Advanced membrane separation based on two-dimensional porous nanosheets
Received date: 04 Mar 2024
Accepted date: 14 May 2024
Copyright
Two-dimensional porous nanosheets such as metal-organic frameworks, covalent organic frameworks, fluorides of light lanthanide, and perforated graphene oxide are a class of nanomaterials with sheet-like morphologies and defined pore structures. Due to their porous structure and large lateral sizes, these materials exhibit excellent molecular transport properties in separation processes. This review focuses on the pore formation strategies for two-dimensional porous nanosheets and applications of these nanosheets and their constructed membranes in gas separation processes and separation processes applicable to water treatment and the humidity control of gas permeation. A brief discussion of challenges and future developments of separation applications with two-dimensional porous nanosheets and their constructed membranes is included in this review.
Yanli Zhang , Shurui Han , Fengkai Wang , Hui Ye , Qingping Xin , Xiaoli Ding , Lizhi Zhao , Ligang Lin , Hong Li , Yuzhong Zhang . Advanced membrane separation based on two-dimensional porous nanosheets[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(11) : 128 . DOI: 10.1007/s11705-024-2479-0
1 |
Ahmed Z , Rehman F , Ali U , Ali A , Iqbal M , Thebo K H , Ali A , Iqbal M , Thebo K H . Recent advances in MXene-based separation membranes. ChemBioEng Reviews, 2021, 8(2): 110–120
|
2 |
Kaldis S P , Kapantaidakis G C , Sakellaropoulos G P . Polymer membrane conditioning and design for enhanced CO2-N2 separation. Coal Science and Technology, 1995, 24: 1927–1930
|
3 |
Werber J R , Osuji C O , Elimelech M . Materials for next-generation desalination and water purification membranes. Nature Reviews. Materials, 2016, 1(5): 16018–16034
|
4 |
Wang L , Boutilier M S H , Kidambi P R , Jang D , Hadjiconstantinou N , Karnik R . Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nature Nanotechnology, 2017, 12(6): 509–522
|
5 |
Koros W J , Zhang C . Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 2017, 16(3): 289–297
|
6 |
Sholl D S , Lively R P . Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
|
7 |
Wang W , Wei Y Y , Fan J , Cai J H , Lu Z , Ding L , Wang H H . Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications. Frontiers of Chemical Science and Engineering, 2021, 15(4): 793–819
|
8 |
Giwa A , Ahmed M , Hasan S W . Polymers for membrane filtration in water purification. Polymeric Materials for Clean Water, 2019, 16: 167–190
|
9 |
Park H B , Kamcev J , Robeson L M , Elimelech M , Freeman B D . Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 2017, 356(6343): eaab0530–0540
|
10 |
Cheng Y , Pu Y , Zhao D . Two-dimensional membranes: new paradigms for high-performance separation membranes. Chemistry, an Asian Journal, 2020, 15(15): 2241–2270
|
11 |
Novoselov K S , Geim A K , Morozov S V , Jiang D , Zhang Y , Dubonos S V , Grigorieva I V , Firsov A A . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
|
12 |
Bux H , Liang F , Li Y , Cravillon J , Wiebcke M , Caro J . Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009, 131(44): 16000–16001
|
13 |
Qin Y T , Wan Y , Guo J , Zhao M T . Two-dimensional metal-organic framework nanosheet composites: preparations and applications. Chinese Chemical Letters, 2022, 33(2): 693–702
|
14 |
Côté A P , Benin A I , Ockwig N W , O’keeffe M , Matzger A J , Yaghi O M. Matzger A J , Yaghi O M . Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166–1170
|
15 |
Alhabeb M , Maleski K , Anasori B , Lelyukh P , Clark L , Sin S , Gogotsi Y . Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633–7644
|
