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Abstract Simulation is besides experimentation the
major method for designing, analyzing and optimizing
chemical processes. The ability of simulations to reflect
real process behavior strongly depends on model quality.
Validation and adaption of process models are usually
based on available plant data. Using such a model in
various simulation and optimization studies can support
the process designer in his task. Beneath steady state
models there is also a growing demand for dynamic
models either to adapt faster to changing conditions or to
reflect batch operation. In this contribution challenges of
extending an existing decision support framework for
steady state models to dynamic models will be discussed
and the resulting opportunities will be demonstrated for
distillation and reactor examples.

Keywords decision support, multicriteria optimization,
model validation, dynamic model, sensitivity analysis

1 Introduction

Growing population and diverse regional availability of
feed stocks require development of new sustainable
processes and products [1]. These developments are
based on experimental investigations in lab or mini-plants
as well as on simulation and optimizations using a process
model. The use of a process model is to answer questions
about the real process by simulation and optimization [2]
thereby reducing the effort for experimental investigations.
Usually, process designers like to compare process
simulations based on different what-if scenarios [3]. One
example is the evaluation of the impact of uncertainties

with sensitivity analysis (SA) where a nominal scenario is
compared with uncertainty scenarios [4]. Another example
is the investigation of trade-offs of different objectives,
e.g., sustainability criteria, in multi-criteria optimization
(MCO) problems [5]. Pre-requisite for reliable results in
these studies is a validated model. For model validation or
in case of larger discrepancies model adjustment plant data
are required [1]. Measurement tags and operating data are
usually available in plant information management
systems like for example ASPEN IP21 or OSI PI. In
cases of missing rigorous models for specific process steps,
plant data can be used to setup data-driven models. These
models can then be used together with rigorous models in
so-called hybrid or gray box modeling [6–8]. Model
selection and parameter estimation in model adjustment
can be supported by model-based design of experiments
(DoE) [9]. At the end of the modeling based on plant data a
reliable and validated model should be available, which
could be used for the investigation of different what-if
scenarios. To easily explore the design and decision space
tools for a sound decision making are required [1]. A
scheme of a decision support framework which supports
this workflow is shown in Fig. 1. Similar schemes have
been discussed before [3,5] and tools supporting this
workflow have been successively implemented within
BASF’s steady state simulator CHEMASIM as can be seen
in various publications [4,6,10–18]. In this contribution we
discuss the extensions and modifications which were
necessary to adopt these workflow tools for a use within
the dynamic counterpart of CHEMASIM which is called
CHEMADIS.
Process models for chemical production in general

require the use of multi-scale models as we have models
for the unit operations like reactors or distillation columns
which mainly define mass and energy balances [2].
Additionally, models describing the physical properties
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of the treated chemicals and their mixtures or their reaction
behavior like equilibrium or kinetics are used. The physical
property and reaction models are usually based on
interaction properties of molecules. In the past, they
often have been parameterized based on dedicated
experiments. This is of course still the recommended
way to proceed since it avoids the influence of model
mismatch on parameter values. However, there is an
increasing demand to have also access to these model
parameters within the process simulator [19]. There are
several reasons for this development: on one hand, for
some components molecular models or lab data are not
available and a dedicated investigation with required
accuracy is too expensive (time, costs), not feasible since
substances are not possible to isolate or analytics are
sometimes extremely challenging; another reason might be
that the experimental setup is complicated and could only
be described using a process model with the need to
parametrize the physical property or reaction model within
the simulation environment; on the other hand, sometimes
the question arises how properties of an optimal molecule
must look like to improve overall process performance
which is known as continuous molecular targeting [20].
Especially the availability of process data of plants or first
batch experiments also triggered the idea to use existing
data to parametrize models [17,21].
In the present contribution we describe the necessary

extensions to enable the previously developed workflow
tools for a use of model validation and adjustment (MVA)
based on plant data, SA and MCO for dynamic process
simulation models. We will give an example of a combined
model adjustment of thermodynamic parameters and
process variables to measurements of a batch distillation.
Then we will demonstrate our decision support for the
MCO results of the semi-batch Williams-Otto reactor.
Finally, for a bioreactor for lysine production example, we
will show how uncertainties might be investigated by SA
for simulation results and results of a MCO.

