Flame-retardant, recyclable, and hydrothermally degradable epoxy resins and their degradation products for high-strength adhesives
Received date: 10 Apr 2024
Accepted date: 28 May 2024
Copyright
To date, sustainable thermosetting polymers and their composites have emerged to address recyclability issues. However, achieving mild degradation of these polymers compromises their comprehensive properties such as flame retardancy and glass transition temperature (Tg). Moreover, the reuse of degradation products after recycling for upcycling remains a significant challenge. This study introduces phosphorus-containing anhydride into tetraglycidyl methylene diphenylamine via a facile anhydride-epoxy curing equilibrium with triethanolamine as a transesterification modifier to successfully prepare flame-retardant, malleable, reprocessable, and easily hydrothermally degradable epoxy vitrimers and recyclable carbon fiber-reinforced epoxy composites (CFRECs). The composite exhibited excellent flame retardancy and a high Tg of 192 °C, while the presence of stoichiometric primary hydroxyl groups along the ester-bonding crosslinks enabled environmentally friendly degradation (in H2O) at 200 °C without any external catalyst. Under mild degradation conditions, the fibers of the composite material were successfully recycled without being damaged, and the degradation products were reused to create a recyclable adhesive with a peel strength of 3.5 MPa. This work presents a method to produce flame retardants and sustainable CFRECs for maximizing the value of degradation products, offering a new upcycling method for high-end applications.
Key words: epoxy vitrimer; carbon fiber composites; flame retardancy; upcycling
Yue-Rong Zhang , Zhen Qin , Song Gu , Jia-Xin Zhao , Xian-Yue Xiang , Chuan Liu , Yu-Zhong Wang , Li Chen . Flame-retardant, recyclable, and hydrothermally degradable epoxy resins and their degradation products for high-strength adhesives[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(12) : 146 . DOI: 10.1007/s11705-024-2497-y
1 |
Discekici E H , St Amant A H , Nguyen S N , Lee I H , Hawker C J , Read de Alaniz J . Endo and exo Diels-Alder adducts: temperature-tunable building blocks for selective chemical functionalization. Journal of the American Chemical Society, 2018, 140: 5009–5013
|
2 |
Yu K , Shi Q , Dunn M L , Wang T J , Qi H J . Carbon fiber reinforced thermoset composite with near 100% recyclability. Advanced Functional Materials, 2016, 26(33): 6098–6106
|
3 |
Vollmer I , Jenks M J F , Roelands M C P , White R J , van Harmelen T , de Wild P , van der Laan G P , Meirer F , Keurentjes J T F , Weckhuysen B M . Beyond mechanical recycling: giving new life to plastic waste. Angewandte Chemie International Edition, 2020, 59(36): 15402–15423
|
4 |
Chao A , Negulescu I , Zhang D H . Dynamic covalent polymer networks based on degenerative lmine bond exchange: tuning the malleability and self-healing properties by solvent. Macromolecules, 2016, 49(17): 6277–6284
|
5 |
Denissen W , Winne J M , Du Prez F E . Vitrimers: permanent organic networks with glass-like fluidity. Chemical Science, 2016, 7(1): 30–38
|
6 |
Montarnal D , Capelot M , Tournilhac F , Leibler L . Silica-like malleable materials from permanent organic networks. Science, 2011, 334(6058): 965–968
|
7 |
Xu Y Z , Dai S L , Bi L W , Jiang J X , Zhang H B , Chen Y X . Catalyst-free self-healing bio-based vitrimer for a recyclable, reprocessable, and self-adhered carbon fiber reinforced composite. Chemical Engineering Journal, 2022, 429: 132518
|
8 |
Capelot M , Unterlass M M , Tournilhac F , Leibler L . Catalytic control of the vitrimer glass transition. ACS Macro Letters, 2012, 1(7): 789–792
|
9 |
Jin Y H , Lei Z P , Taynton P , Huang S F , Zhang W . Malleable and recyclable thermosets: the next generation of plastics. Matter, 2019, 1(6): 1456–1493
|
10 |
Kloxin C J , Bowman C N . Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chemical Society Reviews, 2013, 42(17): 7161–7173
|
11 |
Ding X M , Chen L , Xu Y J , Shi X H , Luo X , Song X , Wang Y Z . Robust epoxy vitrimer with simultaneous ultrahigh impact property, fire safety, and multipath recyclability via rigid-flexible imine networks. ACS Sustainable Chemistry & Engineering, 2023, 11(39): 14445–14456
|
12 |
Podgórski M , Fairbanks B D , Kirkpatrick B E , McBride M , Martinez A , Dobson A , Bongiardina N J , Bowman C N . Covalent adaptable networks: toward stimuli-responsive dynamic thermosets through continuous development and improvements in covalent adaptable networks. Advanced Materials, 2020, 32(20): 2070158