16 |
Zhang X , Xie X , Wang H , Zhang J , Pan B , Xie Y . Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of the American Chemical Society, 2013, 135(1): 18–21
|
17 |
Wang Q , O’hare D . Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155
|
18 |
Zhang H . Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469
|
19 |
Ding L , Wei Y Y , Wang Y J , Chen H B , Caro J , Wang H H . A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 56(7): 1825–1829
|
20 |
Ajibade T F , Tian H L , Lasisi K H , Zhang K S . Bio-inspired PDA@WS2 polyacrylonitrile ultrafiltration membrane for the effective separation of saline oily wastewater and the removal of soluble dye. Separation and Purification Technology, 2022, 299: 12711–12722
|
21 |
Han S Q , You W H , Lv S H , Du C J , Zhang X , Zhang E , Zhu J Y , Zhang Y T . Ionic liquid modified COF nanosheet interlayered polyamide membranes for elevated nanofiltration performance. Desalination, 2023, 548: 116300–116311
|
22 |
Kunimatsu M , Nakagawa K , Yoshioka T , Shintani T , Yasui T , Kamio E , Tsang S C E , Li J X , Matsuyama H . Design of niobate nanosheet-graphene oxide composite nanofiltration membranes with improved permeability. Journal of Membrane Science, 2020, 595: 117579–117608
|
23 |
Liu Y , Wang X P , Zong Z A , Lin R J , Zhang X Y , Chen F S , Ding W D , Zhang L L , Meng X M , Hou J W . Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination. Journal of Membrane Science, 2022, 653: 120520–120531
|
24 |
Liu H , Li B , Zhao P , Xu R M , Tang C Y , Song W L , Habib Z A , Wang X H . Fabrication of novel thin-film composite membrane based on ultrathin metal-organic framework interlayer for enhancing forward osmosis performance. Chinese Chemical Letters, 2023, 34(12): 108369–108379
|
25 |
Liu M , Gurr P A , Fu Q , Webley P A , Qiao G G . Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(46): 23169–23196
|
26 |
Wang P Y , Peng Y , Zhu C Y , Yao R , Song H L , Kun L , Yang W S . Single-phase covalent organic framework staggered stacking nanosheet membrane for CO2-selective separation. Angewandte Chemie International Edition, 2021, 60(35): 19047–19052
|
27 |
Manchanda P , Chisca S , Upadhyaya L , Musteata V E , Carrington M , Nunes S P . Diffusion-induced in situ growth of covalent organic frameworks for composite membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(45): 25802–25807
|
28 |
Wang F , Han S , Zhang Y , Gao L , Li X , Zhao L , Ye H , Li H , Xin Q , Zhang Y . Constructing rapid water vapor transport channels within mixed matrix membranes based on two-dimensional mesoporous nanosheets. Communications Chemistry, 2022, 5(1): 2065–2075
|
29 |
Wang J , Yang P , Liu L , Zheng B , Jiang J , Ma J , Yan Y , Yang S , Yang L , Liu Q K .
|
30 |
Zhang K , Fang Z B , Huang Q Q , Zhang A A , Li J L , Li J Y , Zhang Y , Zhang T , Cao R . Exfoliation of a two-dimensional metal-organic framework for enhanced photocatalytic CO2 reduction. Inorganic Chemistry, 2023, 62(22): 8472–8477
|
31 |
Shao B , He X L , Huang D , Xiang Y L , Luo Y , Wei Y M , Jiang L B , Huang R K , Dong M , Huang J . Oriented exfoliating 3D metal-organic frameworks into ultrathin metal-organic nanosheets with different crystal faces. Advanced Functional Materials, 2024, 2315911
|
32 |
Abdelhamid H N . High performance and ultrafast reduction of 4-nitrophenol using metal-organic frameworks. Journal of Environmental Chemical Engineering, 2021, 9(1): 104404–104415
|
33 |
Yin M , Li Z , Wang L , Tang S K . Preparation of hierarchically porous PVP/ZIF-8 in supercritical CO2 by PVP-induced defect-formation method for high-efficiency gas adsorption. Separation and Purification Technology, 2023, 314: 123550–123559
|
