficiency/consump-
tion), while keeping all others within their constraints. It
has been proved that optimal operations can influence the
economic and energy efficiencies of the whole process by
24% [3].
Many optimization strategies have been reported for

process operations, which can be mainly categorized as
mechanism-based methods and data-driven methods [4].
The mechanism-based methods reflect the real material
balance, equilibrium, summation, enthalpy balance, and
hydraulic performance in each detailed unit and through
the whole process. They are generally used for conceptual
design, and have been implemented in many commercial
simulators, such as Aspen Plus, Aspen Hysys, Pro-II, and
gPROMS [5]. Recent studies have focused on linking
external optimization algorithms to the above commercial
simulators. Ibrahim et al. used a genetic algorithm to
optimize a crude oil processing system, and defined the
operational variables of the process in Aspen Hysys [6].
However, the mechanism-based models usually suffer
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from the computational difficulty of solving complex
nonlinear problems caused by the first-principle calcula-
tions [7]. In order to reduce the complexity of full-rigorous
models, simplified models have been proposed. In some
commercial software, e.g., PIMS (Aspen Tech) and RPMS
(Honeywell), highly nonlinear models are simplified using
linear or bi-linear constraints, and solved with the
successive and sequential linear programming method
[8]. Although the simplified models have been widely
applied into industry, they may still cause a large deviation
because of assuming approximate or near linearity [9].
Compared to the mechanism-based models, data-driven

models presenting the relationship between input variables
and output variables as “black boxes” can reduce the
complexity. K-nearest neighbors (KNN), support vector
machine (SVM), decision tree (DT), and artificial neural
network (ANN) are the most commonly-used machine
learning algorithms for data-driven models [10]. KNN is
capable of addressing the issues arising from nonlinearity
and insufficient training data, and has been applied in
different areas such as pattern recognition [11], data
mining [12], and outlier detection [13], to improve process
operations [14]. SVM models combined with a genetic
algorithm optimizer had been used for controlling produc-
tion quality [15] and optimizing equipment structure [16],
especially for minimizing energy consumption up to 43%
in carbon fiber industry [17]. Both DT [18] and ANN
[19,20] can predict the output measures very well in
pyrolysis reaction networks, but DT is much faster to be
trained than ANN, as it is less complicated and can be
constructed by practitioners without deep understanding
required for training ANN [21]. However, ANN shows
prospective application in the correlations between
molecular structures and properties [22 – 24]. Recently,
Su et al. [25] developed innovative architecture of deep
neural network combining tree structured long short-term
memory network and back-propagation neural network to
provide an intelligent tool to predict properties in the
design or synthesis of chemical, pharmaceutical, biochem-
ical products and processes. Further, for solving the
optimization problems on chemical engineering effectively
and efficiently, Schweidtmann et al. [26] maximized the
net power generation in an organic Rankine cycles by
deterministic global process optimization based on ANNs,
and Chandrasekaran and Tamang [27] employed ANN and
particle swarm optimization (PSO) technique to minimize
the machining time in turning of Al-SiCp metal matrix
composites. Besides, random forest and genetic algorithm
were integrated to optimize the operating conditions of
chocolate chip cookie production [28].
As discussed above, existing works mostly focus on

developing one kind of machine learning method while
rarely consider the four machine learning algorithms in the
same chemical process to compare and analyze their
performances. It is also difficult to obtain enough datasets
for model training, as a practical chemical process is

usually operated continuously and steadily in a small
region. Thus, this paper presents an efficient dataset
generation strategy based on industrial data validation and
commercial software simulation at first. A hybrid frame-
work integrating machine learning algorithms and PSO is
then proposed to achieve smart process operations. In this
hybrid framework, the models of chemical processes are
trained by using four well-known machine learning
algorithms, namely KNN, DT, SVM, and ANN, and the
most efficient model can be selected and combined with
PSO for further process optimization.

2 Experimental

2.1 Data generation of chemical process operation

Machine learning comprises models that learn from
existing data. These data require preprocessing to identify
missing and spurious elements. Since a chemical process
must run in a steady state, the data collected from industry
are only in a limited operation region, which will affect the
model prediction. Many specialized simulation software
tools (such as Aspen Plus and Hysys) have been utilized
for adjusting chemical process operations [29]. This can
avoid the risk of operating the real processes in an
unexpected region. In this paper, an industrial propane
dehydrogenation (PDH) process is carried out as the case
study, where Aspen Plus simulation process is built and
validated by the industrial data, and the simulation model
then can be used to generate the entire data set for model
training and testing.

