Advanced membrane separation based on two-dimensional porous nanosheets

  • Yanli Zhang ,
  • Shurui Han ,
  • Fengkai Wang ,
  • Hui Ye ,
  • Qingping Xin ,
  • Xiaoli Ding ,
  • Lizhi Zhao ,
  • Ligang Lin ,
  • Hong Li ,
  • Yuzhong Zhang
Expand
  • State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
qianye325326@163.com
xinqingping@tiangong.edu.cn
zhangyz2004cn@vip.163.com

Received date: 04 Mar 2024

Accepted date: 14 May 2024

Copyright

2024 Higher Education Press

Abstract

Two-dimensional porous nanosheets such as metal-organic frameworks, covalent organic frameworks, fluorides of light lanthanide, and perforated graphene oxide are a class of nanomaterials with sheet-like morphologies and defined pore structures. Due to their porous structure and large lateral sizes, these materials exhibit excellent molecular transport properties in separation processes. This review focuses on the pore formation strategies for two-dimensional porous nanosheets and applications of these nanosheets and their constructed membranes in gas separation processes and separation processes applicable to water treatment and the humidity control of gas permeation. A brief discussion of challenges and future developments of separation applications with two-dimensional porous nanosheets and their constructed membranes is included in this review.

Cite this article

Yanli Zhang , Shurui Han , Fengkai Wang , Hui Ye , Qingping Xin , Xiaoli Ding , Lizhi Zhao , Ligang Lin , Hong Li , Yuzhong Zhang . Advanced membrane separation based on two-dimensional porous nanosheets[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(11) : 128 . DOI: 10.1007/s11705-024-2479-0

Competing interests

The authors declare that they have no competing interests.
1
Ahmed Z , Rehman F , Ali U , Ali A , Iqbal M , Thebo K H , Ali A , Iqbal M , Thebo K H . Recent advances in MXene-based separation membranes. ChemBioEng Reviews, 2021, 8(2): 110–120

DOI

2
Kaldis S P , Kapantaidakis G C , Sakellaropoulos G P . Polymer membrane conditioning and design for enhanced CO2-N2 separation. Coal Science and Technology, 1995, 24: 1927–1930

DOI

3
Werber J R , Osuji C O , Elimelech M . Materials for next-generation desalination and water purification membranes. Nature Reviews. Materials, 2016, 1(5): 16018–16034

DOI

4
Wang L , Boutilier M S H , Kidambi P R , Jang D , Hadjiconstantinou N , Karnik R . Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nature Nanotechnology, 2017, 12(6): 509–522

DOI

5
Koros W J , Zhang C . Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 2017, 16(3): 289–297

DOI

6
Sholl D S , Lively R P . Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437

DOI

7
Wang W , Wei Y Y , Fan J , Cai J H , Lu Z , Ding L , Wang H H . Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications. Frontiers of Chemical Science and Engineering, 2021, 15(4): 793–819

DOI

8
Giwa A , Ahmed M , Hasan S W . Polymers for membrane filtration in water purification. Polymeric Materials for Clean Water, 2019, 16: 167–190

DOI

9
Park H B , Kamcev J , Robeson L M , Elimelech M , Freeman B D . Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 2017, 356(6343): eaab0530–0540

10
Cheng Y , Pu Y , Zhao D . Two-dimensional membranes: new paradigms for high-performance separation membranes. Chemistry, an Asian Journal, 2020, 15(15): 2241–2270

DOI

11
Novoselov K S , Geim A K , Morozov S V , Jiang D , Zhang Y , Dubonos S V , Grigorieva I V , Firsov A A . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

DOI

12
Bux H , Liang F , Li Y , Cravillon J , Wiebcke M , Caro J . Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009, 131(44): 16000–16001

DOI

13
Qin Y T , Wan Y , Guo J , Zhao M T . Two-dimensional metal-organic framework nanosheet composites: preparations and applications. Chinese Chemical Letters, 2022, 33(2): 693–702

DOI

14
Côté A P , Benin A I , Ockwig N W , O’keeffe M , Matzger A J , Yaghi O M. Matzger A J , Yaghi O M . Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166–1170

DOI

15
Alhabeb M , Maleski K , Anasori B , Lelyukh P , Clark L , Sin S , Gogotsi Y . Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633–7644

DOI

16
Zhang X , Xie X , Wang H , Zhang J , Pan B , Xie Y . Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of the American Chemical Society, 2013, 135(1): 18–21