34 |
Jeong S K , Jeong J Y , Lim S , Kim W S , Kwon H T , Kim J . Mixed matrix membranes incorporating two-dimensional ZIF-8 nanosheets for enhanced CO2/N2 separation. Chemical Engineering Journal, 2024, 481: 148294–148305
|
35 |
Yang J , Kong L , Huang C , Wang C C , Wei S H , Zhou L . Liquid-liquid interfacial approach for rapid synthesis of well-crystalline two-dimensional metal-organic frameworks for nitro reduction. Chemical Engineering Journal, 2024, 485: 149969–149979
|
36 |
Lu H , Zhu S . Interfacial synthesis of free-standing metal-organic framework membranes. European Journal of Inorganic Chemistry, 2013, 2013(8): 1294–1300
|
37 |
Cao L A , Wei M , Guo X , Wang D L , Chen L , Guo J . Conductive Ni3(HITP)2 nanofilm with asymmetrical morphology prepared by gas-liquid interface self-assembly for glucose sensing. Ionics, 2024, 30(4): 2375–2385
|
38 |
Guo Y Y , Zhang Q , Gao S Q , Wang H Y , Li Z Y , Qiu J K , Zhao Y , Liu Z M , Wang J J . Bi-functional ionic liquids facilitate liquid-phase exfoliation of porphyrin-based covalent organic frameworks in water for highly efficient CO2 photoreduction. Green Chemistry, 2022, 24(24): 9530–9541
|
39 |
Yao J , Liu C , Liu X , Guo J , Zhang S , Zheng J , Li S . Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane. Journal of Membrane Science, 2020, 601: 117864–117875
|
40 |
Wang T , Zhang R J , Zhai P D , Li M J , Liu X Y , Li C X . Electrochemically exfoliated covalent organic frameworks for improved photocatalytic hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2024, 12(2): 1292–1299
|
41 |
Liu R , Yan Q , Tang Y , Liu R , Huang L , Shuai Q . NaCl template-assisted synthesis of self-floating COFs foams for the efficient removal of sulfamerazine. Journal of Hazardous Materials, 2022, 421: 126702–126714
|
42 |
Ding C , Breunig M , Timm J , Marschall R , Senker J , Agarwal S . Flexible, mechanically stable, porous self-standing microfiber network membranes of covalent organic frameworks: preparation method and characterization. Advanced Functional Materials, 2021, 31(49): 2106507–2106515
|
43 |
Chen J , Li R , Liu S , Zhang J , Wu X , Wang J . Surfactant-assisted interfacial polymerization towards high-crystallinity COF membranes for organic solvent nanofiltration. Journal of Membrane Science, 2024, 694: 122404–122415
|
44 |
Ortega-Guerrero A , Sahabudeen H , Croy A , Dianat A , Dong R , Feng X , Cuniberti G . Multiscale modeling strategy of 2D covalent organic frameworks confined at an air-water interface. ACS Applied Materials & Interfaces, 2021, 13(22): 26411–26420
|
45 |
Ou Z W , Liang Z H , Dong X , Tan F L , Gong L , Zhao P , Wang H L , Liu W , Zheng Z K . Surfactants mediated synthesis of highly crystalline thin films of imine-linked covalent organic frameworks on water surface. Chinese Journal of Chemistry, 2021, 39(12): 3322–3328
|
46 |
Shi X , Ma D , Xu F , Zhang Z , Wang Y . Table-salt enabled interface-confined synthesis of covalent organic framework (COF) nanosheets. Chemical Science, 2020, 11(4): 989–996
|
47 |
Yu H , Guan J , Chen Y , Sun Y X , Zhou S Y , Zheng J F , Zhang Q F , Li S H , Zhang S B . Large-area soluble covalent organic framework oligomer coating for organic solution nanofiltration membranes. Nano Micro Small, 2023, 20(4): 2305613–2305624
|
48 |
Zhang L , Kang W , Ma Q , Xie Y , Jia Y , Deng N , Zhang Y , Ju J , Cheng B . Two-dimensional acetate-based light lanthanide fluoride nanomaterials (F-Ln, Ln = La, Ce, Pr, and Nd): morphology, structure, growth mechanism, and stability. Journal of the American Chemical Society, 2019, 141(33): 13134–13142
|
49 |
Wang S Y , Wang L Y , Cong H , Wang R , Yang J , Li X , Zhao Y , Wang H. Cong H J , Wang R .