2.1.1 Aspen Plus simulation of PDH process

A PDH process is simulated by using Aspen Plus
according to the Oleflex process developed by UOP
company [30]. Figure 1 describes the detailed flowsheet of
the PDH process developed in Aspen Plus simulation
environment. The process feed is pre-processed to make
the propane volume fraction to meet the feed requirements
for the reaction in Unit 1 at first and then reacts with H2 in a
moving bed reactor with four parallel stages and radial
flow in Unit 2. The reaction product enters the rapid
cooling, high pressure dehydration, and cryogenic dehy-
drogenation in Unit 3. In the refining section (Unit 4), light
ends (C1 and C2) are removed from a deethanizer column,
and the propylene and propane are then separated via a
propylene rectification column (RC). Propylene can be
sold as a final product, while propane enters the reactor as a
cyclic feed. The Flowrate of propane and propylene in the
four moving bed reactors are shown in Table 1.
Actually, it is difficult to compare simulation results with

industrial data directly due to the commercial confidenti-
ality. In this study, we compare our reaction process (Unit
2) with the model which performed identically to plant data
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in recent literature [31]. The details of our simulation
process and comparison are shown in Table 2. Both of
them are highly consistent with each other based on the
same reaction kinetics [32,33], reactors (adiabatic moving
bed reactors) and heating method (inter-stage reheating in
fired furnaces), which means that our simulation can be
used to reflex the real solutions. The propane conversion
(C), propylene selectivity (S), propylene yield (Y) are
defined, respectively, as:

C ¼ FC3H8,in –FC3H8,out

FC3H8,in
, (1)

S ¼ FC3H6,in –FC3H6,out

FC3H8,in –FC3H8,out
, (2)

Y ¼ C � S, (3)

where FC3H8,in and FC3H6,in are the input molar flow rates of
C3H8 and C3H6, respectively, and FC3H8,out and FC3H6,out are
the output molar flow rates of C3H8 and C3H6, respec-
tively.

2.1.2 Data generation for model training and testing

The PDH process is composed of pumps, heat exchangers,
moving bed reactors, compressors and rectifying columns.
For data-driven modeling, the total annual profit (y1) and
the propylene yield (y2) are set as the outputs, and the

sensitivity analyses are conducted in Aspen Plus to find out
the key parameters affecting the outputs. Firstly, ten
candidate parameters are considered, such as the flowrate
of propane feed, the flow ratio of hydrogen-to-propane, the
pressure of propylene rectifier, the temperature and
pressure of reactor, reflux rate, condenser temperature,
condenser pressure, refining temperature, and refining
pressure. By comparing the changing magnitude of outputs
with the change of operating parameters, the flowrate of
feed (x1), the flow ratio of hydrogen-to-propane (x2), the
pressure of propylene rectifier (x3), and the temperature
and pressure of reactor (x4 and x5) are identified as the key
parameters. Data for model training and testing are further
obtained by varying the five input parameters on Aspen
Plus simulation. The operating ranges of the five
parameters are determined according to the practical
operating region, and thus 8750 groups of data are
generated for model training with sampling average
method as shown in Table 3. For the known operating
region, average interpolation method is employed, i.e.,

Fig. 1 Flowsheet of the PDH process built in Aspen Plus.

Table 1 The flowrate of propane and propylene in moving bed reactors

Feed stream
Reactor 1 Reactor 2 Reactor 3 Reactor 4

Inlet Outlet Inlet Outlet Inlet Outlet Inlet Outlet

C3H8/(kg$h
–1) 84461.9 74492.6 74492.6 67199.7 67199.7 61336.7 61336.7 56342.1

C3H6/(kg$h
–1) 891.1 10166.3 10166.3 16746.8 16746.8 21905.0 21905.0 26296.5

Table 2 The results of previous model [31] and Aspen Plus simulation
in reaction process

