Enhanced formic acid production for CO2 photocatalytic reduction over Pd/H-TiO2 catalyst
Received date: 04 Apr 2024
Accepted date: 15 May 2024
Copyright
The photocatalytic reduction of CO2 into formic acid is a feasible approach to alleviate the effects of global climate change and achieve chemical energy storage. It is important to design highly active photocatalysts to improve the selectivity and yield of formic acid. In this study, TiO2-based catalysts were prepared and loaded with Pd nanoparticles via an impregnation process. The Pd/H-TiO2 catalyst demonstrated superior CO2 reduction activity and a high formic acid production rate of 14.14 mmolcat·g–1·h–1. The excellent catalytic performance observed in the presence of a Pd/H-TiO2 catalyst is ascribed to the synergy between Ov and Pd. The presence of Ov led to increase in CO2 adsorption while Pd loading enhanced the photogenerated electron-hole pair separation. Electron transfer from H-TiO2 to Pd also contributed to CO2 activation.
Key words: CO2 reduction; formic acid; photocatalysis; TiO2 catalyst
Huimin Gao , Jinpeng Zhang , Fangyuan Zhang , Jieying Jing , Wen-Ying Li . Enhanced formic acid production for CO2 photocatalytic reduction over Pd/H-TiO2 catalyst[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(11) : 134 . DOI: 10.1007/s11705-024-2485-2
1 |
Yuan Z M , Zhu X L , Gao X Q , An C H , Wang Z , Zuo C , Dionysiou D D , He H , Jiang Z Y . Enhancing photocatalytic CO2 reduction with TiO2-based materials: strategies, mechanisms, challenges, and perspectives. Environmental Science and Ecotechnology, 2024, 20: 100368
|
2 |
Wang S W , Wang L G , Wang D S , Li Y D . Recent advances of single-atom catalysts in CO2 conversion. Energy & Environmental Science, 2023, 16(7): 2759–2803
|
3 |
Pan F P , Li B Y , Deng W , Du Z C , Gang Y , Wang G F , Li Y . Promoting electrocatalytic CO2 reduction on nitrogen-doped carbon with sulfur addition. Applied Catalysis B: Environmental, 2019, 252: 240–249
|
4 |
Liu M X , Xu Y K , Meng Y , Wang L J , Wang H , Huang Y C , Onishi N , Wang L , Fan Z J , Himeda Y . Heterogeneous catalysis for carbon dioxide mediated hydrogen storage technology based on formic acid. Advanced Energy Materials, 2022, 12(31): 2200817
|
5 |
Lv C C , Bai X H , Ning S B , Song C X , Guan Q Q , Liu B , Li Y G , Ye J H . Nanostructured materials for photothermal carbon dioxide hydrogenation: regulating solar utilization and catalytic performance. ACS Nano, 2023, 17(3): 1725–1738
|
6 |
Zhang S Q , Yu H Y , Wang Y , Yan Y X , Dai J , Shu D J , Wu X L . Surface dual metal occupations in Fe-doped FexBi2–xO3 induce highly efficient photocatalytic CO2 reduction. ACS Applied Materials & Interfaces, 2023, 15(20): 25049–25057
|
7 |
Saito D , Tamaki Y , Ishitani O . Photocatalysis of CO2 reduction by a Ru(II)-Ru(II) supramolecular catalyst adsorbed on Al2O3. ACS Catalysis, 2023, 13(7): 4376–4383
|
8 |
Pan H Q , Heagy M D . Photons to formate: a review on photocatalytic reduction of CO2 to formic acid. Nanomaterials, 2020, 10(12): 2422
|
9 |
Xiong J , Yang A J , Sun Q , Gao H X , Zhang H Y , Mao Y , Liang Z W . Insights into CO2 activation and charge transfer in photocatalytic reduction of CO2 on pure and metal single atom modified TiO2 surfaces. Molecular Catalysis, 2023, 547: 113370
|
10 |
Khan H , Shah M U H . Modification strategies of TiO2 based photocatalysts for enhanced visible light activity and energy storage ability: a review. Journal of Environmental Chemical Engineering, 2023, 11(6): 111532
|
11 |
Li G H , Sun Y Y , Zhang Q M , Gao Z , Sun W , Zhou X X . Ag quantum dots modified hierarchically porous and defective TiO2 nanoparticles for improved photocatalytic CO2 reduction. Chemical Engineering Journal, 2021, 410: 128397
|
12 |
