Recent advances and practical challenges of high-energy-density flexible lithium-ion batteries

  • Guangxiang Zhang 1,2 ,
  • Xin Chen 1,2 ,
  • Yulin Ma 1,2 ,
  • Hua Huo 1,2 ,
  • Pengjian Zuo 1,2 ,
  • Geping Yin 1,2 ,
  • Yunzhi Gao , 1,2 ,
  • Chuankai Fu , 1,2
Expand
  • 1. State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin 150001, China
  • 2. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
gao_yunzhihit@hit.edu.cn
chuankaifu@hit.edu.cn

Received date: 01 Jan 2024

Accepted date: 08 Mar 2024

Copyright

2024 Higher Education Press

Abstract

With the rapid iteration and update of wearable flexible devices, high-energy-density flexible lithium-ion batteries are rapidly thriving. Flexibility, energy density, and safety are all important indicators for flexible lithium-ion batteries, which can be determined jointly by material selection and structural design. Here, recent progress on high-energy-density electrode materials and flexible structure designs are discussed. Commercialized electrode materials and the next-generation high-energy-density electrode materials are analyzed in detail. The electrolytes with high safety and excellent flexibility are classified and discussed. The strategies to increase the mass loading of active materials on the electrodes by designing the current collector and electrode structure are discussed with keys of representative works. And the novel configuration structures to enhance the flexibility of batteries are displayed. In the end, it is pointed out that it is necessary to quantify the comprehensive performance of flexible lithium-ion batteries and simultaneously enhance the energy density, flexibility, and safety of batteries for the development of the next-generation high-energy-density flexible lithium-ion batteries.

Cite this article

Guangxiang Zhang , Xin Chen , Yulin Ma , Hua Huo , Pengjian Zuo , Geping Yin , Yunzhi Gao , Chuankai Fu . Recent advances and practical challenges of high-energy-density flexible lithium-ion batteries[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(8) : 91 . DOI: 10.1007/s11705-024-2444-y

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The authors acknowledge and thank for financial support from the National Natural Science Foundation of China (Grant No. 52302234), the China Postdoctoral Science Foundation (Grant No. 2022M710950), the Heilongjiang Provincial Postdoctoral Science Foundation (Grant No. LBH-Z21131), and the Natural Science of Heilongjiang Province (Grant No. LH2023B009).
1
Chang J , Huang Q , Gao Y , Zheng Z . Pathways of developing high-energy-density flexible lithium batteries. Advanced Materials, 2021, 33(46): 2004419

DOI

2
Wang M , Luo Y , Wang T , Wan C , Pan L , Pan S , He K , Neo A , Chen X . Artificial skin perception. Advanced Materials, 2021, 33(19): 2003014

DOI

3
Zhou G , Li F , Cheng H M . Progress in flexible lithium batteries and future prospects. Energy & Environmental Science, 2014, 7(4): 1307–1338

DOI

4
Kim S H , Kim N Y , Choe U J , Kim J M , Lee Y G , Lee S Y . Ultrahigh-energy-density flexible lithium-metal full cells based on conductive fibrous skeletons. Advanced Energy Materials, 2021, 11(24): 2100531

DOI

5
Wang Z , Zhang W , Li X , Gao L . Recent progress in flexible energy storage materials for lithium-ion batteries and electrochemical capacitors: a review. Journal of Materials Research, 2016, 31(12): 1648–1664

DOI

6
Alahmed A , Sabir E C . Textile based electrodes for flexible lithium-ion batteries: new updates. Current Nanoscience, 2022, 18(6): 659–667

DOI

7
Zeng L , Qiu L , Cheng H M . Towards the practical use of flexible lithium ion batteries. Energy Storage Materials, 2019, 23: 434–438

DOI

8
Deng L , Wei T , Liu J , Zhan L , Chen W , Cao J . Recent developments of carbon-based anode materials for flexible lithium-ion batteries. Crystals, 2022, 12(9): 1279

DOI

9
Zhang X . Thermal analysis of a cylindrical lithium-ion battery. Electrochimica Acta, 2011, 56(3): 1246–1255

DOI

10
Deng J , Smith I , Bae C , Rairigh P , Miller T , Surampudi B . Communication-impact behaviors of pouch and prismatic battery modules. Journal of the Electrochemical Society, 2021, 168(2): 020520

DOI

11
Ostfeld A E , Gaikwad A M , Khan Y , Arias A C . High-performance flexible energy storage and harvesting system for wearable electronics. Scientific Reports, 2016, 6(1): 26122