Index
Previous
model

Aspen Plus
simulation

Relative error/%

C/% 33.2 33.29 0.271

S/% 94.8 94.68 – 0.127

Y/% 31.5 31.52 0.0635

276 Front. Chem. Sci. Eng. 2022, 16(2): 274–287



1024 groups of data within the training set are selected for
testing, where four points are sampled for each input
parameter (45 = 1024). Besides, random generation also
can be used to obtain the training and testing data, if these
data cover the most of the process operating region. Figure
2 presents the sampling features for both model training

and testing, which has covered most of the process
operating region uniformly and densely to avoid over-
fitting.
In order to consider more practical scenarios, some

uncertain disturbances are also added in the Aspen Plus
simulation, i.e., some parameters not selected as model

Table 3 Operating ranges and sampling points of inputs for data-driven modeling

Input Operating range Sampling points for training Sampling points for testing

x1/(kmol$h–1) 560 – 840
560, 580, 600, 620, 630, 640, 660, 680, 700,
720, 740, 760, 770, 780, 800, 820, 840

595, 665, 735, 805

x2 1.6 – 40 1.6, 1.8, 2, 2.2, 2.4 1.7, 1.9, 2.1, 2.3

x3/bar 6.5 – 10 6.5, 7, 8, 9, 10 6.5, 7.5, 8.5, 9.5

x4/°C 570 – 610 570, 580, 590, 600, 610 575, 585, 595, 605

x5/bar 1.8 – 2 1.8, 1.85, 1.9, 1.95, 2 1.83, 1.88, 1.93, 1.98

Fig. 2 Sampling for model training and testing of the two outputs in the PDH process: total annual profit (y1) and propylene yield (y2).
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inputs are changed in a small range randomly. In the
deethanizer column and the propylene rectification col-
umn, the temperature varying within �2 °C of error and
the pressure varying within �1% of relative error
randomly can represent the minor errors caused by the
temperature and pressure sensors in practical process.
Therefore, the process outputs might vary in an acceptable
range even the same process inputs are set in the procedure
of collecting training data.

2.2 Hybrid method for modeling and optimization of
chemical processes

In our proposed hybrid method, four machine learning
algorithms, KNN, support vector regression (SVR), DT,
and ANN, are used for training the data-driven models
based on the data provided in Section 2.1. Once the best
model is identified, PSO can be applied to find the optimal
operational solution of the process.

2.2.1 KNN method for modeling

KNN is a non-parametric method used for classification
and regression [34]. KNN regression is presented to predict
process performance in this study. It can estimate the
property value of the object by using the average of the
values of k nearest neighbors. The procedure of KNN can
be described as the following five steps.
Step 1: initialize k to a positive integer value.
Step 2: select the type of distance, and calculate the

distance based on the training data and testing data. There
are several kinds of calculation, where the distances
between testing data (xi

text)and training data (xi
train) are

determined based on the dimensionality of their feature
space (m).
Euclidean distance:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
ðxtesti – xtraini Þ2

q
: (4)

Manhattan distance:

d ¼
Xm

i¼1
jxtesti – xtraini j: (5)

Chebyshev distance:

d ¼ max
i
ðjxtesti – xtraini jÞ: (6)

Step 3: predict the values of testing data. The k nearest
neighbors can be used to predict the output values (ypre):

ypre ¼
Xk

i¼1
l
i
ytraini : (7)

There are two strategies of calculating. One is the
average of the k nearest neighbors:

li ¼ 1=k: (8)

The other is inversely proportional to the distance
between testing data and train data (di):

li ¼
e – di=βXk

i¼1
ðe – di=βÞ

, (9)

whereβ¼ 1 orβ¼ 2 orβ¼ 50 orβ¼
Xk

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxtexti – xtraini Þ2

q
=ð2kÞ.
Step 4: examine the accuracy of the model. R2 indicates

the accuracy of the prediction:

R2 ¼ 1 –
SSres
SStot

, (10)

SSres ¼
X

i
ðyprei – ytestÞ2, (11)

SStot ¼
X

i
ðyprei – ypreÞ2: (12)

Step 5: if the model accuracy is acceptable, stop the
procedure; otherwise, update the value of k, and execute
Steps 2 to 5 iteratively.

