Interfacing biosynthetic CdS with engineered Rhodopseudomonas palustris for efficient visible light-driven CO2–CH4 conversion

  • Yu Zhang 1 ,
  • Yulei Qian 1 ,
  • Zhenye Tong 1 ,
  • Su Yan 1 ,
  • Xiaoyu Yong 1 ,
  • Yang-Chun Yong 2 ,
  • Jun Zhou , 1
Expand
  • 1. Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
  • 2. Biofuels Institute, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Emergency Management & School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
zhoujun@njtech.edu.cn

Received date: 06 Feb 2024

Accepted date: 01 Apr 2024

Copyright

2024 Higher Education Press

Abstract

Engineered photosynthetic bacterium Rhodopseudomonas palustris is excellent at one-step CO2 biomethanation and can use near-infrared light sources, overcoming the limitations of conventional photosynthetic systems. The current study constructed a biohybrid system that deposited CdS nanoparticles on R. palustris. This biohybrid system broadens the capture of sustainable solar energy, achieving a 155 nmol·mL–1 biological CH4 production under full visible light irradiation, 13.4-fold of that by the pure R. palustris. The transcriptome profiles revealed that gene expression related to photosynthetic electron transfer chain, nitrogenase, nanofilaments, and redox stress defense was activated. Accordingly, we attributed the much-enhanced CO2 biomethanation in the biohybrid system to the remarkable increase in the intracellular reducing power and the stronger rigidity of the cells assisted by photoexcited electrons from CdS nanoparticles. Our discovery offers insight and a promising strategy for improving the current CO2–CH4 biomanufacturing system.

Cite this article

Yu Zhang , Yulei Qian , Zhenye Tong , Su Yan , Xiaoyu Yong , Yang-Chun Yong , Jun Zhou . Interfacing biosynthetic CdS with engineered Rhodopseudomonas palustris for efficient visible light-driven CO2–CH4 conversion[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(10) : 109 . DOI: 10.1007/s11705-024-2460-y

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the 2022 Carbon Dafeng and Carbon Neutral Science and Technology Innovation Special Fund in Jiangsu Province (Grant No. BK20220003), the National Natural Science Foundation of China (Grant No. 32371538), the Special Funds for Jiangsu Provincial Science and technology plan (Grant No. BZ2022052), the Jiangsu Agriculture Science and Technology Innovation Fund (Grant No. CX(21)2015), and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (Grant No. XTD2204).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2460-y and is accessible for authorized users.
1
Cao J X , Zhang J , Chen Y , Fan R , Xu L , Wu E T , Xue Y , Yang J L , Chen Y M , Yang B . . Current status, future prediction and offset potential of fossil fuel CO2 emissions in China. Journal of Cleaner Production, 2023, 426: 139207

DOI

2
Zhu J X , Li J T , Lu R H , Yu R H , Zhao S Y , Li C B , Lv L , Xia L X , Chen X B , Cai W W . . Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nature Communications, 2023, 14(1): 4670

DOI

3
Lv L , Lu R H , Zhu J X , Yu R H , Zhang W , Cui E H , Chen X B , Dai Y H , Cui L M , Li J . . Coordinating the edge defects of bismuth with sulfur for enhanced CO2 electroreduction to formate. Angewandte Chemie International Edition, 2023, 62(25): e202303117

DOI

4
SuBZhengMLinWLuX FLuanDWangS BLouX W D. Lou X W. S-scheme Co9S8@Cd0.8Zn0.2S-DETA hierarchical nanocages bearing organic CO2 activators for photocatalytic syngas production. Advanced Energy Materials, 2023, 13(15): 2203290

5
Zhao Y F , Chen G B , Bian T , Zhou C , Waterhouse G I N , Wu L Z , Tung C H , Smith L J , O’Hare D , Zhang T R . Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Advanced Materials, 2015, 27(47): 7824–7831

DOI

6
Zhu J X , Lv L , Zaman S , Chen X B , Dai Y H , Chen S H , He G J , Wang D S , Mai L Q . Advances and challenges in single-site catalysts towards electrochemical CO2 methanation. Energy & Environmental Science, 2023, 16(11): 4812–4833

DOI

7
Wang Y , Zhang C B , Li R G . Modulating the selectivity of photocatalytic CO2 reduction in barium titanate by introducing oxygen vacancies. Transactions of Tianjin University, 2022, 28(4): 227–235

DOI

8
Weliwatte N S , Minteer S D . Photo-bioelectrocatalytic CO2 reduction for a circular energy landscape. Joule, 2021, 5(10): 2564–2592