DOI

12
Xie C , Guo Y , Zheng Z . Pushing the limit of flexible batteries. CCS Chemistry, 2023, 5(3): 531–543

DOI

13
Fu K K , Cheng J , Li T , Hu L . Flexible batteries: from mechanics to devices. ACS Energy Letters, 2016, 1(5): 1065–1079

DOI

14
Liang G , Mo F , Yang Q , Huang Z , Li X , Wang D , Liu Z , Li H , Zhang Q , Zhi C . Commencing an acidic battery based on a copper anode with ultrafast proton-regulated kinetics and superior dendrite-free property. Advanced Materials, 2019, 31(52): 1905873

DOI

15
Lu X , Cheng J , Zhou D , Chen Y , Jiang H , Lu Y , Zhang D , Kong D , Chu P K , Yang H Y . . Highly flexible multilayer MXene hollow carbon nanofibers confined with Fe3C particles for high-performance lithium-ion batteries. Chemical Engineering Journal, 2023, 478(15): 147366

DOI

16
Li H , Tang Z , Liu Z , Zhi C . Evaluating flexibility and wearability of flexible energy storage devices. Joule, 2019, 3(3): 613–619

DOI

17
Mao L , Meng Q , Ahmad A , Wei Z . Mechanical analyses and structural design requirements for flexible energy storage devices. Advanced Energy Materials, 2017, 7(23): 1700535

DOI

18
Zheng S , Shi D , Sun T , Zhang L , Zhang W , Li Y , Guo Z , Tao Z , Chen J . Hydrogen bond networks stabilized high-capacity organic cathode for lithium-ion batteries. Angewandte Chemie International Edition, 2023, 62(9): e202217710

DOI

19
Ge M , Cao C , Biesold G M , Sewell C D , Hao S M , Huang J , Zhang W , Lai Y , Lin Z . Recent advances in silicon-based electrodes: from fundamental research toward practical applications. Advanced Materials, 2021, 33(16): 2004577

DOI

20
Nagata H , Akimoto J , Kataoka K . Influence of compositing conditions for Si-composite negative electrodes in sulfide-type all-solid-state lithium-ion batteries. New Journal of Chemistry, 2023, 47(18): 8479–8483

DOI

21
Shang J , Yu W , Wang L , Xie C , Xu H , Wang W , Huang Q , Zheng Z . Metallic glass-fiber fabrics: a new type of flexible, super-lightweight, and 3D current collector for lithium batteries. Advanced Materials, 2023, 35(26): 2211748

DOI

22
Koo M , Park K I , Lee S H , Suh M , Jeon D Y , Choi J W , Kang K , Lee K J . Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Letters, 2012, 12(9): 4810–4816

DOI

23
Xu S , Zhang Y , Cho J , Lee J , Huang X , Jia L , Fan J A , Su Y , Su J , Zhang H . . Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nature Communications, 2013, 4(1): 1543

DOI

24
Ren J , Zhang Y , Bai W , Chen X , Zhang Z , Fang X , Weng W , Wang Y , Peng H . Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angewandte Chemie International Edition, 2014, 53(30): 7864–7869

DOI

25
Liu Q C , Liu T , Liu D P , Li Z J , Zhang X B , Zhang Y . A flexible and wearable lithium-oxygen battery with record energy density achieved by the interlaced architecture inspired by bamboo slips. Advanced Materials, 2016, 28(38): 8413–8418

DOI

26
Qian G , Zhu B , Liao X , Zhai H , Srinivasan A , Fritz N J , Cheng Q , Ning M , Qie B , Li Y . . Bioinspired, spine-like, flexible, rechargeable lithium-ion batteries with high energy density. Advanced Materials, 2018, 30(12): 1704947

DOI

27
Meng Q , Kang C , Zhu J , Xiao X , Ma Y , Huo H , Zuo P , Du C , Lou S , Yin G . DNA helix structure inspired flexible lithium-ion batteries with high spiral deformability and long-lived cyclic stability. Nano Letters, 2022, 22(13): 5553–5560

DOI

28
Bao Y , Liu H , Zhao Z , Ma X , Zhang X Y , Liu G , Song W L . Toward flexible embodied energy: scale-inspired overlapping lithium-ion batteries with high-energy-density and variable stiffness. Advanced Functional Materials, 2023, 33(37): 2301581

DOI

29
Wang Y , Chen F , Liu Z , Tang Z , Yang Q , Zhao Y , Du S , Chen Q , Zhi C . A highly elastic and reversibly stretchable all polymer supercapacitor. Angewandte Chemie International Edition, 2019, 58(44): 15707–15711

DOI

30
Xu C , Fan Z , Zhang M , Wang P , Wang H , Jin C , Peng Y , Jiang F , Feng X , Ouyang M . A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods. Cell Reports. Physical Science, 2023, 4(12): 101705