2.2.2 SVR method for modeling

SVR is developed from SVM [35]. SVM is a supervised
learning theory originally used for solving classification
problem, and later generalized to solve regression
problems (called SVR). SVR is used to fit a hyperplane
(y = f (x)) through the input data (x), where f (x,ω) =
ω∙Φ(x) + b, ω is the weight vector, b is a parameter, and
Φ(x) is the function of x for mapping the data into high-
dimensional feature space. The goal of SVR is to
minimize:

1

2
kωk2 þ c

Xm

i¼1
ð�_i þ �^i Þ, (13)

subjected to:

– ε – �_i £yi –ΦðxiÞ – b£εþ �^i , (14)

�_i ,�
^
i ³0, (15)

where ε is a parameter representing the radius of
insensitive zone around the hyperspace, �_i and �^i are
the slack variables which describe the difference between
the outside point and insensitive zone, and c determines the
trade-off between the training error and model flatness.
The above convex optimization problems (Eqs. (13–15))

can be transformed into a dual problem by introducing
Lagrange multipliers, and shown as:

min
1

2

Xm

i¼1,j¼1
ðα^i – α_i Þðα^j – α_j ÞKij

þ
Xm

i¼1
½ðε – yiÞα^i þ ðεþ yiÞα_i �, (16)
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subjected to: Xm

i¼1
ðα^i þ α_i Þ ¼ 0, (17)

0£α_i , α
^
i £Cm, (18)

where Kij ¼ ΦðxiÞ⋅ΦðxjÞ is kernel function and α are the
Lagrange multipliers.
There are three types of kernel function in this study.
Linear function:

Kij ¼ xi⋅xj: (19)

Polynomial function:

Kij ¼ ðgxi⋅xj þ rÞd , (20)

where g, r, d are kernel parameters.
Radial basis function:

Kij ¼ exp –
1

2�2kxi – xjk2
�

¼ exp –gkxi – xjk2
� �

,

�
(21)

where σ is the width of Gaussian kernel and g is kernel
function parameter (a positive value).
The dual problem can be solved by using sequential

minimal optimization, and thus the values of α^i and α
_
i are

obtained. Then the weight vector ω can be calculated by:

ω ¼
Xm

i¼1
ðα^i – α_i Þ⋅ΦðxiÞ, (22)

while the support vectors (xs, ys) are calculated as:

α^s – α
_
s ≠0, (23)

bs ¼ ys – ðα^s – α_s Þ⋅Kðx,xsÞ – εð0 < α^s < cÞ, (24)

bs ¼ ys – ðα^s – α_s Þ⋅Kðx,xsÞ þ εð0 < α_s < cÞ: (25)

Finally, the parameter b is computed as:

b ¼
X

bs
s

: (26)

2.2.3 DT method for modeling

DT has been widely used in fault detection and classifica-
tion, but less in solving process operating problems. In this
study, classification and regression trees (CRT) is applied
to model training [36]. The core of CRT is the linear
regression for the parent node and child nodes in the tree:

ŷ ¼ X⋅K, (27)

K ¼ ½XT⋅X� – 1ðXT⋅YÞ, (28)

X ¼
x11 x1i

M ⋱ M
xj1 ⋯ xji

0
B@

1
CA, (29)

Y ¼
y11 ⋯ y1i

M ⋱ M
yj1 ⋯ yji

0
B@

1
CA, (30)

where X is the matrix of model inputs, Y is matrix of
model outputs, K is the regression matrix, and ŷ is the
prediction matrix. Once the predicted ŷ is obtained, the
total variance (V) can be given:

V ¼
XJ

j¼1

XK

k¼1
ŷjk – yjk
� �2

: (31)

