A novel silver-doped nickel oxide hole-selective contact for crystalline silicon heterojunction solar cells

  • Junfeng Zhao 1 ,
  • Xudong Yang 1 ,
  • Zhongqing Zhang 1 ,
  • Shengpeng Xie 1 ,
  • Fangfang Liu 1 ,
  • Anjun Han 2 ,
  • Zhengxin Liu , 2 ,
  • Yun Sun 1 ,
  • Wei Liu , 1
Expand
  • 1. Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology, Institute of Photoelectronic Thin Film Devices and Technology of Nankai University (Ministry of Education), Tianjin 300350, China
  • 2. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 201800, China
z.x.liu@mail.sim.ac.cn
wwl@nankai.edu.cn

Received date: 14 Aug 2023

Accepted date: 05 Nov 2023

Copyright

2024 Higher Education Press

Abstract

Based on its band alignment, p-type nickel oxide (NiOx) is an excellent candidate material for hole transport layers in crystalline silicon heterojunction solar cells, as it has a small ΔEV and large ΔEC with crystalline silicon. Herein, to overcome the poor hole selectivity of stoichiometric NiOx due to its low carrier concentration and conductivity, silver-doped nickel oxide (NiOx:Ag) hole transport layers with high carrier concentrations were prepared by co-sputtering high-purity silver sheets and pure NiOx targets. The improved electrical conductivity of NiOx was attributed to the holes generated by the Ag+ substituents for Ni2+, and moreover, the introduction of Ag+ also increased the amount of Ni3+ present, both of which increased the carrier concentration in NiOx. Ag+ doping also reduced the c-Si/NiOx contact resistivity and improved the hole-selective contact with NiOx. Furthermore, the problems of particle clusters and interfacial defects on the surfaces of NiOx:Ag films were solved by UV-ozone oxidation and high-temperature annealing, which facilitated separation and transport of carriers at the c-Si/NiOx interface. The constructed c-Si/NiOx:Ag solar cell exhibited an increase in open-circuit voltage from 490 to 596 mV and achieved a conversion efficiency of 14.4%.

Cite this article

Junfeng Zhao , Xudong Yang , Zhongqing Zhang , Shengpeng Xie , Fangfang Liu , Anjun Han , Zhengxin Liu , Yun Sun , Wei Liu . A novel silver-doped nickel oxide hole-selective contact for crystalline silicon heterojunction solar cells[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(2) : 19 . DOI: 10.1007/s11705-024-2384-6

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61974076), and the China National Key R&D Program (Grant No. 2022YFC2807104).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2384-6 and is accessible for authorized users.
1
Nie S , Chen C , Zhu C . Advanced biomass materials: progress in the applications for energy, environmental, and emerging fields. Frontiers of Chemical Science and Engineering, 2023, 17(7): 795–797

DOI

2
Hanak D P , Manovic V . Linking renewables and fossil fuels with carbon capture via energy storage for a sustainable energy future. Frontiers of Chemical Science and Engineering, 2020, 14(3): 453–459

DOI

3
Santos M P , Hanak D P . Carbon capture for decarbonisation of energy-intensive industries: a comparative review of techno-economic feasibility of solid looping cycles. Frontiers of Chemical Science and Engineering, 2022, 16(9): 1291–1317

DOI

4
Liu F , Lai Y , Zhao B , Bradley R , Wu W . Photothermal materials for efficient solar powered steam generation. Frontiers of Chemical Science and Engineering, 2019, 13(4): 636–653

DOI

5
Wang X , Zhang Z , Guo Z , Su C , Sun L . Energy structure transformation in the context of carbon neutralization: evolutionary game analysis based on inclusive development of coal and clean energy. Journal of Cleaner Production, 2023, 398: 136626

DOI

6
Atsu D , Seres I , Farkas I . The state of solar PV and performance analysis of different PV technologies grid-connected installations in Hungary. Renewable & Sustainable Energy Reviews, 2021, 141: 110808

DOI

7
Jaxa-Rozen M , Trutnevyte E . Sources of uncertainty in long-term global scenarios of solar photovoltaic technology. Nature Climate Change, 2021, 11(3): 266–273

DOI

8
Phong Pham D , Kim S , Dao V A , Kim Y , Yi J . Quantum-well passivating contact at polysilicon/crystalline silicon interface for crystalline silicon solar cells. Chemical Engineering Journal, 2022, 449: 137835

DOI

9
Li L , Ying L , Lin Y , Li X , Zhou X , Du G , Gao Y , Liu W , Lu L , Wang J . . Effective hydrogenation strategies to boost efficiency over 20% for crystalline silicon solar cell with Al2O3/Cu2O passivating contact. Advanced Functional Materials, 2022, 32(43): 2207158

DOI

10
Ballif C , Haug F J , Boccard M , Verlinden P J , Hahn G . Status and perspectives of crystalline silicon photovoltaics in research and industry. Nature Reviews Materials, 2022, 7(8): 597–616

