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Abstract Photocatalytic membranes have received
increasing attention due to their excellent separation and
photodegradation of organic contaminants in wastewater.
Herein, we bound Ag-AgBr nanoparticles onto a synthe-
sized polyacrylonitrile-ethanolamine (PAN-ETA) mem-
brane with the aid of a chitosan (CS)-TiO2 layer via
vacuum filtration and in-situ partial reduction. The
introduction of the CS-TiO2 layer improved surface
hydrophilicity and provided attachment sites for the
Ag-AgBr nanoparticles. The PAN-ETA/CS-TiO2/Ag-
AgBr photocatalytic membranes showed a relatively high
water permeation flux (~ 47 L$m–2$h–1$bar–1) and dyes
rejection (methyl orange: 88.22%; congo red: 95%; methyl
blue: 97.41%; rose bengal: 99.98%). Additionally, the
composite membranes exhibited potential long-term sta-
bility for dye/salt separation (dye rejection: ~97%; salt
rejection: ~6.5%). Moreover, the methylene blue and
rhodamine B solutions (20 mL, 10 mg$L–1) were degraded
approximately 90.75% and 96.81% in batch mode via the
synthesized photocatalytic membranes under visible light
irradiation for 30 min. This study provides a feasible
method for the combination of polymeric membranes and
inorganic catalytic materials.

Keywords Ag-AgBr, dye rejection, photodegradation,
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1 Introduction

Various organic dyes are widely used in textile, painting,
printing, pharmaceutical, rubber, cosmetics, and food
industries [1–3]. Along with the development of these
industries, the treatment of dyes wastewater is becoming

increasingly difficult. Due to the toxicity, carcinogenicity,
and mutagenicity of dyes, even a small amount can cause
severe environmental damages and jeopardize human
health [3,4]. Many methods, such as ion exchange [5],
chemical coagulation/flocculation [6], chemical oxidation
[7], membrane separation [8,9], adsorption [10], photo-
catalytic degradation [3,11] and electrochemical method
[12], have been proposed and developed to remove dyes in
wastewater. Among these methods, membrane separation,
one of the most applicable and promising techniques to
treat dye wastewater, is attractive due to its convenient
operation, high efficiency and low energy requirement
[13,14].
However, membrane fouling, resulting from the non-

specific interaction between organic dyes and the mem-
brane surface [15], could cause decreased separation
efficiency, cutting membrane life and increasing energy
consumption [16,17]. Usually, hydrophilic modification
may be an effective way to improve the antifouling
property of membranes [18]. In recent years, photocataly-
tic membrane has received increasing attention, which
combines photocatalyst and membrane for dealing with
organic contaminants in wastewater [14,19–25]. Hydro-
philic photocatalysts can mitigate the inherent membrane
fouling owing to the hydrophilicity and the efficient
photocatalytic decomposition of pollutants [16].
In the past decades, TiO2 has been widely used in the

fabrication of photocatalytic membranes [13,16,22–
24,26,27]. However, the wide band gap and low sunlight
utilization efficiency have confined its practical applica-
tions [28–30]. Since 2008, Ag-AgX (X = Cl, Br, I) has
been proven to photodegrade the organic pollutants of
wastewater outstandingly owing to its superior visible-
light activity [30,31]. However, it is very difficult to form a
stable catalytic layer on the membrane surface. In order to
obtain the best performance of catalysts, the nanoparticles
anchored on the membrane surfaces should be exposed to
the environment. Several strategies have been reported,
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including self-assembly [32], epitaxial growth [33],
entrapment [34], and chemical binding [35]. Chitosan
(CS), linear polymer, possesses outstanding hydrophilicity
due to its hydroxyl and amino groups [36]. It can fix TiO2

nanoparticles on the membrane surface to take advantage
of the large specific surface area of TiO2, which can
facilitate catalysts to immobilize on the membrane surface.
Herein, for dye removal and photodegradation, we

report a method to bind Ag-AgBr photocatalyst on the CS-
TiO2 layer of PAN-ETA membranes (Scheme 1). First, CS
modified TiO2 was firmly immobilized onto the PAN-ETA
membrane surface by a simple vacuum filtration method.
The CS-TiO2 layer is not only used as the dye separation
layer, but also provides adhesion site for silver nitrate
(AgNO3) [13,33]. Then, Ag-AgBr nanoparticles were
formed, via in-situ partial reduction onto the CS-TiO2

layer, to improve the separation efficiency of various dyes.
Furthermore, the PAN-ETA/CS-TiO2/Ag-AgBr mem-
branes showed excellent degradation performance in dye
solutions under visible light irradiation, which shows
potential in the performances of anti-fouling, self-cleaning,
and recyclable stability.