DOI

31
Zhou Q , Dong S , Lv Z , Xu G , Huang L , Wang Q , Cui Z , Cui G . A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries. Advanced Energy Materials, 2020, 10(6): 1903441

DOI

32
Deng R , He T . Flexible solid-state lithium-ion batteries: materials and structures. Energies, 2023, 16(12): 4549

DOI

33
Kim B , Yang S H , Seo J H , Kang Y C . Inducing an amorphous phase in polymer plastic crystal electrolyte for effective ion transportation in lithium metal batteries. Advanced Functional Materials, 2023, 34(7): 2310957

34
Wang X , Lu X , Liu B , Chen D , Tong Y , Shen G . Flexible energy storage devices: design consideration and recent progress. Advanced Materials, 2014, 26(28): 4763–4782

DOI

35
Zhang S , Wang Y , He H , Huo F , Lu Y , Zhang X , Dong K . A new era of precise liquid regulation: quasi-liquid. Green Energy & Environment, 2017, 2(4): 329–330

DOI

36
Cai M , Dong Y , Xie M , Dong W , Dong C , Dai P , Zhang H , Wang X , Sun X , Zhang S . . Stalling oxygen evolution in high-voltage cathodes by lanthurization. Nature Energy, 2023, 8(2): 159–168

DOI

37
Wang C Y , Zheng Z J , Feng Y Q , Ye H , Cao F F , Guo Z P . Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy, 2020, 74: 104817

DOI

38
Aliahmad N , Biswas P K , Dalir H , Agarwal M . Synthesis of V2O5/single-walled carbon nanotubes integrated into nanostructured composites as cathode materials in high performance lithium-ion batteries. Energies, 2022, 15(2): 552

DOI

39
Cho S J , Choi K H , Yoo J T , Kim J H , Lee Y H , Chun S J , Park S B , Choi D H , Wu Q , Lee S Y . . Hetero-nanonet rechargeable paper batteries: toward ultrahigh energy density and origami foldability. Advanced Functional Materials, 2015, 38(25): 6029–6040

DOI

40
Weng W , Sun Q , Zhang Y , He S , Wu Q , Deng J , Fang X , Guan G , Ren J , Peng H . A gum-like lithium-ion battery based on a novel arched structure. Advanced Materials, 2015, 27(8): 1363–1369

DOI

41
Kammoun M , Berg S , Ardebili H . Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte. Nanoscale, 2015, 7(41): 17516–17522

DOI

42
Zheng S , Wu Z S , Zhou F , Wang X , Ma J , Liu C , He Y B , Bao X . All-solid-state planar integrated lithium-ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy, 2018, 51: 613–620

DOI

43
Cui J , Yao S , Chong W G , Wu J , Ihsan-Ul-Haq M , Ma L , Zhao M , Wang Y , Kim J K . Ultrafast Li+ diffusion kinetics of 2D oxidized phosphorus for quasi-solid-state bendable batteries with exceptional energy densities. Chemistry of Materials, 2019, 31(11): 4113–4123

DOI

44
Xu J , Cai X , Cai S , Shao Y , Hu C , Lu S , Ding S . High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy & Environmental Materials, 2023, 6(5): e12450

DOI

45
Xu D , Liang M , Qi S , Sun W , Lv L P , Du F H , Wang B , Chen S , Wang Y , Yu Y . The progress and prospect of tunable organic molecules for organic lithium-ion batteries. ACS Nano, 2021, 15(1): 47–80

DOI

46
Park H , Shuku Y , Lee J , Lee K , Joo M D , An B K , Awaga K , Young P S , Eon K J . Isomeric triptycene triquinones as universal cathode materials for high energy alkali metal batteries. Batteries & Supercaps, 2023, 6(3): e202200497

DOI

47
Chen H , Armand M , Demailly G , Dolhem F , Poizot P , Tarascon J M . From biomass to a renewable LiXC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem, 2008, 1(4): 348–355

DOI

48
Li K , Yu J , Si Z , Gao B , Wang H , Wang Y . W H, Wang Y. One-dimensional π-d conjugated coordination polymer with double redox-active centers for all-organic symmetric lithium-ion batteries. Chemical Engineering Journal, 2022, 450: 138052

DOI

49
Lu Y , Zhang Q , Li L , Niu Z , Chen J . Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem, 2018, 4(12): 2786–2813

DOI

50
Zhao F , Zhao X , Peng B , Gan F , Yao M , Tan W , Dong J , Zhang Q . Polyimide-derived carbon nanofiber membranes as anodes for high-performance flexible lithium-ion batteries. Chinese Chemical Letters, 2018, 29(11): 1692–1697