DOI

17
Wang Q , O’hare D . Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155

DOI

18
Zhang H . Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469

DOI

19
Ding L , Wei Y Y , Wang Y J , Chen H B , Caro J , Wang H H . A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 56(7): 1825–1829

DOI

20
Ajibade T F , Tian H L , Lasisi K H , Zhang K S . Bio-inspired PDA@WS2 polyacrylonitrile ultrafiltration membrane for the effective separation of saline oily wastewater and the removal of soluble dye. Separation and Purification Technology, 2022, 299: 12711–12722

DOI

21
Han S Q , You W H , Lv S H , Du C J , Zhang X , Zhang E , Zhu J Y , Zhang Y T . Ionic liquid modified COF nanosheet interlayered polyamide membranes for elevated nanofiltration performance. Desalination, 2023, 548: 116300–116311

DOI

22
Kunimatsu M , Nakagawa K , Yoshioka T , Shintani T , Yasui T , Kamio E , Tsang S C E , Li J X , Matsuyama H . Design of niobate nanosheet-graphene oxide composite nanofiltration membranes with improved permeability. Journal of Membrane Science, 2020, 595: 117579–117608

DOI

23
Liu Y , Wang X P , Zong Z A , Lin R J , Zhang X Y , Chen F S , Ding W D , Zhang L L , Meng X M , Hou J W . Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination. Journal of Membrane Science, 2022, 653: 120520–120531

DOI

24
Liu H , Li B , Zhao P , Xu R M , Tang C Y , Song W L , Habib Z A , Wang X H . Fabrication of novel thin-film composite membrane based on ultrathin metal-organic framework interlayer for enhancing forward osmosis performance. Chinese Chemical Letters, 2023, 34(12): 108369–108379

DOI

25
Liu M , Gurr P A , Fu Q , Webley P A , Qiao G G . Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(46): 23169–23196

DOI

26
Wang P Y , Peng Y , Zhu C Y , Yao R , Song H L , Kun L , Yang W S . Single-phase covalent organic framework staggered stacking nanosheet membrane for CO2-selective separation. Angewandte Chemie International Edition, 2021, 60(35): 19047–19052

DOI

27
Manchanda P , Chisca S , Upadhyaya L , Musteata V E , Carrington M , Nunes S P . Diffusion-induced in situ growth of covalent organic frameworks for composite membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(45): 25802–25807

DOI

28
Wang F , Han S , Zhang Y , Gao L , Li X , Zhao L , Ye H , Li H , Xin Q , Zhang Y . Constructing rapid water vapor transport channels within mixed matrix membranes based on two-dimensional mesoporous nanosheets. Communications Chemistry, 2022, 5(1): 2065–2075

DOI

29
Wang J , Yang P , Liu L , Zheng B , Jiang J , Ma J , Yan Y , Yang S , Yang L , Liu Q K . . Facile exfoliation of two-dimensional crystalline monolayer nanosheets from an amorphous metal-organic framework. Chinese Chemical Society Chemistry, 2022, 4(6): 1879–1888

DOI

30
Zhang K , Fang Z B , Huang Q Q , Zhang A A , Li J L , Li J Y , Zhang Y , Zhang T , Cao R . Exfoliation of a two-dimensional metal-organic framework for enhanced photocatalytic CO2 reduction. Inorganic Chemistry, 2023, 62(22): 8472–8477

DOI

31
Shao B , He X L , Huang D , Xiang Y L , Luo Y , Wei Y M , Jiang L B , Huang R K , Dong M , Huang J . Oriented exfoliating 3D metal-organic frameworks into ultrathin metal-organic nanosheets with different crystal faces. Advanced Functional Materials, 2024, 2315911

DOI

32
Abdelhamid H N . High performance and ultrafast reduction of 4-nitrophenol using metal-organic frameworks. Journal of Environmental Chemical Engineering, 2021, 9(1): 104404–104415

DOI

33
Yin M , Li Z , Wang L , Tang S K . Preparation of hierarchically porous PVP/ZIF-8 in supercritical CO2 by PVP-induced defect-formation method for high-efficiency gas adsorption. Separation and Purification Technology, 2023, 314: 123550–123559