|
50 |
He F , Wang Z X , Li Y X , Peng S Q , Liu B . The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Applied Catalysis B: Environmental, 2020, 269(15): 118828–118839
|
51 |
Chen C C , Xie M , Kong L S , Lu W H , Feng Z Y , Zhan J H . Mn3O4 nanodots loaded g-C3N4 nanosheets for catalytic membrane degradation of organic contaminants. Journal of Hazardous Materials, 2020, 390(15): 122146–122157
|
52 |
Lin B , Xia M Y , Xu B R , Chong B , Chen Z H , Yang G D . Bio-inspired nanostructured g-C3N4-based photocatalysts: a comprehensive review. Chinese Journal of Catalysis, 2022, 43(8): 2141–2172
|
53 |
Dong J Q , Zhang Y , Hussain M I , Zhou W J , Chen Y Z , Wang L N . g-C3N4: properties, pore modifications, and photocatalytic applications. Nanomaterials, 2021, 12(1): 121–134
|
54 |
Zhang X , Xie X , Wang H , Zhang J J , Pan B C , Xie Y . Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of American Chemical Society, 2013, 135(1): 18–21
|
55 |
Xu J , Zhang L , Shi R , Zhu Y . Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(46): 14766–14772
|
56 |
Dong F , Li Y H , Wang Z Y , Ho W K . Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Applied Surface Science, 2015, 358(PARTA): 393–403
|
57 |
Chen Y H , Wang Z M , Li Y G , Guo J , Dai L , Zheng J F , Li S H , Zhang S B . Incorporating 2D porous organic polymer nanosheets into high-temperature proton-exchange membranes for low H3PO4 loss. Journal of Membrane Science, 2024, 693: 122344–122350
|
58 |
Verma M , Bahuguna G , Singh S , Kumari A , Ghosh D , Haick H , Gupta R . Porous SnO2 nanosheets for room temperature ammonia sensing in extreme humidity. Materials Horizons, 2024, 11(1): 184–195
|
59 |
Li Z T , Zhou P , Zhao Y X , Jiang W Y , Zhao B X , Chen X S , Wang J P , Yang R , Zuo C L . Ultrathin and porous CoP nanosheets as an efficient electrocatalyst for boosting hydrogen evolution behavior at a broad range of pH. International Journal of Hydrogen Energy, 2024, 51: 1279–1286
|
60 |
Dong X Y M , Xia H Y , Pang R Y , Wang E , Li J . Urea with trifunctional effects: an assistant for high exposure of single-atom active sites on 2D nanosheets viastructural transformation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2024, 12(9): 5422–5428
|
61 |
Li H B , Zhang C N , Lin Q , Lin F , Xiao T S , Yan K X , Shen B , Zhang H B , Tang Y , Sun Z Z . Epitaxial growth of two-dimensional MWW zeolite. Journal of the American Chemical Society, 2024, 146(12): 8520–8527
|
62 |
Zhao Z X , Yang J , Wang C L , Xue Y T , Wu H , Xie W L , Wu P P , Wang C Z , Xing W , Wang Y .
|
63 |
Huang H B , Shi H D , Das P , Qin J Q , Li Y G , Wang X , Su F , Wen P C , Li S Y , Lu P F .