DOI

51
Wang X , Liu B , Hou X , Wang Q , Li W , Chen D , Shen G . Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Research, 2014, 7(7): 1073–1082

DOI

52
Li P , Kim H , Ming J , Jung H-G , Belharouak I , Sun Y K . Quasi-compensatory effect in emerging anode-free lithium batteries. eScience, 2021, 1(1): 3–12

53
Zhang Y , Yi L , Zhang J , Wang X , Hu X , Wei W , Wang H . Advances in flexible lithium metal batteries. Science China Materials, 2022, 65(8): 2035–2059

DOI

54
Zhang X , Yang Y , Zhou Z . Towards practical lithium-metal anodes. Chemical Society Reviews, 2020, 49(10): 3040–3071

DOI

55
Gao J , Chen C , Dong Q , Dai J , Yao Y , Li T , Rundlett A , Wang R , Wang C , Hu L . Stamping flexible Li alloy anodes. Advanced Materials, 2021, 33(11): 2005305

DOI

56
Qing P , Wu Z , Wang A , Huang S , Long K , Naren T , Chen D , He P , Huang H , Chen Y . . Highly reversible lithium metal anode enabled by 3D lipophilic-lithophytic dual-skeletons. Advanced Materials, 2023, 35(15): 2211203

DOI

57
Kim J M , Engelhard M H , Lu B , Xu Y , Tan S , Matthews B E , Tripathi S , Cao X , Niu C , Hu E . . High current-density-charging lithium metal batteries enabled by double-layer protected lithium metal anode. Advanced Functional Materials, 2022, 32(48): 2207172

DOI

58
Kim J H , Lee Y H , Cho S J , Gwon J G , Cho H J , Jang M , Lee S Y , Lee S Y . Nanomat Li-S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy & Environmental Science, 2019, 12(1): 177–186

DOI

59
Liu T , Feng X L , Jin X , Shao M Z , Su Y T , Zhang Y , Zhang X B . Protecting the lithium metal anode for a safe flexible lithium air battery in ambient air. Angewandte Chemie International Edition, 2019, 58(50): 18240–18245

DOI

60
Zhang S , Liang T , Wang D , Xu Y , Cui Y , Li J , Wang X , Xia X , Gu C , Tu J . A stretchable and safe polymer electrolyte with a protecting-layer strategy for solid-state lithium metal batteries. Advanced Science, 2021, 8(15): 2003241

DOI

61
Wang H , Fu J , Wang C , Wang J , Yang A , Li C , Sun Q , Yi C , Li H . A binder-free high silicon content flexible anode for Li-ion batteries. Energy & Environmental Science, 2020, 13(3): 848–858

DOI

62
Salvatierra R V , Raji A R O , Lee S K , Ji Y , Li L , Tour J M . Silicon nanowires and lithium cobalt oxide nanowires in graphene nanoribbon papers for full lithium ion battery. Advanced Energy Materials, 2016, 6(24): 1600918

DOI

63
Mu Y , Han M , Wu B , Wang Y , Zi L , Li J , Li Z , Wang S , Wan J , Zeng L . Nitrogen, oxygen-codoped vertical graphene arrays coated 3D flexible carbon nanofibers with high silicon content as an ultrastable anode for superior lithium storage. Advanced Science, 2022, 9(6): 2104685

DOI

64
An Y , Tian Y , Liu C , Xiong S , Feng J , Qian Y . One-step, vacuum-assisted construction of micrometer-sized nanoporous silicon confined by uniform two-dimensional N-doped carbon toward advanced Li-ion and MXene-based Li metal batteries. ACS Nano, 2022, 16(3): 4560–4577

DOI

65
Huo S , Sheng L , Xue W , Wang L , Xu H , Zhang H , He X . Challenges of polymer electrolyte with wide electrochemical window for high energy solid-state lithium batteries. InfoMat, 2023, 5(3): e12394

DOI

66
Fang R , Li Y , Wu N , Xu B , Liu Y , Manthiram A , Goodenough J B . Ultra-thin single-particle-layer sodium beta-alumina-based composite polymer electrolyte membrane for sodium-metal batteries. Advanced Functional Materials, 2023, 33(6): 2211229

DOI

67
Xu P , Shuang Z Y , Zhao C Z , Li X , Fan L Z , Chen A , Chen H , Kuzmina E , Karaseva E , Kolosnitsyn V . . A review of solid-state lithium metal batteries through in-situ solidification. Science China. Chemistry, 2024, 67(1): 7–86

DOI

68
Son J M , Oh S , Bae S H , Nam S , Oh K . A pair of NiCo2O4 and V2O5 nanowires directly grown on carbon fabric for highly bendable lithium-ion batteries. Advanced Energy Materials, 2019, 9(18): 1900477