2 Extensions for dynamic process
simulation models

The workflow for an iterative use of steady-state process
simulation and optimization to support decision making in
process development is sketched in Fig. 1. The developed
workflow tools for BASF’s inhouse simulator CHEMA-
SIM support the use of plant data for model selection,
validation and adjustment and the application of the model
within simulation and optimization studies to investigate
for example what-if scenarios, trade-offs of competing
objectives or to optimize the DoE.
There is a dynamic counterpart called CHEMADIS for

batch or dynamic processes sharing a huge repository of
common code with CHEMASIM. For a brief outline of the
differences and the solution method refer to Appendix A
(cf. Electronic Supplementary Material, ESM). For this
reason, it was an obvious next step to transfer the existing
tools and methods from the steady state to the dynamic
flowsheet simulator. Although, looking from a software
engineering point of view obvious, the dynamic nature of
the problems to be addressed increases significantly the
complexity. Reading plant data for model validation for
example includes measurements at different time points as
well as integral or final values and the corresponding
simulation properties need to be extracted from simulation.
Another example in the context of DoE but also for
optimization is the determination of derivatives. Typical
event-driven recipes or scheduling increase complexity in
the calculation of derivatives since they trigger jumps [22].
Since the number of optimization variables in optimal
control can become huge due to the discretization of
manipulated variables the use of analytical derivatives
seems mandatory to perform optimization tasks. Apart
from these algorithmic issues, data management and
visualization are essential in order to unveil chances for
improvements in the processes. Although the scope facing
all these issues was quite ambitious, we were able to setup

Fig. 1 Modeling, simulation and optimization workflow to support decision making in the development of dynamic chemical processes.
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a functioning version of all workflow tools. In this
contribution, the new possibilities for dynamic simulation
within the flowsheet simulation environment will be
demonstrated for batch distillation and reactor examples.

2.1 Plant data selection for MVA

2.1.1 Plant data manager (PDM)

In a previous contribution [12], we showed how the
selection of steady state operating points could be
supported. This so-called “PDM” includes interfaces to
plant information management systems as for example
ASPEN IP21 or OSI PI, supports selection of relevant
measurement tags and enables a mapping between tags and
properties of the simulation model. The PDM has been
extended to identify and store time trajectories for dynamic
systems. These time trajectories are called operating
trajectories (OT) and small intervals on these trajectories
are used to define time operating points (TOPs). The OT is
divided into several TOPs. We use here small intervals for
the TOPs to avoid selection of peaks caused by measure-
ment noise. Using the data in this time interval, the average
and the standard deviation of the data will be stored at the
arithmetic mean of time interval bounds. Measurements at
a certain time only are denoted as single time measure-
ments (STMs). STMs could be for example analytical data
for different fractions of a batch distillation. These
measurements can be read from a MS Excel file.

2.1.2 MVA preparer

As mentioned already, before the process model is used, it
has to be validated with process data. If the agreement is
not sufficient, it is also possible to adjust some model
parameters to the available process data. A general scheme
for this model adjustment (or more precisely parameter

estimation) is shown in Fig. 2. The process data consists in
k ¼ 1,:::,NOT OTs. Each OT comprises j ¼ 1,:::,NTOP
TOPs. In each, i ¼ 1,:::,Nx control variables ~xijk are
available, which define the operating point, and measure-
ments ~yijk with standard deviations �~y,ijk . Of course, also

the control variables are measured with standard deviations
�~x,ijk . The simulation of the process includes as input
variables x and model parameters p to be estimated and
will predict the measurements yðp,x,tÞ of the TOPs or
y#ðp,x,tÞ of the STMs. For solving the parameter
estimation problem there exist several options for the
objective function to be optimized (cf. for example [17]). If
the inputs of the simulation are set equal to the measured
values, one obtains a classical least-squares problem. If the
inputs of the simulation are also used as variables in the
optimization problem, this is usually known as error-in-
variables model. To account for the different orders of
magnitude of the measurements, the measured standard
deviations � are used to scale them. Additionally,
individual weighting factors w could be used to influence
the contribution of the residuals in the objective function.
As a part of the decision support framework we

implemented the MVA preparer, which uses the available
information from the PDM to set up the optimization
problem. The information used is the list of available tags,
the mapping of tags to simulation properties and the
selected operating data. The MVA preparer supports the
user in setting up the “sum of squared errors” as objective
for the parameter estimation problem as shown in Fig. 2 in
the same manner as it is possible for steady-state
simulation. The preparer uses the information about the
chosen measurement tags. In the preparer all data or a
subset therefrom could be chosen and defined as “to be set”
or “to be validated”. “To be set” will define a continuous
step function based on the measurements at the TOPs and
include this function in a specification, which will be set
inactive. The user has to activate these specifications