|
64 |
Surwade S P , Smirnov S N , Vlassiouk I V , Unocic R R , Veith G M , Dai S , Mahurin S M . Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 2015, 10(5): 459–464
|
65 |
Li S L , Gu W , Sun Y Q , Zou D , Jing W H . Perforative pore formation on nanoplates for 2D porous MXene membranes via H2O2 mild etching. Ceramics International, 2021, 47(21): 29930–29940
|
66 |
Hong S , El-Demellawi J K , Lei Y , Liu Z , Marzooqi F A , Arafat H A , Alshareef H N . Porous Ti3C2Tx MXene membranes for highly efficient salinity gradient energy harvesting. ACS Nano, 2022, 16(1): 792–800
|
67 |
Kim J , Kang J , Kim J P , Kim J Y , Kwon O , Kim D W . Scalable fabrication of nanoporous multilayer graphene oxide membrane for organic solvent nanofiltration. Carbon, 2023, 207: 162–171
|
68 |
Kang M , Lee D H , Kang Y M , Jung H . Electron beam irradiation dose dependent physico-chemical and electrochemical properties of reduced graphene oxide for supercapacitor. Electrochimica Acta, 2015, 184: 427–435
|
69 |
Wei Y B , Pastuovic Z , Murphy T , Gore D B . Precise tuning chemistry and tailoring defects of graphene oxide films by low energy ion beam irradiation. Applied Surface Science, 2020, 505: 144651–144660
|
70 |
Yang H N , Chen G N , Cheng L , Liu Y , Cheng Y X , Yao H J , Liu Y , Liu G P , Jin W Q . Manipulating gas transport channels in graphene oxide membrane with swift heavy ion irradiation. Separation and Purification Technology, 2023, 320: 124136–124147
|
71 |
Li S L , Lu J , Zou D , Cui L L , Chen B , Wang F , Qiu J , Yu T X , Sun Y Q , Jing W H . Constructing reduced porous graphene oxide for tailoring mass-transfer channels in ultrathin MXene (Ti3C2Tx) membranes for efficient dye/salt separation. Chemical Engineering Journal, 2023, 457: 141217–141228
|
72 |
Robeson L M . The upper bound revisited. Journal of Membrane Science, 2008, 320(1-2): 390–400
|
73 |
Comesaña-Gándara B , Chen J , Bezzu C G , Carta M L , Rose I , Ferrari M C , Esposito E , Fuoco A , Jansen J N , Mckeown N B . Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy & Environmental Science, 2019, 12(9): 2733–2740
|
74 |
Robeson L M . Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185
|
75 |
Zhang Y , Zhao M , Li X , Xin Q , Ding X , Zhao L , Ye H , Lin L , Li H , Zhang Y . Constructing mixed matrix membranes for CO2 separation based on light lanthanide fluoride nanosheets with mesoporous structure. Journal of Industrial and Engineering Chemistry, 2023, 125: 200–210
|
76 |
Xin Q , Shao W , Ma Q , Ye X , Huang Z , Li B , Wang S , Li H , Zhang Y . Efficient CO2 separation of multi-permselective mixed matrix membranes with a unique interfacial structure regulated by mesoporous nanosheets. ACS Applied Materials & Interfaces, 2020, 12(42): 48067–48076
|
77 |
Zhao M , Guo J , Xin Q , Zhang Y , Li X , Ding X , Zhang L , Zhao L , Ye H , Li H .
|
78 |
Kim H W , Yoon H W , Yoon S M , Yoo B M , Ahn B K , Cho Y H , Shin H J , Yang H , Paik U , Kwon S .
|
79 |
Koenig S P , Wang L D , Pellegrino J , Bunch S J . Selective molecular sieving through porous graphene. Nature Nanotechnology, 2012, 7(11): 728–732
|
80 |
Boutilier M S H , Jang D J , Idrobo J C , Kidambi P R , Hadjiconstantinou N G , Karnik R . Molecular sieving across centimeter-scale single-layer nanoporous graphene membranes. ACS Nano, 2017, 11(6): 5726–5736
|
81 |
