Recent advances and practical challenges of high-energy-density flexible lithium-ion batteries
Received date: 01 Jan 2024
Accepted date: 08 Mar 2024
Copyright
With the rapid iteration and update of wearable flexible devices, high-energy-density flexible lithium-ion batteries are rapidly thriving. Flexibility, energy density, and safety are all important indicators for flexible lithium-ion batteries, which can be determined jointly by material selection and structural design. Here, recent progress on high-energy-density electrode materials and flexible structure designs are discussed. Commercialized electrode materials and the next-generation high-energy-density electrode materials are analyzed in detail. The electrolytes with high safety and excellent flexibility are classified and discussed. The strategies to increase the mass loading of active materials on the electrodes by designing the current collector and electrode structure are discussed with keys of representative works. And the novel configuration structures to enhance the flexibility of batteries are displayed. In the end, it is pointed out that it is necessary to quantify the comprehensive performance of flexible lithium-ion batteries and simultaneously enhance the energy density, flexibility, and safety of batteries for the development of the next-generation high-energy-density flexible lithium-ion batteries.
Key words: lithium-ion batteries; flexibility; high energy density; safety
Guangxiang Zhang , Xin Chen , Yulin Ma , Hua Huo , Pengjian Zuo , Geping Yin , Yunzhi Gao , Chuankai Fu . Recent advances and practical challenges of high-energy-density flexible lithium-ion batteries[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(8) : 91 . DOI: 10.1007/s11705-024-2444-y
1 |
Chang J , Huang Q , Gao Y , Zheng Z . Pathways of developing high-energy-density flexible lithium batteries. Advanced Materials, 2021, 33(46): 2004419
|
2 |
Wang M , Luo Y , Wang T , Wan C , Pan L , Pan S , He K , Neo A , Chen X . Artificial skin perception. Advanced Materials, 2021, 33(19): 2003014
|
3 |
Zhou G , Li F , Cheng H M . Progress in flexible lithium batteries and future prospects. Energy & Environmental Science, 2014, 7(4): 1307–1338
|
4 |
Kim S H , Kim N Y , Choe U J , Kim J M , Lee Y G , Lee S Y . Ultrahigh-energy-density flexible lithium-metal full cells based on conductive fibrous skeletons. Advanced Energy Materials, 2021, 11(24): 2100531
|
5 |
Wang Z , Zhang W , Li X , Gao L . Recent progress in flexible energy storage materials for lithium-ion batteries and electrochemical capacitors: a review. Journal of Materials Research, 2016, 31(12): 1648–1664
|
6 |
Alahmed A , Sabir E C . Textile based electrodes for flexible lithium-ion batteries: new updates. Current Nanoscience, 2022, 18(6): 659–667
|
7 |
Zeng L , Qiu L , Cheng H M . Towards the practical use of flexible lithium ion batteries. Energy Storage Materials, 2019, 23: 434–438
|
8 |
Deng L , Wei T , Liu J , Zhan L , Chen W , Cao J . Recent developments of carbon-based anode materials for flexible lithium-ion batteries. Crystals, 2022, 12(9): 1279
|
9 |
Zhang X . Thermal analysis of a cylindrical lithium-ion battery. Electrochimica Acta, 2011, 56(3): 1246–1255
|
10 |
Deng J , Smith I , Bae C , Rairigh P , Miller T , Surampudi B . Communication-impact behaviors of pouch and prismatic battery modules. Journal of the Electrochemical Society, 2021, 168(2): 020520
|
11 |
Ostfeld A E , Gaikwad A M , Khan Y , Arias A C . High-performance flexible energy storage and harvesting system for wearable electronics. Scientific Reports, 2016, 6(1): 26122
|
12 |
Xie C , Guo Y , Zheng Z . Pushing the limit of flexible batteries. CCS Chemistry, 2023, 5(3): 531–543
|
13 |
Fu K K , Cheng J , Li T , Hu L . Flexible batteries: from mechanics to devices. ACS Energy Letters, 2016, 1(5): 1065–1079
|
14 |
Liang G , Mo F , Yang Q , Huang Z , Li X , Wang D , Liu Z , Li H , Zhang Q , Zhi C . Commencing an acidic battery based on a copper anode with ultrafast proton-regulated kinetics and superior dendrite-free property. Advanced Materials, 2019, 31(52): 1905873
|
15 |
Lu X , Cheng J , Zhou D , Chen Y , Jiang H , Lu Y , Zhang D , Kong D , Chu P K , Yang H Y .
