Flame-retardant, recyclable, and hydrothermally degradable epoxy resins and their degradation products for high-strength adhesives

  • Yue-Rong Zhang ,
  • Zhen Qin ,
  • Song Gu ,
  • Jia-Xin Zhao ,
  • Xian-Yue Xiang ,
  • Chuan Liu ,
  • Yu-Zhong Wang ,
  • Li Chen
Expand
  • The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (Ministry of Education), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
l.chen.scu@gmail.com; lichen_hxxy@scu.edu.cn

Received date: 10 Apr 2024

Accepted date: 28 May 2024

Copyright

2024 Higher Education Press

Abstract

To date, sustainable thermosetting polymers and their composites have emerged to address recyclability issues. However, achieving mild degradation of these polymers compromises their comprehensive properties such as flame retardancy and glass transition temperature (Tg). Moreover, the reuse of degradation products after recycling for upcycling remains a significant challenge. This study introduces phosphorus-containing anhydride into tetraglycidyl methylene diphenylamine via a facile anhydride-epoxy curing equilibrium with triethanolamine as a transesterification modifier to successfully prepare flame-retardant, malleable, reprocessable, and easily hydrothermally degradable epoxy vitrimers and recyclable carbon fiber-reinforced epoxy composites (CFRECs). The composite exhibited excellent flame retardancy and a high Tg of 192 °C, while the presence of stoichiometric primary hydroxyl groups along the ester-bonding crosslinks enabled environmentally friendly degradation (in H2O) at 200 °C without any external catalyst. Under mild degradation conditions, the fibers of the composite material were successfully recycled without being damaged, and the degradation products were reused to create a recyclable adhesive with a peel strength of 3.5 MPa. This work presents a method to produce flame retardants and sustainable CFRECs for maximizing the value of degradation products, offering a new upcycling method for high-end applications.

Cite this article

Yue-Rong Zhang , Zhen Qin , Song Gu , Jia-Xin Zhao , Xian-Yue Xiang , Chuan Liu , Yu-Zhong Wang , Li Chen . Flame-retardant, recyclable, and hydrothermally degradable epoxy resins and their degradation products for high-strength adhesives[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(12) : 146 . DOI: 10.1007/s11705-024-2497-y

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

Financial supports by the National Key Research and Development Program of China (Grant No. 2021YFB3700201), the National Science Foundation of China (Grant Nos. 21975166, 51991351, 51991350), the 111 Project (Grant No. B20001) and the Fundamental Research Funds for the Central Universities are sincerely acknowledged.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2497-y and is accessible for authorized users.
1
Discekici E H , St Amant A H , Nguyen S N , Lee I H , Hawker C J , Read de Alaniz J . Endo and exo Diels-Alder adducts: temperature-tunable building blocks for selective chemical functionalization. Journal of the American Chemical Society, 2018, 140: 5009–5013

DOI

2
Yu K , Shi Q , Dunn M L , Wang T J , Qi H J . Carbon fiber reinforced thermoset composite with near 100% recyclability. Advanced Functional Materials, 2016, 26(33): 6098–6106

DOI

3
Vollmer I , Jenks M J F , Roelands M C P , White R J , van Harmelen T , de Wild P , van der Laan G P , Meirer F , Keurentjes J T F , Weckhuysen B M . Beyond mechanical recycling: giving new life to plastic waste. Angewandte Chemie International Edition, 2020, 59(36): 15402–15423

DOI

4
Chao A , Negulescu I , Zhang D H . Dynamic covalent polymer networks based on degenerative lmine bond exchange: tuning the malleability and self-healing properties by solvent. Macromolecules, 2016, 49(17): 6277–6284

DOI

5
Denissen W , Winne J M , Du Prez F E . Vitrimers: permanent organic networks with glass-like fluidity. Chemical Science, 2016, 7(1): 30–38

DOI

6
Montarnal D , Capelot M , Tournilhac F , Leibler L . Silica-like malleable materials from permanent organic networks. Science, 2011, 334(6058): 965–968