DOI

34
Jeong S K , Jeong J Y , Lim S , Kim W S , Kwon H T , Kim J . Mixed matrix membranes incorporating two-dimensional ZIF-8 nanosheets for enhanced CO2/N2 separation. Chemical Engineering Journal, 2024, 481: 148294–148305

DOI

35
Yang J , Kong L , Huang C , Wang C C , Wei S H , Zhou L . Liquid-liquid interfacial approach for rapid synthesis of well-crystalline two-dimensional metal-organic frameworks for nitro reduction. Chemical Engineering Journal, 2024, 485: 149969–149979

DOI

36
Lu H , Zhu S . Interfacial synthesis of free-standing metal-organic framework membranes. European Journal of Inorganic Chemistry, 2013, 2013(8): 1294–1300

DOI

37
Cao L A , Wei M , Guo X , Wang D L , Chen L , Guo J . Conductive Ni3(HITP)2 nanofilm with asymmetrical morphology prepared by gas-liquid interface self-assembly for glucose sensing. Ionics, 2024, 30(4): 2375–2385

DOI

38
Guo Y Y , Zhang Q , Gao S Q , Wang H Y , Li Z Y , Qiu J K , Zhao Y , Liu Z M , Wang J J . Bi-functional ionic liquids facilitate liquid-phase exfoliation of porphyrin-based covalent organic frameworks in water for highly efficient CO2 photoreduction. Green Chemistry, 2022, 24(24): 9530–9541

DOI

39
Yao J , Liu C , Liu X , Guo J , Zhang S , Zheng J , Li S . Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane. Journal of Membrane Science, 2020, 601: 117864–117875

DOI

40
Wang T , Zhang R J , Zhai P D , Li M J , Liu X Y , Li C X . Electrochemically exfoliated covalent organic frameworks for improved photocatalytic hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2024, 12(2): 1292–1299

DOI

41
Liu R , Yan Q , Tang Y , Liu R , Huang L , Shuai Q . NaCl template-assisted synthesis of self-floating COFs foams for the efficient removal of sulfamerazine. Journal of Hazardous Materials, 2022, 421: 126702–126714

DOI

42
Ding C , Breunig M , Timm J , Marschall R , Senker J , Agarwal S . Flexible, mechanically stable, porous self-standing microfiber network membranes of covalent organic frameworks: preparation method and characterization. Advanced Functional Materials, 2021, 31(49): 2106507–2106515

DOI

43
Chen J , Li R , Liu S , Zhang J , Wu X , Wang J . Surfactant-assisted interfacial polymerization towards high-crystallinity COF membranes for organic solvent nanofiltration. Journal of Membrane Science, 2024, 694: 122404–122415

DOI

44
Ortega-Guerrero A , Sahabudeen H , Croy A , Dianat A , Dong R , Feng X , Cuniberti G . Multiscale modeling strategy of 2D covalent organic frameworks confined at an air-water interface. ACS Applied Materials & Interfaces, 2021, 13(22): 26411–26420

DOI

45
Ou Z W , Liang Z H , Dong X , Tan F L , Gong L , Zhao P , Wang H L , Liu W , Zheng Z K . Surfactants mediated synthesis of highly crystalline thin films of imine-linked covalent organic frameworks on water surface. Chinese Journal of Chemistry, 2021, 39(12): 3322–3328

DOI

46
Shi X , Ma D , Xu F , Zhang Z , Wang Y . Table-salt enabled interface-confined synthesis of covalent organic framework (COF) nanosheets. Chemical Science, 2020, 11(4): 989–996

DOI

47
Yu H , Guan J , Chen Y , Sun Y X , Zhou S Y , Zheng J F , Zhang Q F , Li S H , Zhang S B . Large-area soluble covalent organic framework oligomer coating for organic solution nanofiltration membranes. Nano Micro Small, 2023, 20(4): 2305613–2305624

48
Zhang L , Kang W , Ma Q , Xie Y , Jia Y , Deng N , Zhang Y , Ju J , Cheng B . Two-dimensional acetate-based light lanthanide fluoride nanomaterials (F-Ln, Ln = La, Ce, Pr, and Nd): morphology, structure, growth mechanism, and stability. Journal of the American Chemical Society, 2019, 141(33): 13134–13142

DOI

49
Wang S Y , Wang L Y , Cong H , Wang R , Yang J , Li X , Zhao Y , Wang H. Cong H J , Wang R . . A review: g-C3N4 as a new membrane material. Journal of Environmental Chemical Engineering, 2022, 10(4): 108189–108211