2 Experimental

2.1 Materials and chemicals

Polyacrylonitrile powder (PAN, molecular weight:
~150000) was obtained from Shanghai Jinshan Petroleum.
Dimethyl sulfoxide (DMSO, AR, 99%) and absolute
ethanol (AR, 99.7%) were purchased from Sinopharm
Chemical Reagent Co., Ltd. Ethanolamine (ETA, AR,
99%) was acquired from Shanghai Lingfeng Chemical

Reagent Co., Ltd. Silver nitrate (AR, 99.8%), sodium
bromide (AR, 99%), glutaraldehyde (GA, RG, 50 wt-% in
water), CS and acetic acid (AR, 99.5%) were provided by
Adamas Reagent Co., Ltd. Methyl blue (MB, AR), methyl
orange (MO, 85%), congo red (CR,≥35%), rose bengal
(RB, 95%), methylene blue (MEB,≥70%) and rhodamine
B (RhB,≥97%) were purchased from Aladdin Chemical
Co., Ltd., China. Titanium dioxide (5 nm) was purchased
from Jing Rui New Material Co., Ltd. Deionized water
was prepared using a two-stage reverse osmosis process.
All chemicals were used as received without further
purification.

2.2 Fabrication of PAN-ETA/CS-TiO2/Ag-AgBr membrane

2.2.1 Preparation of PAN-ETA membrane

PAN-ETA membrane was prepared by a modified in-situ
polymerization/NIPS method according to our previous
work [37]. In detail, 3.6 g of ETA (containing 1% water)
and 10.8 g of PAN were added into 45.6 g of DMSO
solution and the mixture was then stirred at 80 °C for 8 h.
After cooling to room temperature and degassing, the
solution was cast on a glass plate and immersed into
deionized water to obtain PAN-ETA membranes.

2.2.2 Preparation of PAN-ETA/CS-TiO2 membrane

TiO2 (0.1 g) was dispersed in 2 wt-% acetic acid aqueous
solution (100 mL) and the solution was ultrasonicated for
1 h, followed by the addition of CS (0.2 g) to form a CS-
TiO2 dispersion. The CS-TiO2 coating layer was obtained
through simple vacuum filtration of the above-dispersed

Scheme 1 Schematic for the fabrication of PAN-ETA/CS-TiO2/Ag-AgBr membrane.
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solution and subsequently crosslinked in 1 wt-% GA
aqueous solution to fabricate PAN-ETA/CS-TiO2 mem-
brane.

2.2.3 Preparation of PAN-ETA/CS-TiO2/Ag-AgBr
membrane

CS-TiO2 modified membrane was immersed into 50 mL of
1 wt-% AgNO3 solution under dark conditions for a
designated time to ensure desorption/sorption equilibrium.
After rinsing with deionized deionized water, the mem-
brane was immersed into 0.5 wt-% NaBr solution to form
AgBr nanoparticles. Then, the above membrane was
submerged in deionized water/EtOH solution and irra-
diated by a 300WHg lamp for 10 min to partly decompose
AgBr to Ag [30,38]. Finally, the PAN-ETA/CS-TiO2/Ag-
AgBr membrane was stored in deionized water prior to
use.

2.3 Characterization

The morphology of the prepared membranes was char-
acterized by field emission scanning electron microscopy
(FE-SEM, Nova Nano SEM 450, Japan). To obtain the
cross-section, a dry membrane was immersed in liquid
nitrogen and fractured, and the fractured surface was
sputtered with a thin layer of gold prior to SEM analysis.
The chemical components of the modified membranes
were analysed by X-ray photoelectron spectroscopy (XPS,
VG Microlab II, UK). Attenuated total internal reflectance
Fourier transform infrared spectra (ATR-FTIR) of the
membrane were recorded on Perkin-Elmer 16 PC FTIR.
The contact angle measurement of the dry membrane was
done by the sessile drop method using a drop shape
analysis system (JC2000A, Shanghai Zhongchen Digital
Equipment Co. Ltd., China). The dye concentration was
measured by UV-vis spectrophotometer (Shimadzu, UV-
2600).