DOI

7
Xu Y Z , Dai S L , Bi L W , Jiang J X , Zhang H B , Chen Y X . Catalyst-free self-healing bio-based vitrimer for a recyclable, reprocessable, and self-adhered carbon fiber reinforced composite. Chemical Engineering Journal, 2022, 429: 132518

DOI

8
Capelot M , Unterlass M M , Tournilhac F , Leibler L . Catalytic control of the vitrimer glass transition. ACS Macro Letters, 2012, 1(7): 789–792

DOI

9
Jin Y H , Lei Z P , Taynton P , Huang S F , Zhang W . Malleable and recyclable thermosets: the next generation of plastics. Matter, 2019, 1(6): 1456–1493

DOI

10
Kloxin C J , Bowman C N . Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chemical Society Reviews, 2013, 42(17): 7161–7173

DOI

11
Ding X M , Chen L , Xu Y J , Shi X H , Luo X , Song X , Wang Y Z . Robust epoxy vitrimer with simultaneous ultrahigh impact property, fire safety, and multipath recyclability via rigid-flexible imine networks. ACS Sustainable Chemistry & Engineering, 2023, 11(39): 14445–14456

DOI

12
Podgórski M , Fairbanks B D , Kirkpatrick B E , McBride M , Martinez A , Dobson A , Bongiardina N J , Bowman C N . Covalent adaptable networks: toward stimuli-responsive dynamic thermosets through continuous development and improvements in covalent adaptable networks. Advanced Materials, 2020, 32(20): 2070158

DOI

13
Liu Y Y , Liu G L , Li Y D , Weng Y X , Zeng J B . Biobased high-performance epoxy vitrimer with UV shielding for recyclable carbon fiber reinforced composites. ACS Sustainable Chemistry & Engineering, 2021, 9(12): 4638–4647

DOI

14
Liu T , Hao C , Wang L W , Li Y Z , Liu W C , Xin J N , Zhang J W . Eugenol-derived biobased epoxy: shape memory, repairing, and recyclability. Macromolecules, 2017, 50(21): 8588–8597

DOI

15
Liu T , Zhang S , Hao C , Verdi C , Liu W C , Liu H , Zhang J W . Glycerol induced catalyst-free curing of epoxy and vitrimer preparation. Macromolecular Rapid Communications, 2019, 40(7): 1800889

DOI

16
Liu T , Zhao B M , Zhang J W . Recent development of repairable, malleable and recyclable thermosetting polymers through dynamic transesterification. Polymer, 2020, 194: 122392

DOI

17
Yang Y , Xu Y S , Ji Y , Wei Y . Functional epoxy vitrimers and composites. Progress in Materials Science, 2021, 120: 100710

DOI

18
Gu S , Xiao Y F , Tan S H , Liu B W , Guo D M , Wang Y Z , Chen L . Neighboring molecular engineering in Diels-Alder chemistry enabling easily recyclable carbon fiber reinforced composites. Angewandte Chemie International Edition, 2023, 62(51): e202312638

DOI

19
Chen J H , Liu B W , Lu J H , Lu P , Tang Y L , Chen L , Wang Y Z . Catalyst-free dynamic transesterification towards a high-performance and fire-safe epoxy vitrimer and its carbon fiber composite. Green Chemistry, 2022, 24(18): 6980–6988

DOI

20
Chen J H , Zhang Y R , Wang Y Z , Chen L . Reprocessable, malleable and intrinsically fire-safe epoxy resin with catalyst-free mixed carboxylate/phosphonate transesterification. Polymer, 2023, 281: 126083

DOI

21
Feng X M , Fan J Z , Li A , Li G Q . Multireusable thermoset with anomalous flame-triggered shape memory effect. ACS Applied Materials & Interfaces, 2019, 11(17): 16075–16086

DOI

22
Ren Q R , Gu S , Liu J H , Wang Y Z , Chen L . Catalyst-free reprocessable, degradable and intrinsically flame-retardant epoxy vitrimer for carbon fiber reinforced composites. Polymer Degradation & Stability, 2023, 211: 110315