DOI

50
He F , Wang Z X , Li Y X , Peng S Q , Liu B . The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Applied Catalysis B: Environmental, 2020, 269(15): 118828–118839

DOI

51
Chen C C , Xie M , Kong L S , Lu W H , Feng Z Y , Zhan J H . Mn3O4 nanodots loaded g-C3N4 nanosheets for catalytic membrane degradation of organic contaminants. Journal of Hazardous Materials, 2020, 390(15): 122146–122157

DOI

52
Lin B , Xia M Y , Xu B R , Chong B , Chen Z H , Yang G D . Bio-inspired nanostructured g-C3N4-based photocatalysts: a comprehensive review. Chinese Journal of Catalysis, 2022, 43(8): 2141–2172

DOI

53
Dong J Q , Zhang Y , Hussain M I , Zhou W J , Chen Y Z , Wang L N . g-C3N4: properties, pore modifications, and photocatalytic applications. Nanomaterials, 2021, 12(1): 121–134

DOI

54
Zhang X , Xie X , Wang H , Zhang J J , Pan B C , Xie Y . Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of American Chemical Society, 2013, 135(1): 18–21

DOI

55
Xu J , Zhang L , Shi R , Zhu Y . Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(46): 14766–14772

DOI

56
Dong F , Li Y H , Wang Z Y , Ho W K . Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Applied Surface Science, 2015, 358(PARTA): 393–403

57
Chen Y H , Wang Z M , Li Y G , Guo J , Dai L , Zheng J F , Li S H , Zhang S B . Incorporating 2D porous organic polymer nanosheets into high-temperature proton-exchange membranes for low H3PO4 loss. Journal of Membrane Science, 2024, 693: 122344–122350

DOI

58
Verma M , Bahuguna G , Singh S , Kumari A , Ghosh D , Haick H , Gupta R . Porous SnO2 nanosheets for room temperature ammonia sensing in extreme humidity. Materials Horizons, 2024, 11(1): 184–195

DOI

59
Li Z T , Zhou P , Zhao Y X , Jiang W Y , Zhao B X , Chen X S , Wang J P , Yang R , Zuo C L . Ultrathin and porous CoP nanosheets as an efficient electrocatalyst for boosting hydrogen evolution behavior at a broad range of pH. International Journal of Hydrogen Energy, 2024, 51: 1279–1286

DOI

60
Dong X Y M , Xia H Y , Pang R Y , Wang E , Li J . Urea with trifunctional effects: an assistant for high exposure of single-atom active sites on 2D nanosheets viastructural transformation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2024, 12(9): 5422–5428

DOI

61
Li H B , Zhang C N , Lin Q , Lin F , Xiao T S , Yan K X , Shen B , Zhang H B , Tang Y , Sun Z Z . Epitaxial growth of two-dimensional MWW zeolite. Journal of the American Chemical Society, 2024, 146(12): 8520–8527

DOI

62
Zhao Z X , Yang J , Wang C L , Xue Y T , Wu H , Xie W L , Wu P P , Wang C Z , Xing W , Wang Y . . Template-free synthesis of highly porous silica-doped alumina with exceptional stability via intercalation-exfoliation of boehmite into two-dimensional nanosheets. Science China Materials, 2024, 67(1): 261–271

DOI

63
Huang H B , Shi H D , Das P , Qin J Q , Li Y G , Wang X , Su F , Wen P C , Li S Y , Lu P F . . The chemistry and promising applications of graphene and porous graphene materials. Advanced Functional Materials, 2020, 30(41): 1909035–1909046

DOI

64
Surwade S P , Smirnov S N , Vlassiouk I V , Unocic R R , Veith G M , Dai S , Mahurin S M . Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 2015, 10(5): 459–464

DOI

65
Li S L , Gu W , Sun Y Q , Zou D , Jing W H . Perforative pore formation on nanoplates for 2D porous MXene membranes via H2O2 mild etching. Ceramics International, 2021, 47(21): 29930–29940

DOI

66
Hong S , El-Demellawi J K , Lei Y , Liu Z , Marzooqi F A , Arafat H A , Alshareef H N . Porous Ti3C2Tx MXene membranes for highly efficient salinity gradient energy harvesting. ACS Nano, 2022, 16(1): 792–800