The above regression will be used in the CRT procedure
as follows. Step 1: set a value for parameter N. This N
restricts the minimum number of training instances in a
single node. Step 2: set the whole training data set as the
parent node (P), and calculate its prediction (ŷ) and total
variance (Vp). Step 3: split the data from the parent node
(P) into two parts, namely left child node (L) and right
child node (R). The left child node and right child node are
separated based on a splitting value of xiðsxjiÞ. xi and its
splitting value are selected arbitrarily at first. The data set
with xji£sxji is assigned to the left child node (L), while
the rest data set is assigned to the right child node (R). It
must be restricted that the amounts of data in L and R must
be equal to or larger than the minimum number N set in
Step 1. Thus, the variances of L and R related to sxji
splitting (VL,sxji and VR,sxji) can be obtained according to
Eqs. (24–28). The total variance related to sxji splitting
(Vsxji ) is the sum of its left variance (VL,sxji ) and right
variance (VR,sxji ). Step 4: find all possible xi and its value
(sxji) for splitting, and calculate their relevant variances
(Vsxji ). The dxi and its splitting value (dxji) with the
minimum variance (Vdxji) compared with all possible
variances is selected as the best division of the parent
node. Step 5: if the minimum variance (Vdxji ) found in Step
4 is less than the variance of parent node (Vp), L and R will
be set as two new parent nodes, and the splitting strategies
proposed in Step 3 to Step 4 are executed to split the new
parent nodes iteratively. The whole procedure will be
terminated, if no better variance can be found in any child
nodes.
Figure 3 illustrates a CRT structure with two parent

nodes and three child nodes, where ŷ ¼ f ðXÞ can be
formulates as a piecewise linear function.

2.2.4 ANN method for modeling

Typical ANN consists of three layers, the input layer (l1),
hidden layer (l2), and output layer (l3) [37]. Each layer is a
vector. The dimension of the vector is also called the
number of nodes in the layer. The input layer receives the
input data from training dataset. The adjacent layers are
connected via weight matrices (Wi), bias vectors (bi), and
an activation function g:
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liþ1 ¼ gðWi⋅li þ biÞ, i ¼ 1,2: (32)

Four types of activation function (ReLU, Softplus,
Sigmoid, and Tanh) are addressed.

ReLUðxÞ ¼ maxðx,0Þ: (33)

ReLU is a piecewise linear function, and works only if x
is greater than or equal to 0. When x is less than 0, the node
will not be updated during the whole training process.

SoftplusðxÞ ¼ lnð1 þ exÞ: (34)

Softplus can be regarded as a smoothing ReLU. It
overcomes the disadvantage of ReLU but takes more
calculations.

Sigmoid xð Þ ¼ 1

1þ e – x
: (35)

Sigmoid is a non-linear function that converts the range
of x from ð –1,þ1Þ to (0, 1). However, when jxj is too
large (such as jxj↕ ↓þ1), Sigmoid0ðxÞ↕ ↓0 , which may
slow down the training process of the model.

Tanh xð Þ ¼ ex – e – x

ex þ e – x
: (36)

Tanh is a non-linear function that maps the range of x
from ð –1,þ1Þ to ( – 1, 1). It may also slow down the
training process of the model when jxj is too large like
sigmoid.
Then, a loss function is set to measure the loss between

the output layer and the validation data. In this work, the
loss function is expressed with the mean square error (MSE
in 37), or the sum of MSE (37) and L2-regulation function
(38), where k is the regularization rate, and ωi is the
weights of the neural network. The aim of L2-regulation
function is to prevent overfitting while minimizing the loss
of prediction.

MSE ¼
Xn

i¼1

yi – ŷið Þ2
n

: (37)

L2 ¼
1

2
⋅k
X

i
ω2
i : (38)

f ¼ MAE þ L2: (39)

Five optimization algorithms, namely, gradient descent,
momentum, adaptive gradient (AdaGrad), root mean square
prop (RMSProp), and adaptive moment estimation (Adam),
can be used to minimize the loss. Gradient descent works
by taking the gradient of the weight space to find the path of
steepest descent. Momentum improves gradient descent. It
can accumulate velocity in the direction where the gradient
is pointing towards the same direction across iterations, and
thus avoid getting stuck in a local minimum. AdaGrad is a
modified stochastic gradient descent with per-parameter
learning rate. It increases the learning rate for sparser
parameters and decreases the learning rate for fewer sparse
ones. RMSProp is also a method of addressing learning
rate. It describes the learning rate for a weight by a running
average of the magnitudes of recent gradients. Adam is the
combination of momentum and RMSProp.
The aforementioned activation functions and optimiza-

tion algorithms for minimizing the loss are utilized in the
ANN training procedure as follows. Step 1: set the nodes in
the hidden layer, and generate the initial weights (ωi) and
bias (bi) of the neural network randomly. Step 2: calculate
output value based on Eqs. (32) to (35), and then evaluate
the loss between the output value and the real value through
the loss function Eqs. (37–39). Step 3: update the weights
(ωi) and bias (bi) of the neural network by using one of the
optimization algorithms to minimize the loss. Step 4:
execute Step 2 and Step 3 iteratively, until the maximum
number of iteration is reached or the loss is acceptable.