DOI

23
Zhang Y R , Gu S , Wang Y Z , Chen L . Intrinsically flame-retardant epoxy vitrimers with catalyst-free multi-reprocessability towards sustainable carbon fiber composites. Sustainable Materials and Technologies, 2024, 40: e00883

DOI

24
Chen J H , Lu J H , Pu X L , Chen L , Wang Y Z . Recyclable, malleable and intrinsically flame-retardant epoxy resin with catalytic transesterification. Chemosphere, 2022, 294: 133778

DOI

25
Hamel C M , Kuang X , Chen K J , Qi H J . Reaction-diffusion model for thermosetting polymer dissolution through exchange reactions assisted by small-molecule solvents. Macromolecules, 2019, 52(10): 3636–3645

DOI

26
Kuang X , Zhou Y Y , Shi Q , Wang T J , Qi H J . Recycling of epoxy thermoset and composites via good solvent assisted and small molecules participated exchange reactions. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9189–9197

DOI

27
Liu Z H , Fang Z Z , Zheng N , Yang K X , Sun Z , Li S J , Li W , Wu J J , Xie T . Chemical upcycling of commodity thermoset polyurethane foams towards high-performance 3D photo-printing resins. Nature Chemistry, 2023, 15(12): 1773–1779

DOI

28
Liu T , Guo X L , Liu W C , Hao C , Wang L W , Hiscox W C , Liu C Y , Jin C , Xin J , Zhang J W . Selective cleavage of ester linkages of anhydride-cured epoxy using a benign method and reuse of the decomposed polymer in new epoxy preparation. Green Chemistry, 2017, 19(18): 4364–4372

DOI

29
Gu S , Xu S D , Lu J H , Pu X L , Ren Q R , Xiao Y F , Wang Y Z , Chen L . Phosphonate-influenced Diels-Alder chemistry toward multi-path recyclable, fire safe thermoset and its carbon fiber composites. EcoMat, 2023, 5(9): e12388

DOI

30
Ye C N , Voet V S D , Folkersma R , Loos K . Robust superamphiphilic membrane with a closed-loop life cycle. Advanced Materials, 2021, 33(15): 2008460

DOI

31
Denissen W , Droesbeke M , Nicolaÿ R , Leibler L , Winne J M , Du Prez F E . Chemical control of the viscoelastic properties of vinylogous urethane vitrimers. Nature Communications, 2017, 8(1): 14857

DOI

32
Ma Z Y , Wang Y , Zhu J , Yu J R , Hu Z M . Bio-based epoxy vitrimers: reprocessibility, controllable shape memory, and degradability. Journal of Polymer Science. Part A, Polymer Chemistry, 2017, 55(10): 1790–1799

DOI

33
Delahaye M , Winne J M , Du Prez F E . Internal catalysis in covalent adaptable networks: phthalate monoester transesterification as a versatile dynamic cross-linking chemistry. Journal of the American Chemical Society, 2019, 141(38): 15277–15287

DOI

34
Hao C , Liu T , Liu W C , Fei M E , Shao L , Kuang W B , Simmons K L , Zhang J W . Recyclable CFRPs with extremely high Tg: hydrothermal recyclability in pure water and upcycling of the recyclates for new composite preparation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(29): 15623–15633

DOI

35
Hao C , Liu T , Zhang S , Liu W C , Shan Y F , Zhang J W . Triethanolamine-mediated covalent adaptable epoxy network: excellent mechanical properties, fast repairing, and easy recycling. Macromolecules, 2020, 53(8): 3110–3118

DOI

36
Van Lijsebetten F , Spiesschaert Y , Winne J M , Du Prez F E . Reprocessing of covalent adaptable polyamide networks through internal catalysis and ring-size effects. Journal of the American Chemical Society, 2021, 143(38): 15834–15844

DOI

37
Zhang J H , Mi X Q , Chen S Y , Xu Z J , Zhang D H , Miao M H , Wang J S . A bio-based hyperbranched flame retardant for epoxy resins. Chemical Engineering Journal, 2020, 381: 122719