DOI

67
Kim J , Kang J , Kim J P , Kim J Y , Kwon O , Kim D W . Scalable fabrication of nanoporous multilayer graphene oxide membrane for organic solvent nanofiltration. Carbon, 2023, 207: 162–171

DOI

68
Kang M , Lee D H , Kang Y M , Jung H . Electron beam irradiation dose dependent physico-chemical and electrochemical properties of reduced graphene oxide for supercapacitor. Electrochimica Acta, 2015, 184: 427–435

DOI

69
Wei Y B , Pastuovic Z , Murphy T , Gore D B . Precise tuning chemistry and tailoring defects of graphene oxide films by low energy ion beam irradiation. Applied Surface Science, 2020, 505: 144651–144660

DOI

70
Yang H N , Chen G N , Cheng L , Liu Y , Cheng Y X , Yao H J , Liu Y , Liu G P , Jin W Q . Manipulating gas transport channels in graphene oxide membrane with swift heavy ion irradiation. Separation and Purification Technology, 2023, 320: 124136–124147

DOI

71
Li S L , Lu J , Zou D , Cui L L , Chen B , Wang F , Qiu J , Yu T X , Sun Y Q , Jing W H . Constructing reduced porous graphene oxide for tailoring mass-transfer channels in ultrathin MXene (Ti3C2Tx) membranes for efficient dye/salt separation. Chemical Engineering Journal, 2023, 457: 141217–141228

DOI

72
Robeson L M . The upper bound revisited. Journal of Membrane Science, 2008, 320(1-2): 390–400

DOI

73
Comesaña-Gándara B , Chen J , Bezzu C G , Carta M L , Rose I , Ferrari M C , Esposito E , Fuoco A , Jansen J N , Mckeown N B . Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy & Environmental Science, 2019, 12(9): 2733–2740

DOI

74
Robeson L M . Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185

DOI

75
Zhang Y , Zhao M , Li X , Xin Q , Ding X , Zhao L , Ye H , Lin L , Li H , Zhang Y . Constructing mixed matrix membranes for CO2 separation based on light lanthanide fluoride nanosheets with mesoporous structure. Journal of Industrial and Engineering Chemistry, 2023, 125: 200–210

DOI

76
Xin Q , Shao W , Ma Q , Ye X , Huang Z , Li B , Wang S , Li H , Zhang Y . Efficient CO2 separation of multi-permselective mixed matrix membranes with a unique interfacial structure regulated by mesoporous nanosheets. ACS Applied Materials & Interfaces, 2020, 12(42): 48067–48076

DOI

77
Zhao M , Guo J , Xin Q , Zhang Y , Li X , Ding X , Zhang L , Zhao L , Ye H , Li H . . Novel aminated F-Ce nanosheet mixed matrix membranes with controllable channels for CO2 capture. Separation and Purification Technology, 2023, 324: 124512–124523

DOI

78
Kim H W , Yoon H W , Yoon S M , Yoo B M , Ahn B K , Cho Y H , Shin H J , Yang H , Paik U , Kwon S . . Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 91–95

DOI

79
Koenig S P , Wang L D , Pellegrino J , Bunch S J . Selective molecular sieving through porous graphene. Nature Nanotechnology, 2012, 7(11): 728–732

DOI

80
Boutilier M S H , Jang D J , Idrobo J C , Kidambi P R , Hadjiconstantinou N G , Karnik R . Molecular sieving across centimeter-scale single-layer nanoporous graphene membranes. ACS Nano, 2017, 11(6): 5726–5736

DOI

81
Ashirov T , Yazaydin A O , Coskun A . Tuning the transport properties of gases in porous graphene membranes with controlled pore size and thickness. Advanced Materials, 2022, 34(5): 2106785–2106798

DOI

82
Van Goethem C , Shen Y , Chi H Y , Mensi M , Zhao K , Nijmeijer A , Just P E , Agrawal K V . Advancing molecular sieving via Å-scale pore tuning in bottom-up graphene synthesis. ACS Nano, 2024, 18(7): 5730–5740

DOI

83
Rodenas T , Luz I , Prieto G , Seoane B , Miro H , Corma A , Kapte F , Francesc X . Llabrés i X, Gascon J. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2015, 14(1): 48–55

DOI

84
Wan J M , Nian M J , Yang C , Ge K , Liu J J , Chen Z Q , Duan J G , Jin W Q . Interface regulation of mixed matrix membranes by ultrathin MOF nanosheet for faster CO2 transfer. Journal of Membrane Science, 2022, 642: 119991–120002