2.2.5 PSO for process optimization

Once the most efficient model of the chemical process is
selected by comparing the four machine learning algo-
rithms, the process operation can be optimized with PSO
algorithm, a global random search algorithm with simple
structure and easy programming [38] based on swarm
intelligence [39].
In PSO algorithm, each particle i can be described with

an N-dimensional position vector ðxi ¼ ðx1i ,x2i ,:::,xNi ÞÞ and
velocity vector ðvi ¼ ðv1i ,v2i ,:::,vNi Þ, vi 2 ð – vmax,vmaxÞÞ.
The particles will search the xi for optimal objective
value in each individual particle, and then determine the
values of xi for the global optimal objective value among
all particles.
In the entire algorithm procedure, PSO requires a series

of searching iterations. The position and velocity vector of
each particle is randomly selected in the first iteration. In
the rest iterations, particle swarm will update the position
vector (xi) and velocity vector (vi) according to the inertia,
individual optimal value (pi) and global optimal value (pg)
as follow:

vkþ1
i ¼ ωvki þ c1r1ðpi – xki Þ þ c2r2ðpg – xki Þ, (40)

Fig. 3 Illustration of a CRT structure with two parent nodes and
three child nodes.
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xkþ1
i ¼ xki þ vkþ1

i , (41)

where xi
k and vi

k denote the position and the instantaneous
velocity of particle i in iteration k, ω is the inertia
coefficient, c1 and c2 are the acceleration factor, and r1 and
r2 are the random number ranging from 0 to 1.
Thus, the model objective value found by particle r in

iteration k(obji
k) is calculated based on its updated position

vector (xi
k). If obji

k is better than the previous optimal value
(obji

k – 1), xi
k is set to pi; otherwise, pi is retained.

Consequently, we can compare the obji
k of all particles,

and select the best obji
k as the global optimal value. If this

global optimal value is better than the pg found in the
previous iteration, pg can be replaced with xi

k; otherwise,
pg is retained. The procedure will stop when the maximum
iteration number is reached.

3 Results and discussion

The datasets generated in Section 2.1 are used to train the
data-driven models of process operations. Firstly, the
training models are presented individually given by KNN,
SVR, DT, and ANN. And then the most efficient model is
selected to be combined with PSO for searching the
optimal operations of PDH process.

3.1 Data-driven models of the PDH process

As mentioned in Section 2.1, 8750 groups and 1024 groups
of datasets for model training and testing are generated by
changing the values of the five key inputs (Table 3), which
covers all possible operating region of the PDH process
related to total profit (y1) and propylene yield (y2) (Fig. 2).
The following results present the performances of the four
machine leaning algorithms for the process modeling.

3.1.1 KNN for process modeling

It is noted that three options can be adjusted to improve the
KNN model, i.e., the value of k nearest neighbors, the type
of distance calculation (Euclidean distance, Manhattan
distance, and Chebyshev distance), and the calculations of
li for prediction (8) and (9), as shown in Section 2.2.1.
Figure 4 presents the R2 of test data with different
combinations of k, distance calculations, and predictive
equations, where R2 increases significantly with k and
reaches the maximum in a certain k value; but after this k
value, R2 is slightly inverse to k increment. When k is very
small, the model is very sensitive to the nearest neighbors.
But when k becomes too large, the distinct data with great
differences are classified into the same category, which
leads to the error in model prediction.

Fig. 4 R2 of test data with different combinations of k, distance calculations, and predictive equations based on (a) average KNN and (b)
distanced-weighted KNN.
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Table 4 lists the best KNN models under different
combinations of k, distance calculations, and predictive
equations, where the combination of Chebyshev distance
and distance-weighted KNN can get the best results of y1
with (k = 76) and y2 with (k = 77).