DOI

69
Ha S H , Shin K H , Park H W , Lee Y J . Flexible lithium-ion batteries with high areal capacity enabled by smart conductive textiles. Small, 2018, 14(43): 1703418

DOI

70
Chen H , Zheng M , Qian Sh , Ling H Y , Wu Z , Liu X , Yan C , Zhang S . Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy, 2021, 3(6): 929–956

DOI

71
Fang R , Liu Y , Li Y , Manthiram A , Goodenough J B . Achieving stable all-solid-state lithium-metal batteries by tuning the cathode-electrolyte interface and ionic/electronic transport within the cathode. Materials Today, 2023, 64: 52–60

DOI

72
Yang S J , Hu J K , Jiang F N , Yuan H , Park H S , Huang J Q . Safer solid-state lithium metal batteries: mechanisms and strategies. InfoMat, 2023, 6(2): e12512

73
Tufail M K , Ahmed A , Rafiq M , Asif N M , Shoaib A S S , Sohail M , Sufyan J M , Najam T , Althomali R H , Rahman M M . Chemistry aspects and designing strategies of flexible materials for high-performance flexible lithium-ion batteries. Chemical Record, 2023, 24(1): e202300155

74
Liu Y N , Xiao Z , Zhang W K , Zhang J , Huang H , Gan Y P , He X P , Kumar G G , Xia Y . Poly(m-phenylene isophthalamide)-reinforced polyethylene oxide composite electrolyte with high mechanical strength and thermostability for all-solid-state lithium metal batteries. Rare Metals, 2022, 41(11): 3762–3773

DOI

75
Wang S , Xiong P , Zhang J , Wang G . Recent progress on flexible lithium metal batteries: composite lithium metal anodes and solid-state electrolytes. Energy Storage Materials, 2020, 29: 310–331

DOI

76
Su Y , Xu F , Zhang X , Qiu Y , Wang H . Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries. Nano-Micro Letters, 2023, 15(1): 82

DOI

77
Fang R , Xu H , Xu B , Li X , Li Y , Goodenough J B . Reaction mechanism optimization of solid-state Li-S batteries with a PEO-based electrolyte. Advanced Functional Materials, 2021, 31(2): 2001812

DOI

78
Xia Y , Wang Q , Liu Y , Zhang J , Xia X , Huang H , Gan Y , He X , Xiao Z , Zhang W . Three-dimensional polyimide nanofiber framework reinforced polymer electrolyte for all-solid-state lithium metal battery. Journal of Colloid and Interface Science, 2023, 638: 908–917

DOI

79
Xie H , Yang C , Fu K K , Yao Y , Jiang F , Hitz E , Liu B , Wang S , Hu L . Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Advanced Energy Materials, 2018, 8(18): 1703474

DOI

80
Shen W , Li K , Lv Y , Xu T , Wei D , Liu Z . Highly-safe and ultra-stable all-flexible gel polymer lithium ion batteries aiming for scalable applications. Advanced Energy Materials, 2020, 10(21): 1904281

DOI

81
Yusim Y , Trevisanello E , Ruess R H , Richter F , Mayer A , Bresser D , Passerini S , Janek J , Henss A . Evaluation and improvement of the stability of poly(ethylene oxide)-based solid-state batteries with high-voltage cathodes. Angewandte Chemie International Edition, 2023, 12(62): e202218316

DOI

82
Thomas M L , Kan H S , Nanbu S , Masahiro Y F . Organic ionic plastic crystals: flexible solid electrolytes for lithium secondary batteries. Energy Advances, 2023, 2(6): 748–764

DOI

83
Wan J , Xie J , Kong X , Liu Z , Liu K , Shi F , Pei A , Chen H , Chen W , Chen J . . Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nature Nanotechnology, 2019, 14(7): 705–711

DOI

84
Wang Z , Shen L , Deng S , Cui P , Yao X . 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Advanced Materials, 2021, 33(25): 2100353

DOI

85
Lopez J , Mackanic D G , Cui Y , Bao Z . Designing polymers for advanced battery chemistries. Nature Reviews. Materials, 2019, 4(5): 4312–4330

86
Wu N , Shi Y R , Lang S Y , Zhou J M , Liang J Y , Wang W , Tan S J , Yin Y X , Wen R , Guo Y G . Self-healable solid polymeric electrolytes for stable and flexible lithium metal batteries. Angewandte Chemie International Edition, 2019, 58(50): 18146–18149

DOI

87
Ha H J , Kil E H , Kwon Y H , Kim J Y , Lee C K , Lee S Y . UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy & Environmental Science, 2012, 5(4): 6491–6499