DOI

85
Bi X , Zhang Y , Zhang F , Zhang S , Wang Z , Jin J . MOF nanosheet-based mixed matrix membranes with metal-organic coordination interfacial interaction for gas separation. ACS Applied Materials & Interfaces, 2020, 12(43): 49101–49110

DOI

86
Yang Z , Belmabkhout Y , Mchugh L N , Ao D , Sun Y , Li S , Qiao Z , Bennett T D , Guiver M D , Zhong C . ZIF-62 glass foam self-supported membranes to address CH4/N2 separations. Nature Materials, 2023, 22(7): 888–894

DOI

87
Carta M , Malpass-Evans R , Croad M , Rogan Y , Jansen J C , Bernardo P , Bazzarelli F , Mckeown N B . An efficient polymer molecular sieve for membrane gas separations. Science, 2013, 339(6117): 303–307

DOI

88
Peng Y , Li Y S , Ban Y J , Jin H , Jiao W M , Liu X L , Yang W S . Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359

DOI

89
Peng Y , Li Y , Ban Y , Yang W S . Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angewandte Chemie, 2017, 129(33): 9889–9893

DOI

90
Ma C C , Gao G S , Liu H O , Liu Y , Zhang X F . Fabrication of 2D bimetallic metal-organic framework ultrathin membranes by vapor phase transformation of hydroxy double salts. Journal of Membrane Science, 2022, 644: 120167–120177

DOI

91
Song H , Peng Y , Wang C , Shu L , Zhu C Y , Wang Y L , He H Y , Yang W S . Structure regulation of MOF nanosheet membrane for accurate H2/CO2 separation. Angewandte Chemie International Edition, 2023, 62(17): e202218472–202218480

DOI

92
Biswal B P , Chaudhari H D , Banerjee R , Kharul U K . Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation. Chemistry, 2016, 22(14): 4695–4699

DOI

93
Chang X , Guo H , Chang Q , Tian Z H , Zhang Y W , Li D Y , Wang J , Zhang Y T . Mixed-matrix membranes composed of dopamine modified covalent organic framework and PIM-1 for efficient CO2/N2 separation. Journal of Membrane Science, 2023, 686: 122017–122028

DOI

94
Xin Q , Zhang X , Shao W , Li H , Zhang Y Z . COF-based MMMs with light-responsive properties generating unexpected surface segregation for efficient SO2/N2 separation. Journal of Membrane Science, 2023, 665: 121109–121120

DOI

95
Fan H , Mundstock A , Feldhoff A , Knebel A , Gu J , Meng H , Caro J . Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation. Journal of the American Chemical Society, 2018, 140(32): 10094–10098

DOI

96
Ying Y , Tong M , Ning S C , Ravi S K , Peh S B , Tan S C , Pennycook S J , Zhao D . Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. Journal of the American Chemical Society, 2020, 142(9): 4472–4480

DOI

97
Wang S , Yang Y , Liang X , Ren Y , Ma H , Zhu Z , Wang J , Zeng S , Song S , Wang X . . Ultrathin ionic COF Membrane via polyelectrolyte-mediated assembly for efficient CO2 separation. Advanced Functional Materials, 2023, 33(24): 2300386–2300392

DOI

98
Fu J , Liu J Y , Zhang G H , Zhu Q H , Wang S L , Qin S , He L , Tao G H . Boost of gas adsorption kinetics of covalent organic frameworks via ionic liquid solution process. Small, 2023, 19(39): 2302570–2302579

DOI

99
Liu J Y , Zhang L , Fu J , Wang S L , Zhou Y R , Wang Y H , Qin S , Tao G H , He L . Mobile hydrogen-bonding donor in covalent organic framework for efficient iodine capture. Separation and Purification Technology, 2024, 331: 125664

DOI

100
Ying Y , Peh S B , Yang H , Yang Z Q , Zhao D . Ultrathin covalent organic framework membranes via a multi-interfacial engineering strategy for gas separation. Advanced Materials, 2022, 34(25): 2104946–2104952

DOI

101
Du J R , Liu L , Chakma A , Feng X S . Using poly(N,N-dimethylaminoethyl methacrylate)/polyacrylonitrile composite membranes for gas dehydration and humidification. Chemical Engineering Science, 2010, 65(16): 4672–4681