Wu Y W , Yan L , Yu Y Q , Jing C Y . Photocatalytic CO2 reduction to CH4 on iron porphyrin supported on atomically thin defective titanium dioxide. Catalysis Science & Technology, 2021, 11(18): 6103–6111
|
13 |
Ali Khan A , Tahir M . Synergistic effect of Co/La in oxygen vacancy rich ternary CoAlLa layered double hydroxide with enhanced reductive sites for selective photoreduction of CO2 to CH4. Energy & Fuels, 2021, 35(10): 8922–8943
|
14 |
Zhao H L , Pan F P , Li Y . A review on the effects of TiO2 surface point defects on CO2 photoreduction with H2O. Journal of Materiomics, 2017, 3(1): 17–32
|
15 |
Song G X , Lang X F , Huo C X , Ren S H , Wang Y J , Tang Z K , Chen X G . Mechanism of photocatalytic reduction of CO2 to CH4 on F-doped defective anatase TiO2 (101) surface: a density functional theory study. Surface Science, 2023, 730: 122247
|
16 |
Wang S , Nie X W , Lin J B , Ding F S , Song C S , Guo X W . Computational design of single-atom modified Ti-MOFs for photocatalytic CO2 reduction to C1 chemicals. ChemSusChem, 2024, 17(8): e202301619
|
17 |
Wei F , Luo T , Wang Y , Kong L C , Feng J J , Li Z Q , Lu J Q , Yang F . Boosting CO2 electroreduction to formate via in-situ formation of ultrathin Bi nanosheets decorated with monodispersed Pd nanoparticles. Journal of Catalysis, 2023, 424: 50–63
|
18 |
Zhang F , Li Y H , Qi M Y , Tang Z R , Xu Y J . Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2020, 268: 118380
|
19 |
Shi Y X , Li L L , Xu Z , Guo F , Li Y , Shi W L . Synergistic coupling of piezoelectric and plasmonic effects regulates the Schottky barrier in Ag nanoparticles/ultrathin g-C3N4 nanosheets heterostructure to enhance the photocatalytic activity. Applied Surface Science, 2023, 616: 156466
|
20 |
Jin B B , Ye X , Zhong H , Jin F M . Light-driven hydrogenation of bicarbonate into formate over nano-Pd/TiO2. ACS Sustainable Chemistry & Engineering, 2020, 8(17): 6798–6805
|
21 |
Zheng M Y , Yang J , Fan W L , Zhao X . Oxygen vacancy and nitrogen doping collaboratively boost performance and stability of TiO2-supported Pd catalysts for CO2 photoreduction: a DFT study. Physical Chemistry Chemical Physics, 2021, 23(43): 24801–24813
|
22 |
Li J , Zhou H , Zhuo H , Wei Z Z , Zhuang G L , Zhong X , Deng S W , Li X N , Wang J G . Oxygen vacancies on TiO2 promoted the activity and stability of supported Pd nanoparticles for the oxygen reduction reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(5): 2264–2272
|
23 |
Vequizo J J M , Kato K , Amano F , Yamakata A . Unfolding the impact of H2-reduction treatment in enhancing the photocatalytic activity of rutile TiO2 based on photocarriers dynamics. Journal of Physical Chemistry C, 2023, 127(22): 10411–10418
|
24 |
Sang L X , Zhao Y X , Burda C . TiO2 nanoparticles as functional building blocks. Chemical Reviews, 2014, 114(19): 9283–9318
|
25 |
Zhong J B , Lu Y , Jiang W D , Meng Q M , He X Y , Li J Z , Chen Y Q . Characterization and photocatalytic property of Pd/TiO2 with the oxidation of gaseous benzene. Journal of Hazardous Materials, 2009, 168(2-3): 1632–1635
|
26 |
Yilmaz P , Lacerda A M , Larrosa I , Dunn S . Photoelectrocatalysis of rhodamine B and solar hydrogen production by TiO2 and Pd/TiO2 catalyst systems. Electrochimica Acta, 2017, 231: 641–649
|
27 |
Phan T N , Park Y K , Lee I G , Ko C H . Enhancement of C–O bond cleavage to afford aromatics in the hydrodeoxygenation of anisole over ruthenium-supporting mesoporous metal oxides. Applied Catalysis A, General, 2017, 544: 84–93
|
28 |
Samsudin E M , Hamid S B A , Juan J C , Basirun W J , Kandjani A E . Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response. Applied Surface Science, 2015, 359: 883–896
|
29 |
Liu L , Yu P Y , Chen X B , Mao S S , Shen D Z . Hydrogenation and disorder in engineered black TiO2. Physical Review Letters, 2013, 111(6): 065505
|
30 |
Mo L B , Wang Y , Bai Y , Xiang Q Y , Li Q , Yao W Q , Wang J O , Ibrahim K , Wang H H , Wan C H .