Fig. 2 Principle of combining models with data to set up the least squares problem for parameter estimation.
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afterwards manually and has to choose, which degrees of
freedom should be used to achieve the specifications.
Therefore, it is recommended only to choose tags to be set
which can be directly influenced like for example an outlet
temperature of a heat exchanger which can be achieved by
varying the heat input. Otherwise convergence issues due
to infeasible specification might arise. To select tags as “to
be set” reduces the problem but assumes that the values are
exact (without measurement error). While tags classified as
“to be validated” will be part of the objective function of
the parameter estimation problem (cf. Fig. 2). If possible, it
is recommended to use all tags as “to be validated”.

2.2 Simulation and optimization

2.2.1 SA

For steady state simulation with CHEMASIM it is possible
to quantify selected parameters as uncertain and to specify
a range of uncertainty [12]. In the sensitivity tool, it is
possible to choose between different sampling methods to
explore this uncertainty range. For these scenarios,
simulations will be run, and the results can be visualized
in the SA navigator [12]. This is now also possible for
CHEMADIS. For dynamic simulations the time steps
depend on the scenario and therefore differ between
different scenarios (cf. Appendix A.1). Therefore, it is not
possible to calculate sensitivities at each time point. We
therefore find it more intuitive to rely on the visualization
of the impact of uncertainties in the time trajectories (cf.
section 3.3.1).

2.2.2 MCO

Dynamic optimization typically often includes the optimi-
zation of control variables. Here, control variables are
looked for which optimize the objective of interest. To
reduce the problem usually the control trajectory is
discretized in several time intervals, in which parametric
basic functions (e.g., linear or constant functions) of time
are assumed. The parameters of these functions are used as
optimization variables. Quite often simply constant values
in these time intervals are assumed because these are easily
implemented in operation by just simply change the set
points of the controls at fixed time points.
Besides these special variables and objectives, there is

no difference in the setup of an MCO problem in
CHEMADIS compared to CHEMASIM. The MCO
navigator was extended to include additional visualizations
of trajetories for selected indicators. The amount of data to
be handled is much more than in steady state simulation,
since each time step includes as much information as an
equivalent steady-state simulation. Data base access has
therefore been optimized and significantly enhanced by
grouping requests (up to factors of 200).

3 Results and discussion

3.1 PDM and MVA

In the following an example from literature with available
measurements is used to demonstrate the use of the PDM
and the MVA preparer: Nad and Spiegel [23] describe
measurements in a batch distillation like sketched in Fig. 3
for the separation of a ternary mixture of cyclohexane,
n-heptane and toluene.

The available measurements include time-dependent
data of the vapor mass flow and molar concentration at the
top of the column, distillate mass flow, liquid molar
concentration in the still, temperatures at the top and the
bottom of the column and pressure at the top. In the
original source there is even more data given, but only
complete sets of measurements are taken to facilitate the
setup of the sum of squared errors as objective for the
model adjustment. Besides these time-dependent measure-
ments, amounts and concentration measurements for the
initial filling, the residue in the still and the fractions (so-
called STMs) together with the times when the valves are
switched to the next collector are available. The sum of the
amounts of the residue in the still and the fractions was less
than the initial amount. Reasons for these deviations could
be either inaccuracies in the measurements or losses due to
sampling. For the simulation the initial amount was set to
the lower value of 2.843 kmol. For the column and the
condenser holdups were taken into account and set to the
values given by Nad and Spiegel: 0.015 m3 for the column
and 0.005 m3 for the condenser. In the simulation these

Fig. 3 Scheme of a batch distillation with different sample lines
for product (P) and slop cuts (S).
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holdups are not part of the initial amount. Due to changes
in composition of the holdups some mass is accumulated
which reduces a little bit the total amount of all fractions
and the residue in the still at the end compared to the initial
amount. The number of theoretical stages for the column
(inner diameter 162 mm) equipped with Mellapak 250Y
(bed height 8 m) was taken from Nad and Spiegel and was
set equal to 20. Top pressure was set to 962 mbar as
measured and a constant pressure drop of 2 mbar per stage
was assumed.
During the batch experiment the reflux ratio was

changed. But the measurements of the reflux ratio were
not very accurate as discussed by Nad and Spiegel [23] and
also the exact switching times were not given. Furthermore,
no information about the time-dependent reboiler heat duty
was given. As an alternative to the reboiler heat duty either
the vapor or distillate mass flow could be specified. Here
the distillate mass flow was chosen. So, as the control
variables for the process the reflux ratio and the distillate
mass flow were used. These controls have been discretized
in 7 intervals similar to the ones shown by Nad and Spiegel
[23] with constant values as given in Table 1. For the reflux
ratios and for the distillate mass flows average values of the
measurements were used as initial values.