3.1.2 SVR for process modeling

As stated in Section 2.2.2, parameter c determines the
trade-off between the training error and flatness of the SVR
model, and the kernel functions are the core of pattern
analysis for finding and studying general types of relations.
Thus, the three kernel functions (linear function, poly-
nomial function, and radial basis function) and various
values of c are taken into account for SVR model training.
Figure 5 describes the R2 of test data under different
combinations of kernel functions and parameter c. It can be
found in Fig. 5 that the radial basis function performs the
best when c increases to a certain value; the linear function
is less affected by c but gives low R2 while the polynomial
function performs similarly to the radial basis function for
predicting y2, but will suffer from overfitting problem for
predicting y1 when c increases to 100.
Table 5 presents the best R2 of SVR models under the

specific c and kernel functions, and indicates that the SVR
model with radial basis function can predict the most
accurate y1 and y2 in the conditions of c = 5 and c = 90,
respectively.

3.1.3 DT for process modeling

In the DT algorithm (Section 2.2.3), the minimum number
of training instances in a single node (N) is the key control
parameter to determine the DT model. If N is too small, a
singular matrix will occur, which may cause infeasible
calculation to obtain the regression matrix (K). However, a
higher number of N will result in a smaller number of child
nodes, and leads to inaccurate prediction. As shown in
Fig. 6, when N ranges from 2501 to 3875, the DT models
perform very well for predicting y1 (R

2 = 0.99482) and y2
(R2 = 0.99239) while the predictions of y1 and y2 have a
sharp decline (R2 = 0.08526 and 0.04145) when N
increases over 3876 and no DT model is found when N
is lower than 2500 due to the singular matrix. Thus, the DT
models generated in the condition of 2500<N< 3876
were used for the process prediction in this study.

3.1.4 ANN for process modeling

Four activation functions and five optimization algorithms
have been introduced for ANN training in Section 2.2.4.
Thus, the combination of different activation functions and
optimization algorithms are compared. Figure 7 shows the
above combinations with the best operating parameters
under the ANN structure of 10 nodes in the hidden layer
(l2). It is observed that all combinations can achieve high
accuracy when the training sets are sufficient. The

Table 4 The best KNN models under different combinations of k, distance calculations, and predictive equations

Output

Average KNN Distance-weighted KNN

Chebyshev distance Euclidean distance Manhattan distance Chebyshev distance Euclidean distance Manhattan distance

k R2 k R2 k R2 k R2 k R2 k R2

y1
/(M$$year–1)

76 0.99899 217 0.99841 232 0.99870 76 0.99900 217 0.99844 234 0.99872

y2/% 77 0.99890 217 0.99827 232 0.99858 77 0.99891 217 0.99830 234 0.99860

Fig. 5 R2 of test data under different combinations of kernel functions and parameters c in SVR models.
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activation functions ReLU and Tanh, and the optimization
algorithms Adam and RMSProp perform much better than
the others. Some methods have fluctuation in the beginning
steps showing their procedure of jumping out of a local
optimum to find the global optimization. Table 6 lists the
best ANN models under the different combinations of
nodes in l2, activation functions, and optimization algo-
rithms, where the combination of Softplus and RMSProp
can get the best results of prediction for y1 and y2.

3.2 Optimization of the PDH process operations

For better optimization ability, the impact of key operating

Table 5 The best SVR models under different combinations of Kernel functions and parameter c

Output
Linear function (linear) Polynomial function (poly) Radial basis function (rbf)

c R2 c R2 c R2

y1/(M$$year–1) 0.0002 0.84363 3 0.81170 5 0.99050

y2/% 0.07 0.24939 0.04 0.97768 90 0.99910

Fig. 6 R2 of test data under different parameter N in DT models.

Fig. 7 R2 of test data with different optimization algorithms based on different activation functions: (a) ReLU, (b) softplus, (c) sigmoid,
and (d) Tanh.
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parameters (stated in (40)) on controlling PSO procedure is
also considered, including the acceleration factors c1 and
c2, and the inertia coefficient ω (Fig. 8). It can be found
that, c1 does not influence the global optimization. A larger
value of c1 will enhance the individual local optimization
ability of the particles, which is not observed in Fig. 8,
while c2 improves the global optimization ability of the
particle swarm, thereby increasing the probability of
finding the global optimal value as described in Fig. 8. A
medium range (such as 0.45 – 3.0) of inertia coefficient ω
is required. In this range of ω, most values of acceleration
factors c1 and c1 can find the global optimization
efficiently. To balance computational cost and optimization
ability, proper parameters were selected for further
improvements.
Since the training data generated from the PDH Process