DOI

102
Le T M H , Wang R , Sairiam S . Self-protecting PVDF-PDA-TiO2 membranes towards highly efficient and prolonged dye wastewater treatment by photocatalytic membranes. Journal of Membrane Science, 2023, 683: 121789–121798

DOI

103
Petukhov D I , Chernova E A , Kapitanova O O , Boytsova O V , Valeev R G , Chumakov A P , Konovalov O V , Eliseev A A . Thin graphene oxide membranes for gas dehumidification. Journal of Membrane Science, 2019, 577: 184–194

DOI

104
Takenaka R , Moriyama N , Nagasawa H K , Kanezashi M K , Tsuru T N . Permeation properties of water vapor through graphene oxide/polymer substrate composite membranes. Membranes, 2023, 13(5): 533–544

DOI

105
Yu J , Ruengkajorn K , Crivoi D G , Chen C P , Buffet J C , O’Hare D . High gas barrier coating using non-toxic nanosheet dispersions for flexible food packaging film. Nature Communications, 2019, 10(1): 2398–2408

DOI

106
Wang J J , Xu X Z , Zhang J , Chen M T , Dong S Y , Han J B , Wei M . Moisture-permeable, humidity-enhanced gas barrier films based on organic/inorganic multilayers. ACS Applied Materials & Interfaces, 2018, 10(33): 28130–28138

DOI

107
Lee H J , Shirke Y M , Kim J , Yu H J , Yoo C H , Back S , Jeon J D , Lee J S . Tailoring molecular structures of UiO-66-NH2 for high performance H2O/N2 separation membranes: a synergistic effect of hydrophilic modification and defect engineering. Journal of Membrane Science, 2023, 665: 121096–121105

DOI

108
Deng R , Han W , Yeung K L . Confined PFSA/MOF composite membranes in fuel cells for promoted water management and performance. Catalysis Today, 2019, 331: 12–17

DOI

109
Cohen-Tanugi D , Grossman J C . Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608

DOI

110
Celebi K , Buchheim J , Wyss R M , Droudian A , Gasser P , Shorubalko I , Kye J I , Lee C , Park H G . Ultimate permeation across atomically thin porous graphene. Science, 2014, 344(6181): 289–292

DOI

111
O’Hern S C , Boutilier M S H , Idrobo J C , Song Y , Kong J , Laoui T , Atieh M , Karnik R . Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Letters, 2014, 14(3): 1234–1241

DOI

112
Akhavan O . Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano, 2010, 4(7): 4174–4180

DOI

113
Yang Y , Yang X , Liang L , Gao Y Y , Cheng H N , Li X M , Zou M C , Ma R Z , Yuan Q , Duan X F . Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science, 2019, 364(6445): 1057–1062

DOI

114
Guan J , You X , Shi B , Liu Y , Yuan J , Yang C , Pang X , Wu H , Shen J , Fan C . . Engineering multi-pathway graphene oxide membranes toward ultrafast water purification. Journal of Membrane Science, 2021, 638: 119706–119716

DOI

115
Wang Y , Li L , Wei Y , Xue J , Chen H , Ding L , Caro J , Wang H . Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angewandte Chemie International Edition, 2017, 56(31): 8974–8980

DOI

116
Liu Y C , Xie D Q , Song M R , Jiang L Z , Fu G , Liu B , Li J Y . Water desalination across multilayer graphitic carbon nitride membrane: insights from non-equilibrium molecular dynamics simulations. Carbon, 2018, 140: 131–138

DOI

117
Ran J , Pan T , Wu Y Y , Chu C Q , Cui P , Zhang P P , Ai X Y , Fu C F , Yang Z J , Xu T W . Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers. Angewandte Chemie International Edition, 2019, 58(46): 16463–16468

DOI

118
Wu Y Y , Fu C F , Huang Q , Zhang P P , Cui P , Ran J , Yang J L , Xu T W . 2D heterostructured nanofluidic channels for enhanced desalination performance of graphene oxide membranes. ACS Nano, 2021, 15(4): 7586–7595

DOI

119
Yuan S , Li X , Zhu J , Zhang G , Van Puyvelde P , Van der Bruggen B . Covalent organic frameworks for membrane separation. Chemical Society Reviews, 2019, 48(10): 2665–2681