For all concentration measurements a standard deviation
of 0.02 mol$mol–1 was taken, while for all other
measurements a standard deviation equal to 5% of the
measured values has been assumed. Since no numbers
were given in Nad and Spiegel [23], these numbers have
been assumed to scale the contributions in the sum of
squared errors as indicated in Fig. 2. The measured reflux
ratios were not taken into account, since they are calculated
based on the measured mass flows. For the measurements
of the vapor concentration at the top a weighting factor of
100 was chosen, while for all other measurements the
default weighting factor of 1 was taken.
As optimization variables for the minimization of the

sum of least squares the 14 control variable values were
used together with the coefficient A for the vapor pressure
of n-heptane. The initial value for this coefficient
converted to bar and ln was 9.25354607. The lower and
upper bound for the coefficient were 9.15 and 9.35 and for
the reflux ratio values were 1 and 13. For the distillate mass

flow values corresponding to 80% and 120% of the initial
value were used as bounds. The sum of least squares was
multiplied by a scaling factor of 10–5. Starting from a value
of 3.190 the optimization ended after 48 optimization
iterations with the sequential quadratic programming
method from Schittkowski [24] successfully at an
objective of 0.06066. The final optimized variables are
given in Table 2 for the control variables, while the
optimized value for the coefficient for the vapor pressure of
n-heptane was 9.1656809.

In Fig. 4 as an example the results for dynamic
simulation based on the initial and the optimized values
for the vapor composition are compared with the
measurements. Further results can be found in Appendix
B in the Figs. B1–B4 (cf. ESM). As can be seen, the model
adjustment results are in nearly perfect agreement with all
concentration and temperature measurements. Only, the
vapor mass flows have larger deviations, since reflux ratios
are similar to Nad and Spiegel significantly deviating from
the measured ones between 1 and 3.5 h (compare Tables 1
and 2).
In Fig. B5 of Appendix B (cf. ESM) for the vapor-liquid

equilibrium (VLE) data of the systems cyclohexane+ n-
heptane and n-heptane+ toluene a comparison is shown
between the experimental data at 1 bar and the prediction
of the original thermodynamic model of Nad and Spiegel
as well as of the one using an adjusted vapor pressure for n-
heptane. As can be seen there the vapor pressure
coefficient estimated from the batch distillation experiment
significantly improves the agreement with the experimen-
tal data. This is just to show the reliability of the
optimization. Usually, as mentioned before, the thermo-
dynamic model is recommended to be parametrized based
on the VLE data and then just used in simulation. This
example is only a showcase for situations where reliable
VLE data is not available or obtainable with reasonable
effort as discussed in the introduction.

3.2 MCO and evaluation of uncertainties

3.2.1 Semi-batch Williams-Otto reactor

In this example the model of the semi-batch Williams-Otto

Table 1 Initial values for the controls

t/h Reflux ratio Distillate mass flow/(kg$h–1)

1 3.92 55.8

1.62 7.57 32.15

2 11.7 22.35

3.5 11.4 22

4.7 4.788 52.5

5.8 10.403 25

6.37 8.37 30

Table 2 Final, optimal values for the controls

t/h Reflux ratio Distillate mass flow/(kg$h–1)

1 3.92 64.21

1.62 7.57 36.19

2 11.7 23.03

3.5 11.4 23.82

4.7 4.788 55.78

5.8 10.403 25.44

6.37 8.37 29.57
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reactor [25,26] is used. Figure 5 shows a scheme of the
semi-batch reactor. The following reactions occur in the
stirred vessel:

Aþ B↕ ↓C,

C þ B↕ ↓P þ E,

P þ C↕ ↓G,

C is here an intermediate and P and E are the target
products. In the last reaction from product P a degradation
productG is formed. The full set of model equations for this
semi-batch reactor is given in the Appendix C (cf. ESM).
Initially there is only 2 m3 educt A in the vessel at a

temperature of 65 °C. Then B is fed with a temperature of
35 °C. The process can be controlled by adjusting the feed
rate FB of B between 0 and 5.784 L$s–1 and by adjusting
the wall temperature TW between 20 °C and 100 °C. The
reaction temperature TR has to be maintained between
60 °C and 90 °C and the reaction volume VR is limited to
5 m3. Total batch time is fixed to 1000 s. The wall
temperatures are scaled with a factor of 1000.
The objectives of the multicriteria optimization is to find

the optimal control strategies to maximize the amount of
P and to maximize the amount of E. For this purpose, the
control variables FB and TW have to be discretized over the
time horizon of 1000 s. In this example 40 equidistant
time segments were taken each with constant values for
the control variables. In this case we have 80 optimization
variables: FB,1,:::,FB,40 2 ½0;5:874� and TW,1,:::,TW,40 2
½20;100� respectively the scaled ones 2 ½0:02;0:1�.
Furthermore, we have 3 path constraints: one lower limit
of 60 °C for the reaction temperature TR, one upper limit
(90 °C) and one upper limit for the reaction volume (5 m3).
In Fig. 6 the results of the MCO are given as screenshots

of CHEMADIS. We intentionally show screenshots here in

order to give an impression also about the graphical user
interfaces that were developed in order to present the
results to the user and offer decision support.
Here two objectives were taken into account: one to

maximize the mass of product E and one to maximize the
mass of P in the reactor. Figure 6(a) shows the Pareto-
optimal solutions (best compromises between the compet-
ing objectives) in the MCO Navigator which is available in
the CHEMADIS results. Furthermore, it is possible to
visualize the corresponding trajectories for selected
indicators as demonstrated in Figs. 6(b–e). In this example,
as can be seen, the path constraint for the reactor
temperature TR and the reactor volume have been fulfilled.
In the lower part of the Figs. 6(d) and 6(e), the profiles of
the control variables are presented. This view shows only
values at time steps where the function has been evaluated
or corresponding to the defined printing time. The
underlying function is still a step function.

3.2.2 Lysine semi-batch bioreactor

The second example shows results for a semi-batch

Fig. 4 Comparison of the dynamic simulation based on the initial (gray lines) and the optimized values (black lines) with the measured
vapor concentration at the top of the column (symbols): …, △ Cyclohexane; —, ○ n-Heptane; – –, □ Toluene.

Fig. 5 Scheme of the semi-batch Williams-Otto reactor.
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Fig. 6 (a) Pareto-optimal solution of the semi-batch Williams-Otto reactor problem in the MCO Navigator of the CHEMADIS results
(Red squares are showing the reference runs, which are results of a single-objective optimization. In pastel-red the reoptimized reference
runs are shown these are obtained by optimizing the other objective with the constraint not to become worse in the objective of the
reference run. The green symbols show the results of minimizing a weighted sum. The weights are determined by the sandwiching
algorithm [10]). Visualization of trajectories of selected indicators of the semi-batch Williams-Otto reactor problem: (b) reactor
temperature (CONSTANT Tr); (c) reaction volume (CONSTANT Vr); (d) control for the feed (FUNCTION FBSoll); (e) control for the
wall temperature (FUNCTION TWSoll is scaled with factor 1000). The trajectory of the selected point in (a) is shown with a bigger
symbol and a bold line.
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bioreactor to produce lysine. The model is taken from
[27,28] and is summarized in Appendix D (cf. ESM).
In the bioreactor (cf. Fig. 7), we have biomass X ,

substrate S and lysine, the product P. V is the volume of
the mixture in the reactor. CS,F is the concentration of the
substrate in the feed and u is the flow rate of the feed,
which is the control variable. The model depends on a
specific growth parameter �p, a substrate consumption
parameter �p and the production rate parameters πp,1 and
πp,2. For the optimization there are path constraints for the
amount of product P, the volume of the mixture in the
vessel V , the amount of substrate consumed ðV –V0ÞCS,F

and the total batch time tF and a lower and upper bound of
the control variable u. The competing objectives are the
productivity J1 and the yield of lysine J2.
In Fig. 8 the results for this multicriteria optimization are

shown, again as a screenshot from CHEMADIS. In the
following for one solution a SA will be presented and the
MCO results will be compared to results for different
uncertainty scenarios of the parameters �p and πp,2.

3.3 Impact of uncertainties

3.3.1 SA

For the lysine example the impact of uncertainties on a

Fig. 7 Principle of the bioreactor for the production of lysine (P)
(Reactor holdup (volume V) includes besides the product P,
biomass X and substrate S. The feed rate u has a substrate
concentration CS,F).