Ashirov T , Yazaydin A O , Coskun A . Tuning the transport properties of gases in porous graphene membranes with controlled pore size and thickness. Advanced Materials, 2022, 34(5): 2106785–2106798
|
82 |
Van Goethem C , Shen Y , Chi H Y , Mensi M , Zhao K , Nijmeijer A , Just P E , Agrawal K V . Advancing molecular sieving via Å-scale pore tuning in bottom-up graphene synthesis. ACS Nano, 2024, 18(7): 5730–5740
|
83 |
Rodenas T , Luz I , Prieto G , Seoane B , Miro H , Corma A , Kapte F , Francesc X . Llabrés i X, Gascon J. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2015, 14(1): 48–55
|
84 |
Wan J M , Nian M J , Yang C , Ge K , Liu J J , Chen Z Q , Duan J G , Jin W Q . Interface regulation of mixed matrix membranes by ultrathin MOF nanosheet for faster CO2 transfer. Journal of Membrane Science, 2022, 642: 119991–120002
|
85 |
Bi X , Zhang Y , Zhang F , Zhang S , Wang Z , Jin J . MOF nanosheet-based mixed matrix membranes with metal-organic coordination interfacial interaction for gas separation. ACS Applied Materials & Interfaces, 2020, 12(43): 49101–49110
|
86 |
Yang Z , Belmabkhout Y , Mchugh L N , Ao D , Sun Y , Li S , Qiao Z , Bennett T D , Guiver M D , Zhong C . ZIF-62 glass foam self-supported membranes to address CH4/N2 separations. Nature Materials, 2023, 22(7): 888–894
|
87 |
Carta M , Malpass-Evans R , Croad M , Rogan Y , Jansen J C , Bernardo P , Bazzarelli F , Mckeown N B . An efficient polymer molecular sieve for membrane gas separations. Science, 2013, 339(6117): 303–307
|
88 |
Peng Y , Li Y S , Ban Y J , Jin H , Jiao W M , Liu X L , Yang W S . Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359
|
89 |
Peng Y , Li Y , Ban Y , Yang W S . Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angewandte Chemie, 2017, 129(33): 9889–9893
|
90 |
Ma C C , Gao G S , Liu H O , Liu Y , Zhang X F . Fabrication of 2D bimetallic metal-organic framework ultrathin membranes by vapor phase transformation of hydroxy double salts. Journal of Membrane Science, 2022, 644: 120167–120177
|
91 |
Song H , Peng Y , Wang C , Shu L , Zhu C Y , Wang Y L , He H Y , Yang W S . Structure regulation of MOF nanosheet membrane for accurate H2/CO2 separation. Angewandte Chemie International Edition, 2023, 62(17): e202218472–202218480
|
92 |
Biswal B P , Chaudhari H D , Banerjee R , Kharul U K . Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation. Chemistry, 2016, 22(14): 4695–4699
|
93 |
Chang X , Guo H , Chang Q , Tian Z H , Zhang Y W , Li D Y , Wang J , Zhang Y T . Mixed-matrix membranes composed of dopamine modified covalent organic framework and PIM-1 for efficient CO2/N2 separation. Journal of Membrane Science, 2023, 686: 122017–122028
|
94 |
Xin Q , Zhang X , Shao W , Li H , Zhang Y Z . COF-based MMMs with light-responsive properties generating unexpected surface segregation for efficient SO2/N2 separation. Journal of Membrane Science, 2023, 665: 121109–121120
|
95 |
Fan H , Mundstock A , Feldhoff A , Knebel A , Gu J , Meng H , Caro J . Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation. Journal of the American Chemical Society, 2018, 140(32): 10094–10098
|
96 |
Ying Y , Tong M , Ning S C , Ravi S K , Peh S B , Tan S C , Pennycook S J , Zhao D . Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. Journal of the American Chemical Society, 2020, 142(9): 4472–4480
|
97 |
Wang S , Yang Y , Liang X , Ren Y , Ma H , Zhu Z , Wang J , Zeng S , Song S , Wang X .