DOI

9
Kumar M , Sahoo P C , Srikanth S , Bagai R , Puri S K , Ramakumar S S V . Photosensitization of electro-active microbes for solar assisted carbon dioxide transformation. Bioresource Technology, 2019, 272: 300–307

DOI

10
Martins M , Toste C , Pereira I A C . Enhanced light-driven hydrogen production by self-photosensitized biohybrid systems. Angewandte Chemie International Edition, 2021, 60(16): 9055–9062

DOI

11
Ye J , Yu J , Zhang Y Y , Chen M , Liu X , Zhou S G , He Z . Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid. Applied Catalysis B: Environmental, 2019, 257: 117916

DOI

12
Ye J , Ren G P , Kang L , Zhang Y Y , Liu X , Zhou S G , He Z . Efficient photoelectron capture by Ni decoration in Methanosarcina barkeri-CdS biohybrids for enhanced photocatalytic CO2-to-CH4 conversion. iScience, 2020, 23(7): 101287

DOI

13
Liu L Y , Xie G J , Ding J , Liu B F , Xing D F , Ren N Q , Wang Q . Microbial methane emissions from the non-methanogenesis processes: a critical review. Science of the Total Environment, 2022, 806: 151362

DOI

14
Bižić M , Klintzsch T , Ionescu D , Hindiyeh M Y , Günthel M , Muro-Pastor A M , Eckert W , Urich T , Keppler F , Grossart H P . Aquatic and terrestrial cyanobacteria produce methane. Science Advances, 2020, 6(3): eaax5343

DOI

15
Zhang Y T , Wei W , Wang Y , Ni B J . Enhancing methane production from algae anaerobic digestion using diatomite. Journal of Cleaner Production, 2021, 315: 128138

DOI

16
Lenhart K , Bunge M , Ratering S , Neu T R , Schüttmann I , Greule M , Kammann C , Schnell S , Müller C , Zorn H . . Evidence for methane production by saprotrophic fungi. Nature Communications, 2012, 3(1): 1046

DOI

17
Zheng Y N , Harris D F , Yu Z , Fu Y F , Poudel S , Ledbetter R N , Fixen K R , Yang Z Y , Boyd E S , Lidstrom M E . . A pathway for biological methane production using bacterial iron-only nitrogenase. Nature Microbiology, 2018, 3(3): 281–286

DOI

18
Ma L Q , Fang Z , Wang Y Z , Zhou J , Yong Y C . Photo-driven highly efficient one-step CO2 biomethanation with engineered photo-synthetic bacteria Rhodopseudomonas palustris. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9616–9621

DOI

19
Wang B , Xiao K M , Jiang Z F , Wang J F , Yu J C , Wong P K . Biohybrid photoheterotrophic metabolism for significant enhancement of biological nitrogen fixation in pure microbial cultures. Energy & Environmental Science, 2019, 12(7): 2185–2191

DOI

20
Shang L , Tong B , Yu H J , Waterhouse G I N , Zhou C , Zhao Y F , Tahir M , Wu L Z , Tung C H , Zhang T . CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution. Advanced Energy Materials, 2016, 6(3): 1501241

DOI

21
LaSarre B , Kysela D T , Stein B D , Ducret A , Brun Y V , McKinlay J B . Restricted localization of photosynthetic intracytoplasmic membranes (ICMs) in multiple genera of purple nonsulfur bacteria. MBio, 2018, 9(4): e00780–18

DOI

22
Wang B , Jiang Z F , Yu J C , Wang J F , Wong P K . Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system. Nanoscale, 2019, 11(19): 9296–9301

DOI

23
Wang J , Xia T , Wang L , Zheng X S , Qi Z M , Gao C , Zhu J F , Li Z Q , Xu H X , Xiong Y J . Enabling visible-light-driven selective CO2 reduction by doping quantum dots: trapping electrons and suppressing H2 evolution. Angewandte Chemie International Edition, 2018, 57(50): 16447–16451

DOI

24
Bai H J , Zhang Z M , Guo Y , Yang G E . Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids and Surfaces. B, Biointerfaces, 2009, 70(1): 142–146

DOI

25
Sakimoto K K , Wong A B , Yang P . Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science, 2016, 351(6268): 74–77

DOI

26
Huang S F , Tang J H , Liu X , Dong G W , Zhou S G . Fast light-driven biodecolorization by a Geobacter sulfurreducens-CdS biohybrid. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15427–15433

DOI

27
Gupta D , Guzman M S , Bose A . Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications. Journal of Industrial Microbiology & Biotechnology, 2020, 47(9–10): 863–876