|
13 |
Liu Y Y , Liu G L , Li Y D , Weng Y X , Zeng J B . Biobased high-performance epoxy vitrimer with UV shielding for recyclable carbon fiber reinforced composites. ACS Sustainable Chemistry & Engineering, 2021, 9(12): 4638–4647
|
14 |
Liu T , Hao C , Wang L W , Li Y Z , Liu W C , Xin J N , Zhang J W . Eugenol-derived biobased epoxy: shape memory, repairing, and recyclability. Macromolecules, 2017, 50(21): 8588–8597
|
15 |
Liu T , Zhang S , Hao C , Verdi C , Liu W C , Liu H , Zhang J W . Glycerol induced catalyst-free curing of epoxy and vitrimer preparation. Macromolecular Rapid Communications, 2019, 40(7): 1800889
|
16 |
Liu T , Zhao B M , Zhang J W . Recent development of repairable, malleable and recyclable thermosetting polymers through dynamic transesterification. Polymer, 2020, 194: 122392
|
17 |
Yang Y , Xu Y S , Ji Y , Wei Y . Functional epoxy vitrimers and composites. Progress in Materials Science, 2021, 120: 100710
|
18 |
Gu S , Xiao Y F , Tan S H , Liu B W , Guo D M , Wang Y Z , Chen L . Neighboring molecular engineering in Diels-Alder chemistry enabling easily recyclable carbon fiber reinforced composites. Angewandte Chemie International Edition, 2023, 62(51): e202312638
|
19 |
Chen J H , Liu B W , Lu J H , Lu P , Tang Y L , Chen L , Wang Y Z . Catalyst-free dynamic transesterification towards a high-performance and fire-safe epoxy vitrimer and its carbon fiber composite. Green Chemistry, 2022, 24(18): 6980–6988
|
20 |
Chen J H , Zhang Y R , Wang Y Z , Chen L . Reprocessable, malleable and intrinsically fire-safe epoxy resin with catalyst-free mixed carboxylate/phosphonate transesterification. Polymer, 2023, 281: 126083
|
21 |
Feng X M , Fan J Z , Li A , Li G Q . Multireusable thermoset with anomalous flame-triggered shape memory effect. ACS Applied Materials & Interfaces, 2019, 11(17): 16075–16086
|
22 |
Ren Q R , Gu S , Liu J H , Wang Y Z , Chen L . Catalyst-free reprocessable, degradable and intrinsically flame-retardant epoxy vitrimer for carbon fiber reinforced composites. Polymer Degradation & Stability, 2023, 211: 110315
|
23 |
Zhang Y R , Gu S , Wang Y Z , Chen L . Intrinsically flame-retardant epoxy vitrimers with catalyst-free multi-reprocessability towards sustainable carbon fiber composites. Sustainable Materials and Technologies, 2024, 40: e00883
|
24 |
Chen J H , Lu J H , Pu X L , Chen L , Wang Y Z . Recyclable, malleable and intrinsically flame-retardant epoxy resin with catalytic transesterification. Chemosphere, 2022, 294: 133778
|
25 |
Hamel C M , Kuang X , Chen K J , Qi H J . Reaction-diffusion model for thermosetting polymer dissolution through exchange reactions assisted by small-molecule solvents. Macromolecules, 2019, 52(10): 3636–3645
|
26 |
Kuang X , Zhou Y Y , Shi Q , Wang T J , Qi H J . Recycling of epoxy thermoset and composites via good solvent assisted and small molecules participated exchange reactions. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9189–9197
|
27 |
Liu Z H , Fang Z Z , Zheng N , Yang K X , Sun Z , Li S J , Li W , Wu J J , Xie T . Chemical upcycling of commodity thermoset polyurethane foams towards high-performance 3D photo-printing resins. Nature Chemistry, 2023, 15(12): 1773–1779
|
28 |
Liu T , Guo X L , Liu W C , Hao C , Wang L W , Hiscox W C , Liu C Y , Jin C , Xin J , Zhang J W . Selective cleavage of ester linkages of anhydride-cured epoxy using a benign method and reuse of the decomposed polymer in new epoxy preparation. Green Chemistry, 2017, 19(18): 4364–4372
|
29 |
Gu S , Xu S D , Lu J H , Pu X L , Ren Q R , Xiao Y F , Wang Y Z , Chen L . Phosphonate-influenced Diels-Alder chemistry toward multi-path recyclable, fire safe thermoset and its carbon fiber composites. EcoMat, 2023, 5(9): e12388
|
30 |
Ye C N , Voet V S D , Folkersma R , Loos K . Robust superamphiphilic membrane with a closed-loop life cycle. Advanced Materials, 2021, 33(15): 2008460
|
31 |
Denissen W , Droesbeke M , Nicolaÿ R , Leibler L , Winne J M , Du Prez F E . Chemical control of the viscoelastic properties of vinylogous urethane vitrimers. Nature Communications, 2017, 8(1): 14857
|
32 |
Ma Z Y , Wang Y , Zhu J , Yu J R , Hu Z M . Bio-based epoxy vitrimers: reprocessibility, controllable shape memory, and degradability. Journal of Polymer Science. Part A, Polymer Chemistry, 2017, 55(10): 1790–1799
|
33 |