|
16 |
Li H , Tang Z , Liu Z , Zhi C . Evaluating flexibility and wearability of flexible energy storage devices. Joule, 2019, 3(3): 613–619
|
17 |
Mao L , Meng Q , Ahmad A , Wei Z . Mechanical analyses and structural design requirements for flexible energy storage devices. Advanced Energy Materials, 2017, 7(23): 1700535
|
18 |
Zheng S , Shi D , Sun T , Zhang L , Zhang W , Li Y , Guo Z , Tao Z , Chen J . Hydrogen bond networks stabilized high-capacity organic cathode for lithium-ion batteries. Angewandte Chemie International Edition, 2023, 62(9): e202217710
|
19 |
Ge M , Cao C , Biesold G M , Sewell C D , Hao S M , Huang J , Zhang W , Lai Y , Lin Z . Recent advances in silicon-based electrodes: from fundamental research toward practical applications. Advanced Materials, 2021, 33(16): 2004577
|
20 |
Nagata H , Akimoto J , Kataoka K . Influence of compositing conditions for Si-composite negative electrodes in sulfide-type all-solid-state lithium-ion batteries. New Journal of Chemistry, 2023, 47(18): 8479–8483
|
21 |
Shang J , Yu W , Wang L , Xie C , Xu H , Wang W , Huang Q , Zheng Z . Metallic glass-fiber fabrics: a new type of flexible, super-lightweight, and 3D current collector for lithium batteries. Advanced Materials, 2023, 35(26): 2211748
|
22 |
Koo M , Park K I , Lee S H , Suh M , Jeon D Y , Choi J W , Kang K , Lee K J . Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Letters, 2012, 12(9): 4810–4816
|
23 |
Xu S , Zhang Y , Cho J , Lee J , Huang X , Jia L , Fan J A , Su Y , Su J , Zhang H .
|
24 |
Ren J , Zhang Y , Bai W , Chen X , Zhang Z , Fang X , Weng W , Wang Y , Peng H . Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angewandte Chemie International Edition, 2014, 53(30): 7864–7869
|
25 |
Liu Q C , Liu T , Liu D P , Li Z J , Zhang X B , Zhang Y . A flexible and wearable lithium-oxygen battery with record energy density achieved by the interlaced architecture inspired by bamboo slips. Advanced Materials, 2016, 28(38): 8413–8418
|
26 |
Qian G , Zhu B , Liao X , Zhai H , Srinivasan A , Fritz N J , Cheng Q , Ning M , Qie B , Li Y .
|
27 |
Meng Q , Kang C , Zhu J , Xiao X , Ma Y , Huo H , Zuo P , Du C , Lou S , Yin G . DNA helix structure inspired flexible lithium-ion batteries with high spiral deformability and long-lived cyclic stability. Nano Letters, 2022, 22(13): 5553–5560
|
28 |
Bao Y , Liu H , Zhao Z , Ma X , Zhang X Y , Liu G , Song W L . Toward flexible embodied energy: scale-inspired overlapping lithium-ion batteries with high-energy-density and variable stiffness. Advanced Functional Materials, 2023, 33(37): 2301581
|
29 |
Wang Y , Chen F , Liu Z , Tang Z , Yang Q , Zhao Y , Du S , Chen Q , Zhi C . A highly elastic and reversibly stretchable all polymer supercapacitor. Angewandte Chemie International Edition, 2019, 58(44): 15707–15711
|
30 |
Xu C , Fan Z , Zhang M , Wang P , Wang H , Jin C , Peng Y , Jiang F , Feng X , Ouyang M . A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods. Cell Reports. Physical Science, 2023, 4(12): 101705
|
31 |
Zhou Q , Dong S , Lv Z , Xu G , Huang L , Wang Q , Cui Z , Cui G . A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries. Advanced Energy Materials, 2020, 10(6): 1903441
|
32 |
Deng R , He T . Flexible solid-state lithium-ion batteries: materials and structures. Energies, 2023, 16(12): 4549
|
33 |
Kim B , Yang S H , Seo J H , Kang Y C . Inducing an amorphous phase in polymer plastic crystal electrolyte for effective ion transportation in lithium metal batteries. Advanced Functional Materials, 2023, 34(7): 2310957
|
34 |
Wang X , Lu X , Liu B , Chen D , Tong Y , Shen G . Flexible energy storage devices: design consideration and recent progress. Advanced Materials, 2014, 26(28): 4763–4782
|
35 |
Zhang S , Wang Y , He H , Huo F , Lu Y , Zhang X , Dong K . A new era of precise liquid regulation: quasi-liquid. Green Energy & Environment, 2017, 2(4): 329–330
|
36 |
Cai M , Dong Y , Xie M , Dong W , Dong C , Dai P , Zhang H , Wang X , Sun X , Zhang S .