DOI

88
Ho C K , Ju C S , Hee K S , Han K Y , Young K J , Young L S . Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries. Advanced Functional Materials, 2014, 24(1): 44–52

DOI

89
Chen G , Zhang F , Zhou Z , Li J , Tang Y . A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Advanced Energy Materials, 2018, 8(25): 1801219

DOI

90
Chi X , Li M , Di J , Bai P , Song L , Wang X , Li F , Liang S , Xu J , Yu J . A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature, 2021, 592(7855): 551–557

DOI

91
Wu Q , Yang Y , Ma C , Chen Z , Su Q , Zhu C , Gao Y , Ma R , Li C . Flexible nanocomposite polymer electrolyte based on UV-cured polyurethane acrylate for lithium metal batteries. ACS Sustainable Chemistry & Engineering, 2021, 9(16): 5631–5641

DOI

92
Pan K , Zhang L , Qian W , Wu X , Dong K , Zhang H , Zhang S . A flexible ceramic/polymer hybrid solid electrolyte for solid state lithium metal batteries. Advanced Materials, 2020, 32(17): 2000399

DOI

93
Jiang T , He P , Wang G , Shen Y , Nan C W , Fan L Z . Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Advanced Energy Materials, 2020, 10(12): 1903376

DOI

94
Liu Y , Li Y , Sun J , Du Z , Hu X , Bi J , Liu C , Ai W , Yan Q . Present and future of functionalized Cu current collectors for stabilizing lithium metal anodes. Nano Research Energy, 2023, 2: e9120048

DOI

95
Fu A , Wang C , Peng J , Su M , Pei F , Cui J , Fang X , Li J F , Zheng N . Lithiophilic and antioxidative copper current collectors for highly stable lithium metal batteries. Advanced Functional Materials, 2021, 31(15): 2009805

DOI

96
Liu P , Wang Y , Hao H , Basu S , Feng X , Xu Y , Boscoboinik J A , Nanda J , Watt J , Mitlin D . Stable potassium metal anodes with an all-aluminum current collector through improved electrolyte wetting. Advanced Materials, 2020, 32(49): 2002908

DOI

97
Park M H , Noh M , Lee S , Ko M , Chae S , Sim S , Choi S , Kim H , Nam H , Park S . . Flexible high-energy Li-ion batteries with fast-charging capability. Nano Letters, 2014, 14(7): 4083–4089

DOI

98
Shang K , Gao J , Yin X , Ding Y , Wen Z . An overview of flexible electrode materials/substrates for flexible electrochemical energy storage/conversion devices. European Journal of Inorganic Chemistry, 2021, 7(7): 606–619

DOI

99
Li N , Chen Z , Ren W , Li F , Cheng H M . Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17360–17365

DOI

100
Wu F , Gao X , Xu X , Jiang Y , Gao X , Yin R , Shi W , Liu W , Lu G , Cao X . Carbon cloth for flexible aqueous zinc-ion batteries. ChemSusChem, 2020, 13(6): 1537–1545

DOI

101
Shi H , Wen G , Nie Y , Zhang G , Duan H . Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion. Nanoscale, 2020, 12(9): 5261–5285

DOI

102
Kordek K , Jiang L , Fan K , Zhu Z , Xu L , Al-Mamun M , Dou Y , Chen S , Liu P , Yin H , Rutkowski P , Zhao H . Two-step activated carbon cloth with oxygen-rich functional groups as a high-performance additive-free air electrode for flexible zinc-air batteries. Advanced Energy Materials, 2019, 9(4): 1802936

DOI

103
Balogun M S , Qiu W , Lyu F , Luo Y , Meng H , Li J , Mai W , Mai L , Tong Y . All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy, 2016, 26: 446–455

DOI

104
Balogun M S , Yang H , Luo Y , Qiu W , Huang Y , Liu Z Q , Tong Y . Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-double-shell electrodes. Energy & Environmental Science, 2018, 11(7): 1859–1869

DOI

105
Zhu S , Sheng J , Chen Y , Ni J , Li Y . Carbon nanotubes for flexible batteries: recent progress and future perspective. National Science Review, 2021, 8(5): nwaa261

DOI

106
Fang B , Chang D , Xu Z , Gao C . A review on graphene fibers: expectations, advances, and prospects. Advanced Materials, 2020, 32(5): 1902664

DOI

107
Hu L , Wu H , La M F , Yang Y , Cui Y . Thin, flexible secondary Li-ion paper batteries. ACS Nano, 2010, 4(10): 5843–5848

DOI

108
Hu J W , Wu Z P , Zhong S W , Zhang W B , Suresh S , Mehta A , Koratkar N . Folding insensitive, high energy density lithium-ion battery featuring carbon nanotube current collectors. Carbon, 2015, 87: 292–298