2.4 Dye filtration performance

A self-made cross-flow cell (effective area ~28.26 cm2)
was used to evaluate the pure water flux (PWF) (J) and dye
rejection (R) of the as-prepared membranes. Four types of
dyes, i.e., MB, MO, VB, and CR, were tested. The dye
concentration was fixed at 100 mg$L–1, if it is not specially
indicated. The membrane was pressurized with deionized
water at 0.1 MPa for 30 min before the measurement. The
permeate flux (J) was calculated by Eq. (1):

J ¼ Q

A� t
, (1)

where Q is the volume of permeated water (L), A is the
membrane area (m2), and t is the permeation time (h). Dye
rejection (R) was calculated based on Eq. (2):

R ¼ cf – cp
cf

� 100%, (2)

where Cf and Cp are the dye concentrations (mg$L–1) in the
feed and permeate solution, respectively.

2.5 Photocatalysis performance

MEB and RhB were chosen to evaluate the photocatalytic
activity of the as-prepared membrane due to its negligible
photosensitizing effect under visible light. Typically, the
PAN-ETA/CS-TiO2/Ag-AgBr membrane was cut into
small sectors. In order to ensure the desorption/sorption
equilibrium, the membrane was immersed into MEB or
RhB solution (10 mg$L–1) for 30 min under a dark
environment. The photocatalytic degradation of MEB or
RhB was carried out under continuous stirring in a UV-
visible irradiator equipped with a 500 W Xe lamp and a
UV cut-off filter (l> 420 nm). During photodegradation,
1 mL of the dye solution was gathered at 5 min intervals,
followed by UV-vis spectrophotometry to measure the
absorbance.

3 Results and discussion

3.1 Characterization of PAN-ETA and composite mem-
branes

The surface morphologies of the as-prepared membranes
are shown in Fig. 1. A relatively smooth surface could be
clearly found on the PAN-ETA membrane (Fig. 1(a)) and a
homogeneous distribution of nanoparticles on the surface
demonstrated the successful loading of CS-TiO2 on the
PAN-ETA membrane (Fig. 1(b)). The stable attachment of
TiO2 is mainly attributed to the adhesion effect of CS
intertwining networks on TiO2 nanoparticles. Furthermore,
CS with abundant positively charged amine groups could
be firmly immobilized onto the negatively charged surface
(–COOH and –OH) of hydrolysed PAN-ETA membrane
through electrostatic interaction. Figure 1(c) shows the
surface morphology of a large number of nanoparticles
decorating membrane. We found that small Ag nanopar-
ticles were epitaxially grown on the surface of AgBr
nanoparticles.
The XRD patterns and ATR-FTIR spectra of the as-

prepared membranes are demonstrated in Fig. 2. In
Fig. 2(a), the sharp peaks at 2θ values of 17.3° confirmed
the crystalline nature of PAN-ETA. Compared to PAN-
ETA membrane, no characteristic peak for crystalline
phase was found in PAN-ETA/CS-TiO2 due to the low
exposure of TiO2 nanoparticles wrapped by CS. For the
PAN-ETA/CS-TiO2/Ag-AgBr membrane, the diffraction
peaks of Ag and AgBr simultaneously appears, indicating
the formation of AgBr and Ag composite, which was in
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accordance with the SEM of PAN-ETA/CS-TiO2/Ag-AgBr
[30,39]. Specifically, two peaks appear at 2θ = 38.1° and
64.6°, ascribed to the face-centered cubic Ag (111) and
(220) planes, respectively (JCPDS Card, No. 65-2871).
Five strong diffraction peaks are also presented at 2θ =
27.0°, 31.0°, 44.3°, 55.0° and 73.3°, which can be indexed
to AgBr (111), (200), (220), (222), and (420) plane
reflections (JCPDS card, No. 06-0438), respectively.
As shown in Fig. 2(b), two typical peaks, 2243 and

1733 cm–1, appeared for the PAN-ETA membrane, which
correspond to the stretching vibration of cyano groups
(C≡N) and carbonyl groups (C = O), respectively [40]. The
absorption peaks at 2924 and 1452 cm–1 correspond to the
stretching vibration and bending vibration of –CH2

groups. After filtration of CS-TiO2 suspension, the peak
at 3353 cm–1, which is attributed to the stretching vibration
of –NH2 and –OH, was seen for PAN-ETA/CS-TiO2. The
stretching vibration of –NH2 occurs at 1405 cm–1, and the
peak at 1565 cm–1 corresponding to the C = N group
indicates that CS has been crosslinked with GA through

the Schiff-Base reaction [41–43]. That would mean
crosslinking networks can fix TiO2 tightly. The absorption
peaks of C = O shifted to 1670 cm–1 and resulted in a
significant enhancement, which suggests the –OH groups
reacted with the aldehyde groups. Moreover, it was
reported that the interaction between TiO2 and C = O
groups would also give rise to a red shift for the C = O
groups [13,44]. Compared to the CS-TiO2 decorated
membrane, the absorption spectrum of the Ag-AgBr
modified membrane showed no distinct difference.
XPS analysis was performed as shown in Fig. 3.