Delahaye M , Winne J M , Du Prez F E . Internal catalysis in covalent adaptable networks: phthalate monoester transesterification as a versatile dynamic cross-linking chemistry. Journal of the American Chemical Society, 2019, 141(38): 15277–15287
|
34 |
Hao C , Liu T , Liu W C , Fei M E , Shao L , Kuang W B , Simmons K L , Zhang J W . Recyclable CFRPs with extremely high Tg: hydrothermal recyclability in pure water and upcycling of the recyclates for new composite preparation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(29): 15623–15633
|
35 |
Hao C , Liu T , Zhang S , Liu W C , Shan Y F , Zhang J W . Triethanolamine-mediated covalent adaptable epoxy network: excellent mechanical properties, fast repairing, and easy recycling. Macromolecules, 2020, 53(8): 3110–3118
|
36 |
Van Lijsebetten F , Spiesschaert Y , Winne J M , Du Prez F E . Reprocessing of covalent adaptable polyamide networks through internal catalysis and ring-size effects. Journal of the American Chemical Society, 2021, 143(38): 15834–15844
|
37 |
Zhang J H , Mi X Q , Chen S Y , Xu Z J , Zhang D H , Miao M H , Wang J S . A bio-based hyperbranched flame retardant for epoxy resins. Chemical Engineering Journal, 2020, 381: 122719
|
38 |
Liu X F , Liu B W , Luo X , Guo D M , Zhong H Y , Chen L , Wang Y Z . A novel phosphorus-containing semi-aromatic polyester toward flame retardancy and enhanced mechanical properties of epoxy resin. Chemical Engineering Journal, 2020, 380: 122471
|
39 |
Zhang A L , Zhang J Z , Liu L N , Dai J F , Lu X Y , Huo S Q , Hong M , Liu X H , Lynch M , Zeng X S .
|
40 |
Bai Z C , Huang T , Shen J H , Xie D , Xu J J , Zhu J H , Chen F Q , Zhang W B , Dai J F , Song P A . Molecularly engineered polyphosphazene-derived for advanced polylactide biocomposites with robust toughness, flame retardancy, and UV resistance. Chemical Engineering Journal, 2024, 482: 148964
|
41 |
Huo S Q , Sai T , Ran S Y , Guo Z H , Fang Z P , Song P A , Wang H . A hyperbranched P/N/B-containing oligomer as multifunctional flame retardant for epoxy resins. Composites. Part B, Engineering, 2022, 234: 109701
|
42 |
Huo S Q , Song P A , Yu B , Ran S Y , Chevali V S , Liu L , Fang Z P , Wang H . Phosphorus-containing flame retardant epoxy thermosets: recent advances and future perspectives. Progress in Polymer Science, 2021, 114: 101366
|
43 |
Velencoso M M , Battig A , Markwart J C , Schartel B , Wurm F R . Molecular firefighting-how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angewandte Chemie International Edition, 2018, 57(33): 10450–10467
|
44 |
Zhang L , Li Z , Bi Q Q , Jiang L Y , Zhang X D , Tang E , Cao X M , Li H F , Hobson J , Wang D Y . Strong yet tough epoxy with superior fire suppression enabled by bio-based phosphaphenanthrene towards in-situ formed Diels-Alder network. Composites. Part B, Engineering, 2023, 251: 110490
|
45 |
ChenQHuoS QLuY XDingM MFengJ BHuangG BXuHSunZ QWangZ ZSongP A. Heterostructured graphene@silica@iron phenylphosphinate for fire-retardant, strong, thermally conductive yet electrically insulated epoxy nanocomposites. Small, March 1, 2024, 2310724
|
46 |
Nie S B , Zhao Z Q , Xu Y X , He W , Zhai W L , Yang J N . A strategy to synthesize phosphorus-containing nickel phyllosilicate whiskers to enhance the flame retardancy of epoxy composites with excellent mechanical and dry-friction properties. Frontiers of Chemical Science and Engineering, 2024, 18(3): 28–35
|
47 |
Nie S B , He W , Xu Y X , Zhai W L , Zhang H , Yang J N . Molybdenum disulfide@nickel phyllosilicate hybrid for improving the flame retardancy and wear resistance of epoxy composites. Frontiers of Chemical Science and Engineering, 2023, 17(12): 2114–2126
|
48 |
Ding X M , Chen L , Luo X , He F M , Xiao Y F , Wang Y Z . Biomass-derived dynamic covalent epoxy thermoset with robust mechanical properties and facile malleability. Chinese Chemical Letters, 2022, 33(6): 3245–3248
|
49 |
Shao L , Chang Y C , Zhao B M , Yan X Y , Bliss B J , Fei M E , Yu C H , Zhang J W . Bona fide upcycling strategy of anhydride cured epoxy and reutilization of decomposed dual monomers into multipurpose applications. Chemical Engineering Journal, 2023, 464: 142735
|
50 |
Li P Y , Ma S Q , Wang B B , Xu X W , Feng H Z , Yu Z , Yu T , Liu Y L , Zhu J . Degradable benzyl cyclic acetal epoxy monomers with low viscosity: synthesis, structure-property relationships, application in recyclable carbon fiber composite. Composites Science and Technology, 2022, 219: 109243
|
/
〈 |
|
〉 |