DOI

109
Wang K , Luo S , Wu Y , He X , Zhao F , Wang J , Jiang K , Fan S . Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Advanced Functional Materials, 2013, 23(7): 846–853

DOI

110
Gaikwad A M , Khau B V , Davies G , Hertzberg B , Steingart D A , Arias A C . A high areal capacity flexible lithium-ion battery with a strain-compliant design. Advanced Energy Materials, 2015, 5(3): 1401389

DOI

111
Zhang M , Li J , Sun C , Wang Z , Li Y , Zhang D . Durable flexible dual-layer and free-standing silicon/carbon composite anode for lithium-ion batteries. Journal of Alloys and Compounds, 2023, 932: 167687

DOI

112
Balogun M S , Yu M , Huang Y , Li C , Fang P , Liu Y , Lu X , Tong Y . Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries. Nano Energy, 2015, 11: 348–355

DOI

113
Balogun M S , Wu Z , Luo Y , Qiu W , Fan X , Long B , Huang M , Liu P , Tong Y . High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries. Journal of Power Sources, 2016, 308: 7–17

DOI

114
Hwang C , Song W J , Han J G , Bae S , Song G , Choi N S , Park S , Song H K . Foldable electrode architectures based on silver-nanowire-wound or carbon-nanotube-webbed micrometer-scale fibers of polyethylene terephthalate mats for flexible lithium-ion batteries. Advanced Materials, 2018, 30(7): 1705445

DOI

115
Mo F , Liang G , Huang Z , Li H , Wang D , Zhi C . An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Advanced Materials, 2020, 32(5): 1902151

DOI

116
Fang Z , Wang J , Wu H , Li Q , Fan S , Wang J . Progress and challenges of flexible lithium ion batteries. Journal of Power Sources, 2020, 454: 227932

DOI

117
Ke R , Du L , Han B , Xu H , Meng H , Zeng H , Zheng Z , Deng Y . Biobased self-growing approach toward tailored, integrated high-performance flexible lithium-ion battery. Nano Letters, 2022, 22(23): 9327–9334

DOI

118
Qian W , Wang L , Mao X , Yang Y , Yan L , Zeng S , Zhao K , Huang Q , Liu M , Liu X . . Electronic synergy to boost the performance of NiCoP-NWs@FeCoP-NSs anodes for flexible lithium-ion batteries. Nanoscale, 2022, 14(23): 8398–8408

DOI

119
Nyamaa O , Seo D H , Lee J S , Jeong H M , Huh S C , Yang J H , Dolgor E , Noh J P . High electrochemical performance silicon thin-film free-standing electrodes based on bucky paper for flexible lithium-ion batteries. Materials, 2021, 14(8): 2053

DOI

120
Chen Z , Kim G T , Wang Z , Bresser D , Qin B , Geiger D , Kaiser U , Wang X , Shen Z X , Passerini S . 4-V flexible all-solid-state lithium polymer batteries. Nano Energy, 2019, 64: 103986

DOI

121
Wang D , Han C , Mo F , Yang Q , Zhao Y , Li Q , Liang G , Dong B , Zhi C . Energy density issues of flexible energy storage devices. Energy Storage Materials, 2020, 28: 264–292

DOI

122
Wu Z , Liu K , Lv C , Zhong S , Wang Q , Liu T , Liu X , Yin Y , Hu Y , Wei D . . Ultrahigh-energy density lithium-ion cable battery based on the carbon-nanotube woven microfilms. Small, 2018, 14(22): 1800414

DOI

123
Leijonmarck S , Cornell A , Lindbergh G , Wågbergbc L . Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(15): 4671–4677

DOI

124
Liao X , Shi C , Wang T , Qie B , Chen Y , Yang P , Cheng Q , Zhai H , Chen M , Wang X . . High-energy-density foldable battery enabled by zigzag-like design. Advanced Energy Materials, 2019, 9(4): 1802998

DOI

125
Chun S J , Choi E S , Lee E H , Kim J H , Lee S Y , Lee S Y . Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22(32): 16618–16626

DOI

126
Deimede V , Elmasides C . Separators for lithium-ion batteries: a review on the production processes and recent developments. Energy Technology, 2015, 3(5): 453–468

DOI

127
Zhu Y , Cao K , Cheng W , Zeng S , Dou S , Chen W , Zhao D , Yu H . A non-newtonian fluidic cellulose-modified glass microfiber separator for flexible lithium-ion batteries. EcoMat, 2021, 3(4): e12126

DOI

128
Stephan A M , Nahm K S . Review on composite polymer electrolytes for lithium batteries. Polymer, 2006, 47(16): 5952–5964