|
37 |
Wang C Y , Zheng Z J , Feng Y Q , Ye H , Cao F F , Guo Z P . Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy, 2020, 74: 104817
|
38 |
Aliahmad N , Biswas P K , Dalir H , Agarwal M . Synthesis of V2O5/single-walled carbon nanotubes integrated into nanostructured composites as cathode materials in high performance lithium-ion batteries. Energies, 2022, 15(2): 552
|
39 |
Cho S J , Choi K H , Yoo J T , Kim J H , Lee Y H , Chun S J , Park S B , Choi D H , Wu Q , Lee S Y .
|
40 |
Weng W , Sun Q , Zhang Y , He S , Wu Q , Deng J , Fang X , Guan G , Ren J , Peng H . A gum-like lithium-ion battery based on a novel arched structure. Advanced Materials, 2015, 27(8): 1363–1369
|
41 |
Kammoun M , Berg S , Ardebili H . Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte. Nanoscale, 2015, 7(41): 17516–17522
|
42 |
Zheng S , Wu Z S , Zhou F , Wang X , Ma J , Liu C , He Y B , Bao X . All-solid-state planar integrated lithium-ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy, 2018, 51: 613–620
|
43 |
Cui J , Yao S , Chong W G , Wu J , Ihsan-Ul-Haq M , Ma L , Zhao M , Wang Y , Kim J K . Ultrafast Li+ diffusion kinetics of 2D oxidized phosphorus for quasi-solid-state bendable batteries with exceptional energy densities. Chemistry of Materials, 2019, 31(11): 4113–4123
|
44 |
Xu J , Cai X , Cai S , Shao Y , Hu C , Lu S , Ding S . High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy & Environmental Materials, 2023, 6(5): e12450
|
45 |
Xu D , Liang M , Qi S , Sun W , Lv L P , Du F H , Wang B , Chen S , Wang Y , Yu Y . The progress and prospect of tunable organic molecules for organic lithium-ion batteries. ACS Nano, 2021, 15(1): 47–80
|
46 |
Park H , Shuku Y , Lee J , Lee K , Joo M D , An B K , Awaga K , Young P S , Eon K J . Isomeric triptycene triquinones as universal cathode materials for high energy alkali metal batteries. Batteries & Supercaps, 2023, 6(3): e202200497
|
47 |
Chen H , Armand M , Demailly G , Dolhem F , Poizot P , Tarascon J M . From biomass to a renewable LiXC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem, 2008, 1(4): 348–355
|
48 |
Li K , Yu J , Si Z , Gao B , Wang H , Wang Y . W H, Wang Y. One-dimensional π-d conjugated coordination polymer with double redox-active centers for all-organic symmetric lithium-ion batteries. Chemical Engineering Journal, 2022, 450: 138052
|
49 |
Lu Y , Zhang Q , Li L , Niu Z , Chen J . Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem, 2018, 4(12): 2786–2813
|
50 |
Zhao F , Zhao X , Peng B , Gan F , Yao M , Tan W , Dong J , Zhang Q . Polyimide-derived carbon nanofiber membranes as anodes for high-performance flexible lithium-ion batteries. Chinese Chemical Letters, 2018, 29(11): 1692–1697
|
51 |
Wang X , Liu B , Hou X , Wang Q , Li W , Chen D , Shen G . Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Research, 2014, 7(7): 1073–1082
|
52 |
Li P , Kim H , Ming J , Jung H-G , Belharouak I , Sun Y K . Quasi-compensatory effect in emerging anode-free lithium batteries. eScience, 2021, 1(1): 3–12
|
53 |
Zhang Y , Yi L , Zhang J , Wang X , Hu X , Wei W , Wang H . Advances in flexible lithium metal batteries. Science China Materials, 2022, 65(8): 2035–2059
|
54 |
Zhang X , Yang Y , Zhou Z . Towards practical lithium-metal anodes. Chemical Society Reviews, 2020, 49(10): 3040–3071
|
55 |
Gao J , Chen C , Dong Q , Dai J , Yao Y , Li T , Rundlett A , Wang R , Wang C , Hu L . Stamping flexible Li alloy anodes. Advanced Materials, 2021, 33(11): 2005305
|
56 |
Qing P , Wu Z , Wang A , Huang S , Long K , Naren T , Chen D , He P , Huang H , Chen Y .