have covered most of the process operating region (Fig. 2),
all the four machine learning methods can achieve very
high accuracy in the prediction with suitable algorithm
parameters. However, regarding process optimization,
PSO algorithm (described in Section 2.2.5) need to
evaluate the process objective values (y1 or y2) based on
the data-driven model by updating the position vector (xi

k)
in each iteration k and particle i. It is noted that KNN must
compute the distance and sort all the training data at each
prediction, which is very slow as there are a large number
of training data (8750) in our case. Thus, due to the huge
computational resources required by KNN, it is not
recommended to use KNN for evaluating the process
objective values in the PSO procedure. As demonstrated in
the former section, SVR, DT, and ANN can learn
knowledge from the training data, and give simple and

accurate models for process operations. After obtaining
data-driven models, the models with the biggest R2 are
selected for optimizing. Therefore, DT model (R2 =
0.99482) is used to predict y1, and SVM model (R2 =
0.99910) is used to predict y2.
In the PSO procedure, the particle group can reach a

steady state around 5 – 10 iterations, showing a fast
convergence. Table 7 presents the solutions of maximiza-
tion of total profit (y1) and propylene yield (y2) obtained by
PSO. These optimal solutions are identical to the Aspen
Plus results under the same input parameters. Thus, the
efficiency of our hybrid method is validated. It seems that
enumeration is more straightforward than the data-driven
models for optimization as there are four variables (x1, x2,
x4 and x5) which reach the boundary of training set in this
study. However, the proposed optimization method is
capable of solving general nonlinear problems. Specially,
if the product yield (y2) is restricted in a certain range,
using the data-driven models is more effective than
enumeration for maximizing total annual profit (y1), as
there is a trade-off between y1 and y2. Improving operating
conditions for high yield may increase annual profit but it
may increase the cost of operating, resulting in low profit.
For example, increasing the temperature within a certain
range can promote the endothermic reaction but requires a
lot of heat, so there is an optimal temperature that brings
about maximum profit but not the maximum yield.

4 Conclusions

Machine learning algorithms may not perform well if the

Table 6 The best ANN models under different combinations of nodes in L2 (N), activation functions, and optimization algorithms

Output
ReLU Tanh Softplus Sigmoid

N R2 N R2 N R2 N R2

Root mean square prop (RMSProp)

y1/(M$$year–1) 12 0.9934 8 0.9938 10 0.9940 8 0.9841

y2/% 12 0.9894 12 0.9897 12 0.9902 8 0.9901

Adaptive moment estimation (Adam)

y1/(M$$year–1) 12 0.9934 6 0.9936 6 0.9937 10 0.9847

y2/% 12 0.9891 12 0.9901 12 0.9901 10 0.9897

Adaptive gradient (AdaGrad)

y1/(M$$year–1) 10 0.9850 12 0.9817 8 0.9855 6 0.9805

y2/% 12 0.9897 6 0.9910 10 0.9723 8 0.9701

Momentum

y1/(M$$year–1) 6 0.9922 8 0.9833 12 0.9850 12 0.9817

y2/% 12 0.9903 10 0.9757 8 0.9702 10 0.9696

Gradient descent

y1/(M$$year–1) 8 0.9900 12 0.9827 12 0.9848 12 0.9820

y2/% 6 0.9899 12 0.9806 8 0.9713 12 0.9697
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training data are insufficient. There is a growing concern
about the lack of variety from industrial data, as the process
must run in a relatively steady state. This study presents an
industry-based and mechanistic simulation strategy to
generate sufficient data for model training and testing. The
generated data sets can cover all possible process operating
region. Based on the proposed data generation strategy,
four machine learning algorithms, KNN, SVM, DT, and
ANN all obtained highly accurate models for the process
operations. Moreover, the most efficient models are
selected to be combined with PSO to find the optimal
process operations under maximum profit or product yield.
The proposed data collection strategy and the hybrid

framework integrating machine learning with PSO are
generalized to a broader class of chemical processes.
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