DOI

129
Xu Q , Kong Q , Liu Z , Zhang J , Wang X , Liu R , Yue L , Cui G . Polydopamine-coated cellulose micro fibrillated membrane as high performance lithium-ion battery separator. RSC Advances, 2014, 4(16): 7845–7850

DOI

130
Liu T , Cheng X , Yu H , Zhu H , Peng N , Zheng R , Zhang J , Shui M , Cui Y , Shu J . An overview and future perspectives of aqueous rechargeable polyvalent ion batteries. Energy Storage Materials, 2019, 18: 68–91

DOI

131
Alias N , Mohamad A A . Advances of aqueous rechargeable lithium-ion battery: a review. Journal of Power Sources, 2015, 274: 237–251

DOI

132
Song W J , Lee S , Song G , Park S . Stretchable aqueous batteries: progress and prospects. ACS Energy Letters, 2019, 4(1): 177–186

DOI

133
Zeng X , Hao J , Wang Z , Mao J , Guo Z . Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Materials, 2019, 20: 410–437

DOI

134
Peng J , Snyder G J . A figure of merit for flexibility. Science, 2019, 36(6466): 690–691

DOI

135
Liu W , Yi C , Li L , Liu S , Gui Q , Ba D , Li Y , Peng D , Liu J . Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angewandte Chemie International Edition, 2021, 60(23): 12931–12940

DOI

136
Chang J , Huang Q , Zheng Z . A figure of merit for flexible batteries. Joule, 2020, 7(4): 1346–1349

DOI

137
Betz J , Bieker G , Meister P , Placke T , Winter M , Schmuch R . Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Advanced Energy Materials, 2019, 9(6): 1803170

DOI

138
Zheng J , Myeong S , Cho W , Yan P , Xiao J , Wang C , Cho J , Zhang J G . Li- and Mn-rich cathode materials: challenges to commercialization. Advanced Energy Materials, 2017, 7(6): 1601284

DOI

139
He J , Lu C , Jiang H , Han F , Shi X , Wu J , Wang L , Chen T , Wang J , Zhang Y . . Scalable production of high-performing woven lithium-ion fiber batteries. Nature, 2021, 597(7874): 57–63

DOI

140
Ghadi B M , Yuan M , Ardebili H . Stretchable fabric-based LiCoO2, electrode for lithium ion batteries. Extreme Mechanics Letters, 2019, 32: 32100532

DOI

141
Ghadi B M , Hekmatnia B , Fu Q , Ardebili H . Stretchable fabric-based lithium-ion battery. Extreme Mechanics Letters, 2023, 6: 61102026

142
Thakur A , Devi P . Paper-based flexible devices for energy harvesting, conversion, and storage applications: a review. Nano Energy, 2022, 94: 106927

DOI

143
Lyu P , Liu X , Qu J , Zhao J , Huo Y , Qu Z , Rao Z . Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Materials, 2020, 31: 195–220

DOI

144
Parekh M H , Li B , Palanisamy M , Adams T E , Tomar V , Pol V G . In situ thermal runaway detection in lithium-ion batteries with an integrated internal sensor. ACS Applied Energy Materials, 2020, 3(8): 7997–8008

DOI

145
Yang S J , Yao N , Jiang F N , Xie J , Sun S Y , Chen X , Yuan H , Cheng X B , Huang J Q , Zhang Q . Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells. Angewandte Chemie International Edition, 2022, 61(51): e202214545

DOI

146
Ye Y , Chou L Y , Liu Y , Wang H , Kwee L H , Huang W , Wan J , Liu K , Zhou G , Yang Y . . Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nature Energy, 2020, 5(10): 786–793

DOI

147
Wang J , Yamada Y , Sodeyama K , Watanabe E , Takada K , Tateyama Y , Yamada A . Fire-extinguishing organic electrolytes for safe batteries. Nature Energy, 2018, 3(1): 22–29

DOI

148
Yang H , Li Q , Guo C , Naveed A , Yang J , Nuli Y , Wang J . Safer lithium-sulfur battery based on nonflammable electrolyte with sulfur composite cathode. Chemical Communications, 2018, 54(33): 4132–4135

DOI

149
Li L , Xu C , Chang R , Yang C , Jia C , Wang L , Song J , Li Z , Zhang F , Fang B . . Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules. Energy Storage Materials, 2021, 40: 329–336

DOI

150
Malik R . Thermal runaway of lithium-ion batteries without internal short circuit. Joule, 2018, 2(10): 2047–2064

DOI

151
Zhang C , Li H , Wang S , Cao Y , Yang H , Ai X , Zhong F . A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries. Journal of Energy Chemistry, 2020, 44: 33–40

DOI

Outlines

/