|
57 |
Kim J M , Engelhard M H , Lu B , Xu Y , Tan S , Matthews B E , Tripathi S , Cao X , Niu C , Hu E .
|
58 |
Kim J H , Lee Y H , Cho S J , Gwon J G , Cho H J , Jang M , Lee S Y , Lee S Y . Nanomat Li-S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy & Environmental Science, 2019, 12(1): 177–186
|
59 |
Liu T , Feng X L , Jin X , Shao M Z , Su Y T , Zhang Y , Zhang X B . Protecting the lithium metal anode for a safe flexible lithium air battery in ambient air. Angewandte Chemie International Edition, 2019, 58(50): 18240–18245
|
60 |
Zhang S , Liang T , Wang D , Xu Y , Cui Y , Li J , Wang X , Xia X , Gu C , Tu J . A stretchable and safe polymer electrolyte with a protecting-layer strategy for solid-state lithium metal batteries. Advanced Science, 2021, 8(15): 2003241
|
61 |
Wang H , Fu J , Wang C , Wang J , Yang A , Li C , Sun Q , Yi C , Li H . A binder-free high silicon content flexible anode for Li-ion batteries. Energy & Environmental Science, 2020, 13(3): 848–858
|
62 |
Salvatierra R V , Raji A R O , Lee S K , Ji Y , Li L , Tour J M . Silicon nanowires and lithium cobalt oxide nanowires in graphene nanoribbon papers for full lithium ion battery. Advanced Energy Materials, 2016, 6(24): 1600918
|
63 |
Mu Y , Han M , Wu B , Wang Y , Zi L , Li J , Li Z , Wang S , Wan J , Zeng L . Nitrogen, oxygen-codoped vertical graphene arrays coated 3D flexible carbon nanofibers with high silicon content as an ultrastable anode for superior lithium storage. Advanced Science, 2022, 9(6): 2104685
|
64 |
An Y , Tian Y , Liu C , Xiong S , Feng J , Qian Y . One-step, vacuum-assisted construction of micrometer-sized nanoporous silicon confined by uniform two-dimensional N-doped carbon toward advanced Li-ion and MXene-based Li metal batteries. ACS Nano, 2022, 16(3): 4560–4577
|
65 |
Huo S , Sheng L , Xue W , Wang L , Xu H , Zhang H , He X . Challenges of polymer electrolyte with wide electrochemical window for high energy solid-state lithium batteries. InfoMat, 2023, 5(3): e12394
|
66 |
Fang R , Li Y , Wu N , Xu B , Liu Y , Manthiram A , Goodenough J B . Ultra-thin single-particle-layer sodium beta-alumina-based composite polymer electrolyte membrane for sodium-metal batteries. Advanced Functional Materials, 2023, 33(6): 2211229
|
67 |
Xu P , Shuang Z Y , Zhao C Z , Li X , Fan L Z , Chen A , Chen H , Kuzmina E , Karaseva E , Kolosnitsyn V .