|
98 |
Fu J , Liu J Y , Zhang G H , Zhu Q H , Wang S L , Qin S , He L , Tao G H . Boost of gas adsorption kinetics of covalent organic frameworks via ionic liquid solution process. Small, 2023, 19(39): 2302570–2302579
|
99 |
Liu J Y , Zhang L , Fu J , Wang S L , Zhou Y R , Wang Y H , Qin S , Tao G H , He L . Mobile hydrogen-bonding donor in covalent organic framework for efficient iodine capture. Separation and Purification Technology, 2024, 331: 125664
|
100 |
Ying Y , Peh S B , Yang H , Yang Z Q , Zhao D . Ultrathin covalent organic framework membranes via a multi-interfacial engineering strategy for gas separation. Advanced Materials, 2022, 34(25): 2104946–2104952
|
101 |
Du J R , Liu L , Chakma A , Feng X S . Using poly(N,N-dimethylaminoethyl methacrylate)/polyacrylonitrile composite membranes for gas dehydration and humidification. Chemical Engineering Science, 2010, 65(16): 4672–4681
|
102 |
Le T M H , Wang R , Sairiam S . Self-protecting PVDF-PDA-TiO2 membranes towards highly efficient and prolonged dye wastewater treatment by photocatalytic membranes. Journal of Membrane Science, 2023, 683: 121789–121798
|
103 |
Petukhov D I , Chernova E A , Kapitanova O O , Boytsova O V , Valeev R G , Chumakov A P , Konovalov O V , Eliseev A A . Thin graphene oxide membranes for gas dehumidification. Journal of Membrane Science, 2019, 577: 184–194
|
104 |
Takenaka R , Moriyama N , Nagasawa H K , Kanezashi M K , Tsuru T N . Permeation properties of water vapor through graphene oxide/polymer substrate composite membranes. Membranes, 2023, 13(5): 533–544
|
105 |
Yu J , Ruengkajorn K , Crivoi D G , Chen C P , Buffet J C , O’Hare D . High gas barrier coating using non-toxic nanosheet dispersions for flexible food packaging film. Nature Communications, 2019, 10(1): 2398–2408
|
106 |
Wang J J , Xu X Z , Zhang J , Chen M T , Dong S Y , Han J B , Wei M . Moisture-permeable, humidity-enhanced gas barrier films based on organic/inorganic multilayers. ACS Applied Materials & Interfaces, 2018, 10(33): 28130–28138
|
107 |
Lee H J , Shirke Y M , Kim J , Yu H J , Yoo C H , Back S , Jeon J D , Lee J S . Tailoring molecular structures of UiO-66-NH2 for high performance H2O/N2 separation membranes: a synergistic effect of hydrophilic modification and defect engineering. Journal of Membrane Science, 2023, 665: 121096–121105
|
108 |
Deng R , Han W , Yeung K L . Confined PFSA/MOF composite membranes in fuel cells for promoted water management and performance. Catalysis Today, 2019, 331: 12–17
|
109 |
Cohen-Tanugi D , Grossman J C . Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608
|
110 |
Celebi K , Buchheim J , Wyss R M , Droudian A , Gasser P , Shorubalko I , Kye J I , Lee C , Park H G . Ultimate permeation across atomically thin porous graphene. Science, 2014, 344(6181): 289–292
|
111 |
O’Hern S C , Boutilier M S H , Idrobo J C , Song Y , Kong J , Laoui T , Atieh M , Karnik R . Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Letters, 2014, 14(3): 1234–1241
|
112 |
Akhavan O . Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano, 2010, 4(7): 4174–4180
|
113 |
Yang Y , Yang X , Liang L , Gao Y Y , Cheng H N , Li X M , Zou M C , Ma R Z , Yuan Q , Duan X F . Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science, 2019, 364(6445): 1057–1062
|
114 |
Guan J , You X , Shi B , Liu Y , Yuan J , Yang C , Pang X , Wu H , Shen J , Fan C .
|
115 |
Wang Y , Li L , Wei Y , Xue J , Chen H , Ding L , Caro J , Wang H . Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angewandte Chemie International Edition, 2017, 56(31): 8974–8980
|
116 |
Liu Y C , Xie D Q , Song M R , Jiang L Z , Fu G , Liu B , Li J Y . Water desalination across multilayer graphitic carbon nitride membrane: insights from non-equilibrium molecular dynamics simulations. Carbon, 2018, 140: 131–138
|
117 |
Ran J , Pan T , Wu Y Y , Chu C Q , Cui P , Zhang P P , Ai X Y , Fu C F , Yang Z J , Xu T W . Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers. Angewandte Chemie International Edition, 2019, 58(46): 16463–16468
