Single-Ni-atoms on nitrogenated humic acid based porous carbon for CO2 electroreduction

  • Delei Yu ,
  • Ying Chen ,
  • Yao Chen ,
  • Xiangchun Liu ,
  • Xianwen Wei ,
  • Ping Cui
Expand
  • Anhui Key Laboratory of Coal Clean Conversion & Utilization, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan 243002, China
chunliu7@ahut.edu.cn
xwwei@ahut.edu.cn

Received date: 16 Nov 2023

Accepted date: 04 Jan 2024

Copyright

2024 Higher Education Press

Abstract

We proposed a facile synthesis of single-Ni-atom catalysts on low-cost porous carbon using a calcination method at the temperatures of 850–1000 °C, which were used for CO2 electrochemical reduction to CO. The porous carbon was prepared by carbonizing cheap and abundant humic acid. The structural characterizations of the as-synthesized catalysts and their electrocatalytic performances were analyzed. The results showed that the single-Ni-atom catalyst activated at 950 °C showed an optimum catalytic performance, and it reached a CO Faradaic efficiency of 91.9% with a CO partial current density of 6.9 mA·cm−2 at −0.9 V vs. reversible hydrogen electrode (RHE). Additionally, the CO Faradaic efficiency and current density of the optimum catalyst changed slightly after 8 h of continuous operation, suggesting that it possessed an excellent stability. The structure-activity relations indicate that the variation in the CO2 electrochemical reduction performance for the as-synthesized catalysts is ascribed to the combined effects of the increase in the content of pyrrolic N, the evaporation of Ni and N, the decrease in pore volume, and the change in graphitization degree.

Cite this article

Delei Yu , Ying Chen , Yao Chen , Xiangchun Liu , Xianwen Wei , Ping Cui . Single-Ni-atoms on nitrogenated humic acid based porous carbon for CO2 electroreduction[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(5) : 52 . DOI: 10.1007/s11705-024-2411-7

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 22308006 and 22278001), the Anhui Province Major Industrial Innovation Plan (Grant No. AHZDCYCX-LSDT2023-04), the University Synergy Innovation Program of Anhui Province (Grant No. GXXT-2022-006), the Natural Science Foundation of Anhui Provincial Education Department (Grant No. KJ2021A0407), the Youth Natural Science Foundation of Anhui University of Technology (Grant No. QZ202216), and Undergraduate Innovation and Entrepreneurship Training Program of Anhui Province (Grant No. S202310360214).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-024-2411-7 and is accessible for authorized users.
1
Long C , Liu X , Wan K , Jiang Y , An P , Yang C , Wu G , Wang W , Guo J , Li L . . Regulating reconstruction of oxide-derived Cu for electrochemical CO2 reduction toward n-propanol. Science Advances, 2023, 9(43): eadi6119

DOI

2
Zhang Y , Yu C , Tan X , Cui S , Li W , Qiu J . Recent advances in multilevel nickel-nitrogen-carbon catalysts for CO2 electroreduction to CO. New Carbon Materials, 2021, 36(1): 19–33

DOI

3
Bo J , Li M , Zhu X , Ge Q , Han J , Wang H . Bamboo-like N-doped carbon nanotubes encapsulating M(Co, Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H2 ratios. Frontiers of Chemical Science and Engineering, 2022, 16(4): 498–510

DOI

4
Li J , Pršlja P , Shinagawa T , Martín Fernández A J , Krumeich F , Artyushkova K , Atanassov P , Zitolo A , Zhou Y , García-Muelas R . . Volcano trend in electrocatalytic CO2 reduction activity over atomically dispersed metal sites on nitrogen-doped carbon. ACS Catalysis, 2019, 9(11): 10426–10439

DOI

5
Zhao Y , Wang X , Sang X , Zheng S , Yang B , Lei L , Hou Y , Li Z . Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis. Frontiers of Chemical Science and Engineering, 2022, 16(12): 1772–1781

DOI

6
Möller T , Ju W , Bagger A , Wang X , Luo F , Thanh T N , Varela A S , Rossmeisl J , Strasser P . Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy & Environmental Science, 2019, 12(2): 640–647

DOI

7
Long C , Wan K , Qiu X , Zhang X , Han J , An P , Yang Z , Li X , Guo J , Shi X . . Single site catalyst with enzyme-mimic micro-environment for electroreduction of CO2. Nano Research, 2022, 15(3): 1817–1823

DOI

8
Ju W , Bagger A , Hao G P , Varela A S , Sinev I , Bon V , Roldan Cuenya B , Kaskel S , Rossmeisl J , Strasser P . Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nature Communications, 2017, 8(1): 944

DOI

9
Sa Y J , Jung H , Shin D , Jeong H Y , Ringe S , Kim H , Hwang Y J , Joo S H . Thermal transformation of molecular Ni2+–N4 sites for enhanced CO2 electroreduction activity. ACS Catalysis, 2020, 10(19): 10920–10931