Characteristic peaks of C 1s, N 1s and O 1s were detected
in the XPS survey spectra of all membranes (Fig. 3(a)).
After vacuum filtration of the CS-TiO2 suspension, an
obvious signal of Ti 2p was found, which demonstrated the
successful introduction of TiO2 on the membrane surface.
For the PAN-ETA/CS-TiO2/Ag-AgBr membrane, the Ag
3d and Br 3d XPS spectra appeared, which illustrates that
AgBr and Ag nanoparticles were spatially distributed on
the membrane surface. To further determine the states of

Fig. 1 Surface images of the as-prepared membranes: (a) PAN-ETA, (b) PAN-ETA/CS-TiO2 and (c) PAN-ETA/CS-TiO2/Ag-AgBr.

Fig. 2 (a) XRD patterns and (b) ATR-FTIR spectra of the as-prepared membrane.
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Ag, the Ag 3d XPS spectrum was measured as shown in
Fig. 3(b). The Ag 3d5/2 and Ag 3d3/2 peaks can be fitted
to two sets of peaks, in which the set of peaks at 367.7 and
373.7 eV is assigned to Ag+ in AgBr while that at 368.4
and 374.4 eV belongs to metallic Ag [30,45–47].
According to the peak areas in XPS, the relative contents
of metallic Ag and Ag+ in the total Ag were calculated to
be 9.72 at-% and 90.28 at-%, respectively, further
illustrating the coexistence of Ag and AgBr in the PAN-
ETA/CS-TiO2/Ag-AgBr membrane.
The water contact angle is adopted to evaluate the

relative surface hydrophilicity of the membranes. Gen-
erally, a smaller contact angle displays better hydrophili-
city [26]. As shown in Fig. 4, the pristine PAN-ETA
membrane exhibits the highest contact angle of 76.5°,
corresponding to the lowest surface hydrophilicity. After

filtration of CS-TiO2 solution, the hydrophilicity of the
PAN-ETA/CS-TiO2 membrane is significantly improved
due to the amount of hydroxyl groups on the membrane
surface. This result should also be ascribed to the
embedded TiO2 nanoparticles on the membrane surface.
The loading of Ag-AgBr nanoparticles had no distinct
influence on the hydrophilicity of the PAN-ETA/CS-TiO2/
Ag-AgBr membrane, and a slightly higher contact angle
was obtained resulting from part of hydrophilic TiO2 being
covered by Ag-AgBr nanoparticles.

3.2 Dye rejection performance of membrane

The dye rejections of the as-prepared membrane were
tested and the results are summarized in Fig. 5. In view of
the PAN-ETAmembrane (Fig. 5(a)), the water flux reached
~120 L$m–2$h–1$bar–1 and the rejection of MO was
comparatively low, only 29.12%. After filtration of CS
solution, the water permeability reduced to 41.64 L$m–2$
h–1$bar–1. Both MB and MO rejections increased from
76.25% to 98.75% and from 29.12% to 91.67%,
respectively. The CS layer gives great resistance to water
and dye molecules, and simultaneously, it causes decreased
water flux and increased rejections of dyes. When the TiO2

nanoparticles were introduced, the water permeability was
found to be enhanced to 54.50 L$m–2$h–1$bar–1, followed
by slightly declined dye rejections. This may be explained
by the improved membrane surface hydrophilicity and the
loose structure with nano-voids after incorporation of CS
and TiO2. In addition, the Ag-AgBr decorated membrane
can retain high MB rejection of 97.41% and MO rejection
of 88.22% similar to the PAN-ETA/CS-TiO2 membrane,
yet a slight loss of water flux was examined due to the
increased steric hindrance [13]. Five various dyes, i.e.,
MB, MO, VB, CR and RB, were tested to further evaluate
the performance of PAN-ETA/CS-TiO2/Ag-AgBr mem-

Fig. 3 (a) XPS survey of the as-prepared membranes and (b) Ag 3d high resolution spectra.