DOI

28
Chen G J , Zhou Z R , Li B F , Lin X H , Yang C , Fang Y X , Lin W , Hou Y D , Zhang G G , Wang S , Wang S B . S-Scheme heterojunction of crystalline carbon nitride nanosheets and ultrafine WO3 nanoparticles for photocatalytic CO2 reduction. Journal of Environmental Sciences, 2024, 140: 103–112

DOI

29
ZhuangXHouY DYuanR SDingZ XWee-JunOWangS B. Hollow NiCo2S4 nanospheres as a cocatalyst to support ZnIn2S4 nanosheets for visible-light-driven hydrogen production. Acta Physico-Chimica Sinica, 2022, 38(7): 2111021 (in Chinese)

30
Chen M Y , Fang Z , Xu L X , Zhou D , Yang X J , Zhu H J , Yong Y C . Enhancement of photo-driven biomethanation under visible light by nano-engineering of Rhodopseudomonas palustris. Bioresources and Bioprocessing, 2021, 8(1): 30

DOI

31
Jin S , Jeon Y , Jeon M S , Shin J , Song Y , Kang S , Bae J , Cho S , Lee J K , Kim D R . . Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(9): e2020552118

DOI

32
Gupta D , Sutherland M C , Rengasamy K , Meacham J M , Kranz R G , Bose A . Photoferrotrophs produce a pioAB electron conduit for extracellular electron uptake. MBio, 2019, 10(6): e02668–19

DOI

33
Grattieri M . Purple bacteria photo-bioelectrochemistry: enthralling challenges and opportunities. Photochemical & Photobiological Sciences, 2020, 19(4): 424–435

DOI

34
Czarnecki O , Grimm B . Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria. Journal of Experimental Botany, 2012, 63(4): 1675–1687

DOI

35
Buggy J J , Sganga M W , Bauer C E . Characterization of a light-responding transactivator responsible for differentially controlling reaction-center and light-harvesting-I gene-expression in rhodobacter-capsulatus. Journal of Bacteriology, 1994, 176(22): 6936–6943

DOI

36
Guzman M S , Rengasamy K , Binkley M M , Jones C , Ranaivoarisoa T O , Singh R , Fike D A , Meacham J M , Bose A . Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris. Nature Communications, 2019, 10(1): 1355

DOI

37
Zeng Y , Zhou X , Qi R L , Dai N , Fu X C , Zhao H , Peng K , Yuan H T , Huang Y M , Lv F T . . Photoactive conjugated polymer-based hybrid biosystems for enhancing cyanobacterial photosynthesis and regulating redox state of protein. Advanced Functional Materials, 2021, 31(8): 2007814

DOI

38
McKinlay J B , Harwood C S . Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26): 11669–11675

DOI

39
Zheng Y N , Harwood C S . Influence of energy and electron availability on in vivo methane and hydrogen production by a variant molybdenum nitrogenase. Applied and Environmental Microbiology, 2019, 85(9): e02671–18

DOI

40
Kim Y , Shin S A , Lee J , Yang K D , Nam K T . Hybrid system of semiconductor and photosynthetic protein. Nanotechnology, 2014, 25(34): 342001

DOI

41
Brown K A , Harris D F , Wilker M B , Rasmussen A , Khadka N , Hamby H , Keable S , Dukovic G , Peters J W , Seefeldt L C . . Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science, 2016, 352(6284): 448–450

DOI

42
Cui D Z , Wang J Q , Wang H , Yang Y , Zhao M . The cytotoxicity of endogenous CdS and Cd2+ ions during CdS NPs biosynthesis. Journal of Hazardous Materials, 2021, 409: 124485

DOI

43
Weng B , Qi M Y , Han C , Tang Z R , Xu Y J . Photocorrosion inhibition of semiconductor-based photocatalysts: basic principle, current development, and future perspective. ACS Catalysis, 2019, 9(5): 4642–4687

DOI

44
Tremblay P L , Xu M Y , Chen Y M , Zhang T . Nonmetallic abiotic-biological hybrid photocatalyst for visible water splitting and carbon dioxide reduction. iScience, 2020, 23(1): 100784

DOI

45
Gürgan M , Koku H , Eroglu I , Yücel M . Transcriptome analysis of the effects of light and dark cycle on hydrogen production metabolism of Rhodobacter capsulatus DSM1710. International Journal of Hydrogen Energy, 2020, 45(60): 34707–34719

DOI

46
Venkidusamy K , Megharaj M , Schröder U , Karouta F , Mohan S V , Naidu R . Electron transport through electrically conductive nanofilaments in Rhodopseudomonas palustris strain RP2. RSC Advances, 2015, 5(122): 100790–100798

DOI

Outlines

/