|
68 |
Son J M , Oh S , Bae S H , Nam S , Oh K . A pair of NiCo2O4 and V2O5 nanowires directly grown on carbon fabric for highly bendable lithium-ion batteries. Advanced Energy Materials, 2019, 9(18): 1900477
|
69 |
Ha S H , Shin K H , Park H W , Lee Y J . Flexible lithium-ion batteries with high areal capacity enabled by smart conductive textiles. Small, 2018, 14(43): 1703418
|
70 |
Chen H , Zheng M , Qian Sh , Ling H Y , Wu Z , Liu X , Yan C , Zhang S . Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy, 2021, 3(6): 929–956
|
71 |
Fang R , Liu Y , Li Y , Manthiram A , Goodenough J B . Achieving stable all-solid-state lithium-metal batteries by tuning the cathode-electrolyte interface and ionic/electronic transport within the cathode. Materials Today, 2023, 64: 52–60
|
72 |
Yang S J , Hu J K , Jiang F N , Yuan H , Park H S , Huang J Q . Safer solid-state lithium metal batteries: mechanisms and strategies. InfoMat, 2023, 6(2): e12512
|
73 |
Tufail M K , Ahmed A , Rafiq M , Asif N M , Shoaib A S S , Sohail M , Sufyan J M , Najam T , Althomali R H , Rahman M M . Chemistry aspects and designing strategies of flexible materials for high-performance flexible lithium-ion batteries. Chemical Record, 2023, 24(1): e202300155
|
74 |
Liu Y N , Xiao Z , Zhang W K , Zhang J , Huang H , Gan Y P , He X P , Kumar G G , Xia Y . Poly(m-phenylene isophthalamide)-reinforced polyethylene oxide composite electrolyte with high mechanical strength and thermostability for all-solid-state lithium metal batteries. Rare Metals, 2022, 41(11): 3762–3773
|
75 |
Wang S , Xiong P , Zhang J , Wang G . Recent progress on flexible lithium metal batteries: composite lithium metal anodes and solid-state electrolytes. Energy Storage Materials, 2020, 29: 310–331
|
76 |
Su Y , Xu F , Zhang X , Qiu Y , Wang H . Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries. Nano-Micro Letters, 2023, 15(1): 82
|
77 |
Fang R , Xu H , Xu B , Li X , Li Y , Goodenough J B . Reaction mechanism optimization of solid-state Li-S batteries with a PEO-based electrolyte. Advanced Functional Materials, 2021, 31(2): 2001812
|
78 |
Xia Y , Wang Q , Liu Y , Zhang J , Xia X , Huang H , Gan Y , He X , Xiao Z , Zhang W . Three-dimensional polyimide nanofiber framework reinforced polymer electrolyte for all-solid-state lithium metal battery. Journal of Colloid and Interface Science, 2023, 638: 908–917
|
79 |
Xie H , Yang C , Fu K K , Yao Y , Jiang F , Hitz E , Liu B , Wang S , Hu L . Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Advanced Energy Materials, 2018, 8(18): 1703474
|
80 |
Shen W , Li K , Lv Y , Xu T , Wei D , Liu Z . Highly-safe and ultra-stable all-flexible gel polymer lithium ion batteries aiming for scalable applications. Advanced Energy Materials, 2020, 10(21): 1904281
|
81 |
Yusim Y , Trevisanello E , Ruess R H , Richter F , Mayer A , Bresser D , Passerini S , Janek J , Henss A . Evaluation and improvement of the stability of poly(ethylene oxide)-based solid-state batteries with high-voltage cathodes. Angewandte Chemie International Edition, 2023, 12(62): e202218316
|
82 |
Thomas M L , Kan H S , Nanbu S , Masahiro Y F . Organic ionic plastic crystals: flexible solid electrolytes for lithium secondary batteries. Energy Advances, 2023, 2(6): 748–764
|
83 |
Wan J , Xie J , Kong X , Liu Z , Liu K , Shi F , Pei A , Chen H , Chen W , Chen J .