|
118 |
Wu Y Y , Fu C F , Huang Q , Zhang P P , Cui P , Ran J , Yang J L , Xu T W . 2D heterostructured nanofluidic channels for enhanced desalination performance of graphene oxide membranes. ACS Nano, 2021, 15(4): 7586–7595
|
119 |
Yuan S , Li X , Zhu J , Zhang G , Van Puyvelde P , Van der Bruggen B . Covalent organic frameworks for membrane separation. Chemical Society Reviews, 2019, 48(10): 2665–2681
|
120 |
Xu X , Wu X , Xu K , Xu H , Chen H Z , Huang N . Pore partition in two-dimensional covalent organic frameworks. Nature Communications, 2023, 14(1): 3360–3368
|
121 |
Li Y , Wu Q X , Guo X H , Zhang M C , Chen B , Wei G Y , Li X , Li X F , Li S J , Ma L J . Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nature Communications, 2020, 11(1): 599–609
|
122 |
Sheng F M , Wu B , Li X Y , Xu T T , Shehzad M A , Wang X X , Ge L , Wang H T , Xu T W . Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Advanced Materials, 2021, 33(44): 2104404–2104409
|
123 |
Xiao A K , Shi X S , Zhang Z , Yin C C , Xiong S , Wang Y . Secondary growth of bi-layered covalent organic framework nanofilms with offset channels for desalination. Journal of Membrane Science, 2021, 624: 119122–119132
|
124 |
Zhang Y Q , Guo J , Han G , Bai Y P , Ge Q H , Ma J , Lau C H , Shao L . Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Science Advances, 2021, 7(13): 8706–8712
|
125 |
Sapkota B , Liang W T , Vahidmohammadi A , Karnik R , Noy A , Wanunu M . High permeability sub-nanometre sieve composite MoS2 membranes. Nature Communications, 2020, 11(1): 2247–2255
|
126 |
Kim C , Koh D Y , Lee Y J , Choi J , Cho H S , Choi M . Bottom-up synthesis of two-dimensional carbon with vertically aligned ordered micropores for ultrafast nanofiltration. Science Advances, 2023, 9(6): 7871–7879
|
127 |
Han S R , Xie Y F , Xin Q P , Lv J , Zhang Y L , Wang F K , Fu X J , Li H , Zhao L Z , Ye H .
|
128 |
Yu Y , Wu X J , Zhao M , Ma Q , Chen J , Chen B , Sindoro M , Yang J , Han S , Lu Q .
|
129 |
Xue J , Gao J M , Xu M J , Zong Y Q , Wang M X , Ma S S . Super wetting porous g-C3N4 nanosheets coated PVDF membrane for emulsified oil/water separation and aqueous organic pollutant elimination. Advanced Materials Interfaces, 2021, 8(19): 2100962–2100970
|
130 |
Li R , Ren Y , Zhao P , Wang J , Liu J D , Zhang Y T . Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance. Journal of Hazardous Materials, 2019, 365: 606–614
|
131 |
Zhou K G , Mcmanus D , Prestat E , Zhong X , Shin Y Y , Zhang H L , Haigh S J , Casiraghi C . Self-catalytic membrane photo-reactor made of carbon nitride nanosheets. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(30): 11666–11671
|
132 |
Li X J , Liu Y , Liu Q H , Zheng Z L , Guo H X . Single-layer membranes for organic solvent nanofiltration: a molecular dynamics simulation and comparative experimental study. RSC Advances, 2022, 12(12): 7189–7198
|
133 |
Ajebe E G , Hu C C , Lugito G , Hu C P , Hung W S , Lee K R , Lai J Y . Investigating the impact of metal ion variations in terephthalate metal-organic frameworks on the organic solvent nanofiltration performance of mixed matrix membranes. Journal of Membrane Science, 2024, 700: 122715–122725
|
134 |
Wu M , Fu X X , Li J , Zhao W Q , Li X B . SWCNTs-channeled MOF nanosheet membrane for high-efficient organic solvent nanofiltration. Separation and Purification Technology, 2024, 338: 126328–126339
|
135 |
Chen L , Zhou X , Meng R , Li D , Li D , Li X , Zhang K , Ji Q , Li Y , Xia Y , Ci L . Stable antifouling membranes based on graphene oxide nanosheets for organic solvent nanofiltration. ACS Applied Nano Materials, 2024, 7(2): 1929–1939
|
136 |
Li G , Liu Y , He Z , Shi K , Liu F . Retrievable ultrafast covalent triazine framework membranes for organic solvent nanofiltration. Chemical Engineering Journal, 2024, 484: 149488–149499
|
/
〈 | 〉 |