DOI

11
Liu Y , Li Y , Wu Y , Yang G , Mazzarella L , Procel-Moya P , Tamboli A C , Weber K , Boccard M , Isabella O . . High-efficiency silicon heterojunction solar cells: materials, devices and applications. Materials Science and Engineering R Reports, 2020, 142: 100579

DOI

12
Essig S , Dréon J , Rucavado E , Mews M , Koida T , Boccard M , Werner J , Geissbuhler J , Löper P , Morales-Masis M . . Toward annealing-stable molybdenum-oxide-based hole-selective contacts for silicon photovoltaics. Solar RRL, 2018, 2(4): 1700227

DOI

13
Li L , Du G , Lin Y , Zhou X , Gu Z , Lu L , Liu W , Huang J , Wang J , Yang L . . NiOx/MoOx bilayer as an efficient hole-selective contact in crystalline silicon solar cells. Cell Reports. Physical Science, 2021, 2(12): 100684

DOI

14
Le A H T , Dréon J , Michel J I , Boccard M , Bullock J , Borojevic N , Hameiri Z . Temperature-dependent performance of silicon heterojunction solar cells with transition-metal-oxide-based selective contacts. Progress in Photovoltaics: Research and Applications, 2022, 30(8): 981–993

DOI

15
Lu C , Rusli A B , Prakoso H . Hole selective WOx and V2Ox contacts using solution process for silicon solar cells application. Materials Chemistry and Physics, 2021, 273: 125101

DOI

16
Liu Z , Lin W , Chen Z , Chen D , Chen Y , Shen H , Liang Z . Enhanced hole extraction of WOx/V2Ox dopant-free contact for p-type silicon solar cell. Advanced Materials Interfaces, 2022, 9(10): 2102374

DOI

17
Dréon J , Jeangros Q , Cattin J , Haschke J , Antognini L , Ballif C , Boccard M . 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy, 2020, 70: 104495

DOI

18
Yang X , Xu H , Liu W , Bi Q , Xu L , Kang J , Hedhili M N , Sun B , Zhang X , De Wolf S . Atomic layer deposition of vanadium oxide as hole-selective contact for crystalline silicon solar cells. Advanced Electronic Materials, 2020, 6(8): 2000467

DOI

19
Yang X , Liu W , Chen J , Sun Y . On the annealing-induced enhancement of the interface properties of NiO:Cu/wet-SiOx/n-Si tunnelling junction solar cells. Applied Physics Letters, 2018, 112(17): 173904

DOI

20
Wang F , Duan H , Li X , Yang S , Han D , Yang L , Fan L , Liu H , Yang J , Rosei F . Gradient doped nickel oxide hole selective heterocontact and ultrathin passivation for silicon photovoltaics with efficiencies beyond 20%. Chemical Engineering Journal, 2022, 450: 138060

DOI

21
Liu Y , Zhu J , Cai L , Yao Z , Duan C , Zhao Z , Zhao C , Mai W . Solution-processed high-quality Cu2O thin films as hole transport layers for pushing the conversion efficiency limit of Cu2O/Si heterojunction solar cells. Solar RRL, 2020, 4(1): 1900339

DOI

22
Pan L , Liu C , Zhu H , Wan M , Li Y , Mai Y . Fine modification of reactively sputtered NiOx hole transport layer for application in all-inorganic CsPbI2Br perovskite solar cells. Solar Energy, 2020, 196: 521–529

DOI

23
Du M , Zhao S , Duan L , Cao Y , Wang H , Sun Y , Wang L , Zhu X , Feng J , Liu L . . Surface redox engineering of vacuum-deposited NiOx for top-performance perovskite solar cells and modules. Joule, 2022, 6(8): 1931–1943

DOI

24
Li L , Zhang X , Zeng H , Zheng X , Zhao Y , Luo Y , Liu F , Li X . Thermally-stable and highly-efficient bi-layered NiOx-based inverted planar perovskite solar cells by employing a p-type organic semiconductor. Chemical Engineering Journal, 2022, 443: 136405

DOI

25
Chen D , Liu Z , Zhou M , Wu P , Wei J . Enhanced photoelectrochemical water splitting performance of α-Fe2O3 nanostructures modified with Sb2S3 and cobalt phosphate. Journal of Alloys and Compounds, 2018, 742: 918–927

DOI

26
Zhang W , Shen H , Yin M , Lu L , Xu B , Li D . Heterostructure silicon solar cells with enhanced power conversion efficiency based on SiOx/Ni3+ self-doped NiOx passivating contact. ACS Omega, 2022, 7(19): 16494–16501

DOI

27
Bertrandie J , Han J , De Castro C S P , Yengel E , Gorenflot J , Anthopoulos T , Laquai F , Sharma A , Baran D . The energy level conundrum of organic semiconductors in solar cells. Advanced Materials, 2022, 34(35): 2202575

DOI

Outlines

/