Fig. 8 Results of the multicriteria optimization of the lysine example with non-convex Pareto frontier and non-convex navigation
(orange): (a) slider view with navigation; (b) 2D projection of Pareto frontier; (c) trajectories of the Pareto-optimal points (For the symbols
and lines the same color code than in Fig. 6 is used. Additionally, there are blue symbols and lines indicating Pascoletti-Serafini runs
resulting from the hyperboxing algorithm (for details see ref. [10])).
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single solution has been investigated. In this case for fixed
control variables (cf. Table 3) the impact of uncertainties in
the parameters �p and πp,2 was considered. The uncertain-
ties assumed are+/– 10% of the nominal parameter value.
This is only one example to investigate the impact of
uncertainties in these parameters on the results. A factorial
design is chosen as the scenario generation method to
explore the uncertainty range. The trajectories of the
selected indicators (here u, P and J1) are shown in Fig. 9 as
screenshots from CHEMADIS. As can be seen J1 is
negative for some uncertainty scenarios for time below
20000 s. For these scenarios with the fixed control values
only a negative product amount P is found. This is of
course not realistic, therefore an enumerated MCO as
described in the next section is a more appropriate way to
investigate the impact of uncertainties.

3.3.2 Enumerated MCO

Besides the optimization variables, parameters which

should be enumerated could be used to investigate the
impact of uncertainties. Here two factors (Fmup and
Fpip2) have been multiplied to the original parameters �p

Table 3 Parameters of the discretized control variable of the solution

for a total batch time of tF = 24.882 h investigated with SA

i ti/tF ui/(L$h
–1)

1 0 0.46925

2 0.1 0.46498

3 0.2 0.4813

4 0.3 0.56487

5 0.4 0.7108

6 0.5 0.89758

7 0.6 0.96715

8 0.7 0.91066

9 0.8 0.59615

10 0.9 0

Fig. 9 Results of SA with factorial design for the solution of Table 3: trajectories for (a) mass of product P, (b) the objective reactor
productivity J1 and (c) the feed flow rate as control variable u.
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and πp,2 and specified as enumerated parameters. These
two parameters have been varied between 0.9 and 1.1 in a
factorial design leading to 4 scenarios: (0.9�p; 1.1πp,2);
(1.1�p; 1.1πp,2); (1.1�p; 0.9πp,2); (0.9�p; 0.9πp,2) besides
the nominal scenario (�p; πp,2). In an enumerated MCO for
each of these scenarios a MCO will be performed. The
results for these scenarios are compared in the MCO
navigator shown in Fig. 10. There a big impact on the
objectives can be observed.
The impact on the objectives J1 and J2 of the factor on

�p is lower than the factor on πp,2. The higher value for the
first one increases the maximal reachable J1 for both high
and low values of the factor on πp,2. On the other hand, it
decreases the maximal reachable J2 in both cases. The
higher (lower) factor on πp,2 increases (decreases) both
objectives J1 and J2 compared to the nominal value
independent of the factor on �p. This shows that this factor
should be known with higher accuracy to get good
predictions and it also shows that caused by the high
sensitivity of the results on this factor it is probably also
easier to determine it with higher accuracy when measur-
ing J1 and J2.

4 Conclusions

An existing decision support framework within BASF’s
simulator CHEMASIM for steady state simulation models
has been extended for dynamic models based on the
established dynamic counterpart CHEMADIS. All tools
have been successfully adopted and their usefulness has
been shown for MVA for a batch distillation as well as
multicriteria optimization and the evaluation of the impact
of uncertainties for reactor examples. Furthermore,
methods for model-based DoE for batch experiments
have been implemented, which can be used to identify
optimal experimental settings and time points for measure-
ments to get reliable parameter estimates or to select the
most reliable model in case of rival model approaches as an
extension of the DoE method for steady-state experiments
[18]. This completes the workflow shown in Fig. 1 but is
not part of this contribution. With the decision support
framework process designers are enabled to develop
reliable dynamic models which can be used in various
what-if-scenarios leading to rational decision in process
design, analysis and optimization of dynamic chemical
processes.

Fig. 10 Results of MCO for enumerated uncertainty scenarios: �p; πp,2; 0.9�p; 1.1πp,2; 1.1�p; 1.1πp,2; 1.1�p; 0.9πp,2; 0.9�p;
0.9πp,2.
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Electronic Supplementary Material Supplementary material is available
in the online version of this article at https://dx.doi.org/10.1007/s11705-021-
2046-x and is accessible for authorized users.
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