DOI

120
Xu X , Wu X , Xu K , Xu H , Chen H Z , Huang N . Pore partition in two-dimensional covalent organic frameworks. Nature Communications, 2023, 14(1): 3360–3368

DOI

121
Li Y , Wu Q X , Guo X H , Zhang M C , Chen B , Wei G Y , Li X , Li X F , Li S J , Ma L J . Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nature Communications, 2020, 11(1): 599–609

DOI

122
Sheng F M , Wu B , Li X Y , Xu T T , Shehzad M A , Wang X X , Ge L , Wang H T , Xu T W . Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Advanced Materials, 2021, 33(44): 2104404–2104409

DOI

123
Xiao A K , Shi X S , Zhang Z , Yin C C , Xiong S , Wang Y . Secondary growth of bi-layered covalent organic framework nanofilms with offset channels for desalination. Journal of Membrane Science, 2021, 624: 119122–119132

DOI

124
Zhang Y Q , Guo J , Han G , Bai Y P , Ge Q H , Ma J , Lau C H , Shao L . Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Science Advances, 2021, 7(13): 8706–8712

DOI

125
Sapkota B , Liang W T , Vahidmohammadi A , Karnik R , Noy A , Wanunu M . High permeability sub-nanometre sieve composite MoS2 membranes. Nature Communications, 2020, 11(1): 2247–2255

126
Kim C , Koh D Y , Lee Y J , Choi J , Cho H S , Choi M . Bottom-up synthesis of two-dimensional carbon with vertically aligned ordered micropores for ultrafast nanofiltration. Science Advances, 2023, 9(6): 7871–7879

DOI

127
Han S R , Xie Y F , Xin Q P , Lv J , Zhang Y L , Wang F K , Fu X J , Li H , Zhao L Z , Ye H . . High permeability dual-channel membranes based on porous fluorine-cerium nanosheets for molecular sieving. Journal of Membrane Science, 2023, 666: 121126–121136

DOI

128
Yu Y , Wu X J , Zhao M , Ma Q , Chen J , Chen B , Sindoro M , Yang J , Han S , Lu Q . . Anodized aluminum oxide templated synthesis of metal-organic frameworks used as membrane reactors. Angewandte Chemie International Edition, 2017, 56(2): 578–581

DOI

129
Xue J , Gao J M , Xu M J , Zong Y Q , Wang M X , Ma S S . Super wetting porous g-C3N4 nanosheets coated PVDF membrane for emulsified oil/water separation and aqueous organic pollutant elimination. Advanced Materials Interfaces, 2021, 8(19): 2100962–2100970

DOI

130
Li R , Ren Y , Zhao P , Wang J , Liu J D , Zhang Y T . Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance. Journal of Hazardous Materials, 2019, 365: 606–614

DOI

131
Zhou K G , Mcmanus D , Prestat E , Zhong X , Shin Y Y , Zhang H L , Haigh S J , Casiraghi C . Self-catalytic membrane photo-reactor made of carbon nitride nanosheets. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(30): 11666–11671

DOI

132
Li X J , Liu Y , Liu Q H , Zheng Z L , Guo H X . Single-layer membranes for organic solvent nanofiltration: a molecular dynamics simulation and comparative experimental study. RSC Advances, 2022, 12(12): 7189–7198

DOI

133
Ajebe E G , Hu C C , Lugito G , Hu C P , Hung W S , Lee K R , Lai J Y . Investigating the impact of metal ion variations in terephthalate metal-organic frameworks on the organic solvent nanofiltration performance of mixed matrix membranes. Journal of Membrane Science, 2024, 700: 122715–122725

DOI

134
Wu M , Fu X X , Li J , Zhao W Q , Li X B . SWCNTs-channeled MOF nanosheet membrane for high-efficient organic solvent nanofiltration. Separation and Purification Technology, 2024, 338: 126328–126339

DOI

135
Chen L , Zhou X , Meng R , Li D , Li D , Li X , Zhang K , Ji Q , Li Y , Xia Y , Ci L . Stable antifouling membranes based on graphene oxide nanosheets for organic solvent nanofiltration. ACS Applied Nano Materials, 2024, 7(2): 1929–1939

DOI

136
Li G , Liu Y , He Z , Shi K , Liu F . Retrievable ultrafast covalent triazine framework membranes for organic solvent nanofiltration. Chemical Engineering Journal, 2024, 484: 149488–149499

DOI

Outlines

/