|
84 |
Wang Z , Shen L , Deng S , Cui P , Yao X . 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Advanced Materials, 2021, 33(25): 2100353
|
85 |
Lopez J , Mackanic D G , Cui Y , Bao Z . Designing polymers for advanced battery chemistries. Nature Reviews. Materials, 2019, 4(5): 4312–4330
|
86 |
Wu N , Shi Y R , Lang S Y , Zhou J M , Liang J Y , Wang W , Tan S J , Yin Y X , Wen R , Guo Y G . Self-healable solid polymeric electrolytes for stable and flexible lithium metal batteries. Angewandte Chemie International Edition, 2019, 58(50): 18146–18149
|
87 |
Ha H J , Kil E H , Kwon Y H , Kim J Y , Lee C K , Lee S Y . UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy & Environmental Science, 2012, 5(4): 6491–6499
|
88 |
Ho C K , Ju C S , Hee K S , Han K Y , Young K J , Young L S . Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries. Advanced Functional Materials, 2014, 24(1): 44–52
|
89 |
Chen G , Zhang F , Zhou Z , Li J , Tang Y . A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Advanced Energy Materials, 2018, 8(25): 1801219
|
90 |
Chi X , Li M , Di J , Bai P , Song L , Wang X , Li F , Liang S , Xu J , Yu J . A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature, 2021, 592(7855): 551–557
|
91 |
Wu Q , Yang Y , Ma C , Chen Z , Su Q , Zhu C , Gao Y , Ma R , Li C . Flexible nanocomposite polymer electrolyte based on UV-cured polyurethane acrylate for lithium metal batteries. ACS Sustainable Chemistry & Engineering, 2021, 9(16): 5631–5641
|
92 |
Pan K , Zhang L , Qian W , Wu X , Dong K , Zhang H , Zhang S . A flexible ceramic/polymer hybrid solid electrolyte for solid state lithium metal batteries. Advanced Materials, 2020, 32(17): 2000399
|
93 |
Jiang T , He P , Wang G , Shen Y , Nan C W , Fan L Z . Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Advanced Energy Materials, 2020, 10(12): 1903376
|
94 |
Liu Y , Li Y , Sun J , Du Z , Hu X , Bi J , Liu C , Ai W , Yan Q . Present and future of functionalized Cu current collectors for stabilizing lithium metal anodes. Nano Research Energy, 2023, 2: e9120048
|
95 |
Fu A , Wang C , Peng J , Su M , Pei F , Cui J , Fang X , Li J F , Zheng N . Lithiophilic and antioxidative copper current collectors for highly stable lithium metal batteries. Advanced Functional Materials, 2021, 31(15): 2009805
|
96 |
Liu P , Wang Y , Hao H , Basu S , Feng X , Xu Y , Boscoboinik J A , Nanda J , Watt J , Mitlin D . Stable potassium metal anodes with an all-aluminum current collector through improved electrolyte wetting. Advanced Materials, 2020, 32(49): 2002908
|
97 |
Park M H , Noh M , Lee S , Ko M , Chae S , Sim S , Choi S , Kim H , Nam H , Park S .
|
98 |
Shang K , Gao J , Yin X , Ding Y , Wen Z . An overview of flexible electrode materials/substrates for flexible electrochemical energy storage/conversion devices. European Journal of Inorganic Chemistry, 2021, 7(7): 606–619
|
99 |
Li N , Chen Z , Ren W , Li F , Cheng H M . Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17360–17365
|
100 |
Wu F , Gao X , Xu X , Jiang Y , Gao X , Yin R , Shi W , Liu W , Lu G , Cao X . Carbon cloth for flexible aqueous zinc-ion batteries. ChemSusChem, 2020, 13(6): 1537–1545
|
101 |
Shi H , Wen G , Nie Y , Zhang G , Duan H . Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion. Nanoscale, 2020, 12(9): 5261–5285
|
102 |
Kordek K , Jiang L , Fan K , Zhu Z , Xu L , Al-Mamun M , Dou Y , Chen S , Liu P , Yin H , Rutkowski P , Zhao H . Two-step activated carbon cloth with oxygen-rich functional groups as a high-performance additive-free air electrode for flexible zinc-air batteries. Advanced Energy Materials, 2019, 9(4): 1802936
|
103 |
Balogun M S , Qiu W , Lyu F , Luo Y , Meng H , Li J , Mai W , Mai L , Tong Y . All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy, 2016, 26: 446–455