DOI

38
Liu X F , Liu B W , Luo X , Guo D M , Zhong H Y , Chen L , Wang Y Z . A novel phosphorus-containing semi-aromatic polyester toward flame retardancy and enhanced mechanical properties of epoxy resin. Chemical Engineering Journal, 2020, 380: 122471

DOI

39
Zhang A L , Zhang J Z , Liu L N , Dai J F , Lu X Y , Huo S Q , Hong M , Liu X H , Lynch M , Zeng X S . . Engineering phosphorus-containing lignin for epoxy biocomposites with enhanced thermal stability, fire retardancy and mechanical properties. Journal of Materials Science and Technology, 2023, 167: 82–93

DOI

40
Bai Z C , Huang T , Shen J H , Xie D , Xu J J , Zhu J H , Chen F Q , Zhang W B , Dai J F , Song P A . Molecularly engineered polyphosphazene-derived for advanced polylactide biocomposites with robust toughness, flame retardancy, and UV resistance. Chemical Engineering Journal, 2024, 482: 148964

DOI

41
Huo S Q , Sai T , Ran S Y , Guo Z H , Fang Z P , Song P A , Wang H . A hyperbranched P/N/B-containing oligomer as multifunctional flame retardant for epoxy resins. Composites. Part B, Engineering, 2022, 234: 109701

DOI

42
Huo S Q , Song P A , Yu B , Ran S Y , Chevali V S , Liu L , Fang Z P , Wang H . Phosphorus-containing flame retardant epoxy thermosets: recent advances and future perspectives. Progress in Polymer Science, 2021, 114: 101366

DOI

43
Velencoso M M , Battig A , Markwart J C , Schartel B , Wurm F R . Molecular firefighting-how modern phosphorus chemistry can help solve the challenge of flame retardancy. Angewandte Chemie International Edition, 2018, 57(33): 10450–10467

DOI

44
Zhang L , Li Z , Bi Q Q , Jiang L Y , Zhang X D , Tang E , Cao X M , Li H F , Hobson J , Wang D Y . Strong yet tough epoxy with superior fire suppression enabled by bio-based phosphaphenanthrene towards in-situ formed Diels-Alder network. Composites. Part B, Engineering, 2023, 251: 110490

DOI

45
ChenQHuoS QLuY XDingM MFengJ BHuangG BXuHSunZ QWangZ ZSongP A. Heterostructured graphene@silica@iron phenylphosphinate for fire-retardant, strong, thermally conductive yet electrically insulated epoxy nanocomposites. Small, March 1, 2024, 2310724

46
Nie S B , Zhao Z Q , Xu Y X , He W , Zhai W L , Yang J N . A strategy to synthesize phosphorus-containing nickel phyllosilicate whiskers to enhance the flame retardancy of epoxy composites with excellent mechanical and dry-friction properties. Frontiers of Chemical Science and Engineering, 2024, 18(3): 28–35

DOI

47
Nie S B , He W , Xu Y X , Zhai W L , Zhang H , Yang J N . Molybdenum disulfide@nickel phyllosilicate hybrid for improving the flame retardancy and wear resistance of epoxy composites. Frontiers of Chemical Science and Engineering, 2023, 17(12): 2114–2126

DOI

48
Ding X M , Chen L , Luo X , He F M , Xiao Y F , Wang Y Z . Biomass-derived dynamic covalent epoxy thermoset with robust mechanical properties and facile malleability. Chinese Chemical Letters, 2022, 33(6): 3245–3248

DOI

49
Shao L , Chang Y C , Zhao B M , Yan X Y , Bliss B J , Fei M E , Yu C H , Zhang J W . Bona fide upcycling strategy of anhydride cured epoxy and reutilization of decomposed dual monomers into multipurpose applications. Chemical Engineering Journal, 2023, 464: 142735

DOI

50
Li P Y , Ma S Q , Wang B B , Xu X W , Feng H Z , Yu Z , Yu T , Liu Y L , Zhu J . Degradable benzyl cyclic acetal epoxy monomers with low viscosity: synthesis, structure-property relationships, application in recyclable carbon fiber composite. Composites Science and Technology, 2022, 219: 109243

DOI

Outlines

/