|
31 |
Zhang Y S , Liu J X , Qian K , Jia A P , Li D , Shi L , Hu J , Zhu J F , Huang W X . Structure sensitivity of Au-TiO2 strong metal-support interactions. Angewandte Chemie International Edition, 2021, 60(21): 12074–12081
|
32 |
Li J L , Zhang M , Guan Z J , Li Q Y , He C Q , Yang J J . Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 2017, 206: 300–307
|
33 |
Jiang D L , Zhou Y M , Zhang Q X , Song Q , Zhou C J , Shi X L , Li D . Synergistic integration of AuCu Co-catalyst with oxygen vacancies on TiO2 for efficient photocatalytic conversion of CO2 to CH4. ACS Applied Materials & Interfaces, 2021, 13(39): 46772–46782
|
34 |
Zhu Q H , Deng Z S , Xie H J , Xing M Y , Zhang J L . Investigation of concerted proton-electron donors for promoting the selective production of HCOOH in CO2 photoreduction. ACS Catalysis, 2023, 13(5): 3254–3262
|
35 |
Peña R , Romero R , Amado-Piña D , Natividad R . Cu/TiO2 photo-catalyzed CO2 chemical reduction in a multiphase capillary reactor. Topics in Catalysis, 2024, 67(5-8): 377–393
|
36 |
Zhang H N , Li Y F , Wang J Z , Wu N N , Sheng H , Chen C C , Zhao J C . An unprecedent hydride transfer pathway for selective photocatalytic reduction of CO2 to formic acid on TiO2. Applied Catalysis B: Environmental, 2021, 284: 119692
|
37 |
Iguchi S , Kikkawa S , Teramura K , Hosokawa S , Tanaka T . Investigation of the electrochemical and photoelectrochemical properties of Ni-Al LDH photocatalysts. Physical Chemistry Chemical Physics, 2016, 18(20): 13811–13819
|
38 |
Huang X Y , Lei R , Yuan J , Gao F , Jiang C K , Feng W H , Zhuang J D , Liu P . Insight into the piezo-photo coupling effect of PbTiO3/CdS composites for piezo-photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2021, 282: 119586
|
39 |
Zheng D , Xue Y F , Wang J , Varbanov P S , Klemes J J , Yin C . Nanocatalysts in photocatalytic water splitting for green hydrogen generation: challenges and opportunities. Journal of Cleaner Production, 2023, 414: 137700
|
40 |
Quan Q , Xie S J , Weng B , Wang Y , Xu Y J . Revealing the double-edged sword role of graphene on boosted charge transfer versus active site control in TiO2 nanotube arrays@RGO/MoS2 heterostructure. Small, 2018, 14(21): 1704531
|
41 |
Basumatary R , Basumatary B , Konwar D , Ramchiary A . Tailored highly efficient Co-doped TiO2/CoTiO3 heterojunction photocatalyst for methylene blue degradation under visible light. Journal of the Korean Ceramic Society, 2023, 60(3): 547–559
|
42 |
Ren J , Ouyang S , Xu H , Meng X , Wang T , Wang D , Ye J . Targeting activation of CO2 and H2 over Ru-loaded ultrathin layered double hydroxides to achieve efficient photothermal CO2 methanation in flow-type system. Advanced Energy Materials, 2017, 7(5): 1601657
|
43 |
Chang L , Besteiro L V , Sun J C , Santiago E Y , Gray S K , Wang Z M , Govorov A O . Electronic structure of the plasmons in metal nanocrystals: fundamental limitations for the energy efficiency of hot electron generation. ACS Energy Letters, 2019, 4(10): 2552–2568
|
44 |
Cao Y H , Zhang R Y , Zhou T L , Jin S M , Huang J D , Ye L Q , Huang Z A , Wang F , Zhou Y . Zhou Y. B–O bonds in ultrathin boron nitride nanosheets to promote photocatalytic carbon dioxide conversion. ACS Applied Materials & Interfaces, 2020, 12(8): 9935–9943
|
45 |
Zindrou A , Deligiannakis Y . Quantitative in situ monitoring of Cu-atom release by Cu2O nanocatalysts under photocatalytic CO2 reduction conditions: new insights into the photocorrosion mechanism. Nanomaterials (Basel, Switzerland), 2023, 13(11): 1773
|
46 |
Li A , Cao Q , Zhou G Y , Schmidt B , Zhu W J , Yuan X T , Huo H L , Gong J L , Antonietti M . Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface. Angewandte Chemie International Edition, 2019, 58(41): 14549–14555
|
47 |
Qu T X , Wei S Z , Xiong Z , Zhang J Y , Zhao Y C . Progress and prospect of CO2 photocatalytic reduction to methanol. Fuel Processing Technology, 2023, 251: 107933
|
/
〈 | 〉 |