|
104 |
Balogun M S , Yang H , Luo Y , Qiu W , Huang Y , Liu Z Q , Tong Y . Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-double-shell electrodes. Energy & Environmental Science, 2018, 11(7): 1859–1869
|
105 |
Zhu S , Sheng J , Chen Y , Ni J , Li Y . Carbon nanotubes for flexible batteries: recent progress and future perspective. National Science Review, 2021, 8(5): nwaa261
|
106 |
Fang B , Chang D , Xu Z , Gao C . A review on graphene fibers: expectations, advances, and prospects. Advanced Materials, 2020, 32(5): 1902664
|
107 |
Hu L , Wu H , La M F , Yang Y , Cui Y . Thin, flexible secondary Li-ion paper batteries. ACS Nano, 2010, 4(10): 5843–5848
|
108 |
Hu J W , Wu Z P , Zhong S W , Zhang W B , Suresh S , Mehta A , Koratkar N . Folding insensitive, high energy density lithium-ion battery featuring carbon nanotube current collectors. Carbon, 2015, 87: 292–298
|
109 |
Wang K , Luo S , Wu Y , He X , Zhao F , Wang J , Jiang K , Fan S . Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Advanced Functional Materials, 2013, 23(7): 846–853
|
110 |
Gaikwad A M , Khau B V , Davies G , Hertzberg B , Steingart D A , Arias A C . A high areal capacity flexible lithium-ion battery with a strain-compliant design. Advanced Energy Materials, 2015, 5(3): 1401389
|
111 |
Zhang M , Li J , Sun C , Wang Z , Li Y , Zhang D . Durable flexible dual-layer and free-standing silicon/carbon composite anode for lithium-ion batteries. Journal of Alloys and Compounds, 2023, 932: 167687
|
112 |
Balogun M S , Yu M , Huang Y , Li C , Fang P , Liu Y , Lu X , Tong Y . Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries. Nano Energy, 2015, 11: 348–355
|
113 |
Balogun M S , Wu Z , Luo Y , Qiu W , Fan X , Long B , Huang M , Liu P , Tong Y . High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries. Journal of Power Sources, 2016, 308: 7–17
|
114 |
Hwang C , Song W J , Han J G , Bae S , Song G , Choi N S , Park S , Song H K . Foldable electrode architectures based on silver-nanowire-wound or carbon-nanotube-webbed micrometer-scale fibers of polyethylene terephthalate mats for flexible lithium-ion batteries. Advanced Materials, 2018, 30(7): 1705445
|
115 |
Mo F , Liang G , Huang Z , Li H , Wang D , Zhi C . An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Advanced Materials, 2020, 32(5): 1902151
|
116 |
Fang Z , Wang J , Wu H , Li Q , Fan S , Wang J . Progress and challenges of flexible lithium ion batteries. Journal of Power Sources, 2020, 454: 227932
|
117 |
Ke R , Du L , Han B , Xu H , Meng H , Zeng H , Zheng Z , Deng Y . Biobased self-growing approach toward tailored, integrated high-performance flexible lithium-ion battery. Nano Letters, 2022, 22(23): 9327–9334
|
118 |
Qian W , Wang L , Mao X , Yang Y , Yan L , Zeng S , Zhao K , Huang Q , Liu M , Liu X .
|
119 |
Nyamaa O , Seo D H , Lee J S , Jeong H M , Huh S C , Yang J H , Dolgor E , Noh J P . High electrochemical performance silicon thin-film free-standing electrodes based on bucky paper for flexible lithium-ion batteries. Materials, 2021, 14(8): 2053
|
120 |
Chen Z , Kim G T , Wang Z , Bresser D , Qin B , Geiger D , Kaiser U , Wang X , Shen Z X , Passerini S . 4-V flexible all-solid-state lithium polymer batteries. Nano Energy, 2019, 64: 103986
|
121 |
Wang D , Han C , Mo F , Yang Q , Zhao Y , Li Q , Liang G , Dong B , Zhi C . Energy density issues of flexible energy storage devices. Energy Storage Materials, 2020, 28: 264–292
|
122 |
Wu Z , Liu K , Lv C , Zhong S , Wang Q , Liu T , Liu X , Yin Y , Hu Y , Wei D .
|
123 |
Leijonmarck S , Cornell A , Lindbergh G , Wågbergbc L . Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(15): 4671–4677
|
124 |
Liao X , Shi C , Wang T , Qie B , Chen Y , Yang P , Cheng Q , Zhai H , Chen M , Wang X .