Fig. 4 Water contact angle of the as-prepared membrane.
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brane. As presented in Fig. 5(b), the rejections of
negatively charged dyes (MO, CR, MB and RB) increased
from 88.22% to 99.98% with the increase of molecular
weight (Table S1, cf. Electronic Supplementary Material,
ESM).
The MB (100 mg$L–1)/NaCl (100 mg$L–1) mixture

solution was chosen to explore the stability of the PAN-
ETA/CS-TiO2/Ag-AgBr membrane. Figure 6 shows the
time-dependent water flux and rejection of MB and NaCl,
which revealed that MB and NaCl rejections exhibited no
obvious fluctuation while the water permeability decreased
slightly (from ~47 to ~45 L$m–2$h–1$bar–1). This reduction
was reasonable due to MB contamination. Despite a slight
drop of flux, the composite membranes exhibited potential
long-term stability for dye/salt separation application (dye
rejection: ~97%; salt rejection: ~6.5%), benefiting from

their excellent structural stability and anti-fouling ability.
This further proved that the method to bind Ag-AgBr
photocatalyst via the CS-TiO2 layer on PAN-ETA
membrane is feasible.

3.3 Photocatalysis properties of PAN-ETA/CS-TiO2/
Ag-AgBr

As presented in Fig. 7, RhB and MEB were chosen to
evaluate the photodegradation performance of PAN-ETA/
CS-TiO2/Ag-AgBr photocatalytic membrane under visible
light irradiation. After irradiation with visible light for
about 30 min, the MEB and RhB solutions with the
membrane were degraded almost completely (Fig. 8),
while the color of the dye solution without the membrane
showed no significant change (Fig. S1, cf. ESM).
The photocatalytic adsorption-degradation efficiency

(Fig. 8(a)) of RhB and MEB dyes was obtained with or
without the PAN-ETA/CS-TiO2/Ag-AgBr membrane. In
Fig. 8(b), the first-order kinetic equation was used to fit the
kinetic of RhB and MEB degradation. The photocatalytic
reaction rate constant (k) was 0.11924 and 0.08828 min–1

for RhB and MEB, respectively. It can be seen in Fig. 8(c)
that the photodegradation of RhB and MEB reached
96.81% and 90.75%, respectively. After going through five
cycles, small changes were observed in the photocatalytic
performance (Fig. 8(d)), which may be partly attributed to
the loss of photocatalyst during the washing process.
Compared to other photocatalytic membranes (Table 1),
the PAN-ETA/CS-TiO2/Ag-AgBr membrane shows a
comparable degradation capacity for various dyes. These
results are due to the existence of Ag-AgBr as a
photocatalyst on the membranes.
The degradation mechanism could be illustrated in

Fig. 9. Under visible light irradiation, the electron-hole

Fig. 5 (a) Water flux and dye rejection of the as-prepared membranes; (b) Various dyes rejection of the PAN-ETA/CS-TiO2/Ag-AgBr
membrane.

Fig. 6 Long-time stability of the PAN-ETA/CS-TiO2/Ag-AgBr
membrane.
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pairs are easily produced in Ag and AgBr nanoparticles.
Then, the motivated electrons and holes transfer from Ag
to the conduction band (CB) and the valence bands (VBs),

respectively. Subsequently, the electrons on AgBr CB
would be captured by O2 to produce •O2

– radical, while the
holes on AgBr VB would react with Br– and H2O to

Fig. 7 The color change of RhB and MB solutions under photocatalysis using the PAN-ETA/CS-TiO2/Ag-AgBr membrane with time
from 0 min to 30 min.

Fig. 8 (a) Plots of dyes degradation efficiency vs. irradiation time; (b) the corresponding kinetic linear simulation curves; (c) degradation
performance (%) and (d) recycle degradation efficiency (%).
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produce •Br and •OH radicals. The holes, •O2
–, •Br, and

•OH radicals degrade MB and RhB dyes into a colorless
solution.

4 Conclusions

In this work, PAN-ETA and composite membranes were
successfully prepared via facile processes. The introduc-
tion of CS and TiO2 improved membrane surface
hydrophilicity, which enhanced dye rejection. In order to
obtain anti-fouling and self-cleaning performance, PAN-
ETA/CS-TiO2/Ag-AgBr photocatalytic membranes were
fabricated by an in-situ partial reduction method. These
membranes exhibited excellent dye rejection (MO:
88.22%; CR: 95%; MB: 97.41%; RB: 99.98%) and dye/
salt mixture separation efficiency (dye rejection: ~97%;
salt rejection: ~6.5%). Especially, the photocatalytic

membranes could degrade dye solution under visible
light irradiation, which shows potential in regeneration and
reuse of the designed membranes.
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