|
125 |
Chun S J , Choi E S , Lee E H , Kim J H , Lee S Y , Lee S Y . Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22(32): 16618–16626
|
126 |
Deimede V , Elmasides C . Separators for lithium-ion batteries: a review on the production processes and recent developments. Energy Technology, 2015, 3(5): 453–468
|
127 |
Zhu Y , Cao K , Cheng W , Zeng S , Dou S , Chen W , Zhao D , Yu H . A non-newtonian fluidic cellulose-modified glass microfiber separator for flexible lithium-ion batteries. EcoMat, 2021, 3(4): e12126
|
128 |
Stephan A M , Nahm K S . Review on composite polymer electrolytes for lithium batteries. Polymer, 2006, 47(16): 5952–5964
|
129 |
Xu Q , Kong Q , Liu Z , Zhang J , Wang X , Liu R , Yue L , Cui G . Polydopamine-coated cellulose micro fibrillated membrane as high performance lithium-ion battery separator. RSC Advances, 2014, 4(16): 7845–7850
|
130 |
Liu T , Cheng X , Yu H , Zhu H , Peng N , Zheng R , Zhang J , Shui M , Cui Y , Shu J . An overview and future perspectives of aqueous rechargeable polyvalent ion batteries. Energy Storage Materials, 2019, 18: 68–91
|
131 |
Alias N , Mohamad A A . Advances of aqueous rechargeable lithium-ion battery: a review. Journal of Power Sources, 2015, 274: 237–251
|
132 |
Song W J , Lee S , Song G , Park S . Stretchable aqueous batteries: progress and prospects. ACS Energy Letters, 2019, 4(1): 177–186
|
133 |
Zeng X , Hao J , Wang Z , Mao J , Guo Z . Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Materials, 2019, 20: 410–437
|
134 |
Peng J , Snyder G J . A figure of merit for flexibility. Science, 2019, 36(6466): 690–691
|
135 |
Liu W , Yi C , Li L , Liu S , Gui Q , Ba D , Li Y , Peng D , Liu J . Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angewandte Chemie International Edition, 2021, 60(23): 12931–12940
|
136 |
Chang J , Huang Q , Zheng Z . A figure of merit for flexible batteries. Joule, 2020, 7(4): 1346–1349
|
137 |
Betz J , Bieker G , Meister P , Placke T , Winter M , Schmuch R . Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Advanced Energy Materials, 2019, 9(6): 1803170
|
138 |
Zheng J , Myeong S , Cho W , Yan P , Xiao J , Wang C , Cho J , Zhang J G . Li- and Mn-rich cathode materials: challenges to commercialization. Advanced Energy Materials, 2017, 7(6): 1601284
|
139 |
He J , Lu C , Jiang H , Han F , Shi X , Wu J , Wang L , Chen T , Wang J , Zhang Y .
|
140 |
Ghadi B M , Yuan M , Ardebili H . Stretchable fabric-based LiCoO2, electrode for lithium ion batteries. Extreme Mechanics Letters, 2019, 32: 32100532
|
141 |
Ghadi B M , Hekmatnia B , Fu Q , Ardebili H . Stretchable fabric-based lithium-ion battery. Extreme Mechanics Letters, 2023, 6: 61102026
|
142 |
Thakur A , Devi P . Paper-based flexible devices for energy harvesting, conversion, and storage applications: a review. Nano Energy, 2022, 94: 106927
|
143 |
Lyu P , Liu X , Qu J , Zhao J , Huo Y , Qu Z , Rao Z . Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Materials, 2020, 31: 195–220
|
144 |
Parekh M H , Li B , Palanisamy M , Adams T E , Tomar V , Pol V G . In situ thermal runaway detection in lithium-ion batteries with an integrated internal sensor. ACS Applied Energy Materials, 2020, 3(8): 7997–8008
|
145 |
Yang S J , Yao N , Jiang F N , Xie J , Sun S Y , Chen X , Yuan H , Cheng X B , Huang J Q , Zhang Q . Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells. Angewandte Chemie International Edition, 2022, 61(51): e202214545
|
146 |
Ye Y , Chou L Y , Liu Y , Wang H , Kwee L H , Huang W , Wan J , Liu K , Zhou G , Yang Y .
|
147 |
Wang J , Yamada Y , Sodeyama K , Watanabe E , Takada K , Tateyama Y , Yamada A . Fire-extinguishing organic electrolytes for safe batteries. Nature Energy, 2018, 3(1): 22–29
|
148 |
Yang H , Li Q , Guo C , Naveed A , Yang J , Nuli Y , Wang J . Safer lithium-sulfur battery based on nonflammable electrolyte with sulfur composite cathode. Chemical Communications, 2018, 54(33): 4132–4135
|
149 |
Li L , Xu C , Chang R , Yang C , Jia C , Wang L , Song J , Li Z , Zhang F , Fang B .
|
150 |
Malik R . Thermal runaway of lithium-ion batteries without internal short circuit. Joule, 2018, 2(10): 2047–2064
|
151 |
Zhang C , Li H , Wang S , Cao Y , Yang H , Ai X , Zhong F . A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries. Journal of Energy Chemistry, 2020, 44: 33–40
|
/
〈 | 〉 |