DOI

10
Varela A S , Ranjbar Sahraie N , Steinberg J , Ju W , Oh H S , Strasser P . Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angewandte Chemie International Edition, 2015, 54(37): 10758–10762

DOI

11
Su P , Iwase K , Nakanishi S , Hashimoto K , Kamiya K . Nickel-nitrogen-modified graphene: an efficient electrocatalyst for the reduction of carbon dioxide to carbon monoxide. Small, 2016, 12(44): 6083–6089

DOI

12
Yan C , Li H , Ye Y , Wu H , Cai F , Si R , Xiao J , Miao S , Xie S , Yang F . . Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy & Environmental Science, 2018, 11(5): 1204–1210

DOI

13
Jiang K , Siahrostami S , Zheng T , Hu Y , Hwang S , Stavitski E , Peng Y , Dynes J , Gangisetty M , Su D . . Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy & Environmental Science, 2018, 11(4): 893–903

DOI

14
Daiyan R , Zhu X , Tong Z , Gong L , Razmjou A , Liu R S , Xia Z , Lu X , Dai L , Amal R . Transforming active sites in nickel-nitrogen-carbon catalysts for efficient electrochemical CO2 reduction to CO. Nano Energy, 2020, 78: 105213

DOI

15
Yang X , Cheng J , Xuan X , Liu N , Liu J . Boosting defective carbon by anchoring well-defined atomically dispersed Ni–N4 sites for electrocatalytic CO2 reduction. ACS Sustainable Chemistry & Engineering, 2020, 8(28): 10536–10543

DOI

16
Boppella R , Austeria P M , Kim Y , Kim E , Song I , Eom Y , Kumar D P , Balamurugan M , Sim E , Kim D H . . Pyrrolic N-stabilized monovalent Ni single-atom electrocatalyst for efficient CO2 reduction: identifying the role of pyrrolic-N and synergistic electrocatalysis. Advanced Functional Materials, 2022, 32(35): 2202351

DOI

17
Wu J , Yadav R M , Liu M , Sharma P P , Tiwary C S , Ma L , Zou X , Zhou X D , Yakobson B I , Lou J . . Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano, 2015, 9(5): 5364–5371

DOI

18
Sharma P P , Wu J , Yadav R M , Liu M , Wright C J , Tiwary C S , Yakobson B I , Lou J , Ajayan P M , Zhou X D . Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. Angewandte Chemie International Edition, 2015, 54(46): 13701–13705

DOI

19
Jiang K , Siahrostami S , Akey A J , Li Y , Lu Z , Lattimer J , Hu Y , Stokes C , Gangishetty M , Chen G . . Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem, 2017, 3(6): 950–960

DOI

20
Mo Z , Ajmal S , Tabish M , Kumar A , Yasin G , Zhao W . Metal-organic frameworks-based advanced catalysts for anthropogenic CO2 conversion toward sustainable future. Fuel Processing Technology, 2023, 244: 107705

DOI

21
Zheng T , Jiang K , Ta N , Hu Y , Zeng J , Liu J , Wang H . Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule, 2019, 3(1): 265–278

DOI

22
Wang C , Cheng T , Zhang D , Pan X . Electrochemical properties of humic acid and its novel applications: A tip of the iceberg. Science of the Total Environment, 2023, 863: 160755

DOI

23
Huang G , Kang W , Xing B , Chen L , Zhang C . Oxygen-rich and hierarchical porous carbons prepared from coal based humic acid for supercapacitor electrodes. Fuel Processing Technology, 2016, 142: 1–5

DOI

24
Zhong M , Gao S , Zhou Q , Yue J , Ma F , Xu G . Characterization of char from high temperature fluidized bed coal pyrolysis in complex atmospheres. Particuology, 2016, 25: 59–67

DOI

25
Li Y , Adli N M , Shan W , Wang M , Zachman M J , Hwang S , Tabassum H , Karakalos S , Feng Z , Wang G . . Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities. Energy & Environmental Science, 2022, 15(5): 2108–2119

DOI

26
Liang S , Jiang Q , Wang Q , Liu Y . Revealing the real role of nickel decorated nitrogen-doped carbon catalysts for electrochemical reduction of CO2 to CO. Advanced Energy Materials, 2021, 11(36): 2101477

DOI

27
Li X , Bi W , Chen M , Sun Y , Ju H , Yan W , Zhu J , Wu X , Chu W , Wu C . . Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. Journal of the American Chemical Society, 2017, 139(42): 14889–14892

DOI

28
Sun Z , Ma T , Tao H , Fan Q , Han B . Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem, 2017, 3(4): 560–587

DOI

29
Lu Q , Rosen J , Zhou Y , Hutchings G S , Kimmel Y C , Chen J G , Jiao F . A selective and efficient electrocatalyst for carbon dioxide reduction. Nature Communications, 2014, 5(1): 3242

DOI

30
Gao M R , Liang J X , Zheng Y R , Xu Y F , Jiang J , Gao Q , Li J , Yu S H . An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Communications, 2015, 6(1): 5982

DOI

31
Liu X C , Hu J , Xie R L , Fang B , Cui P . Formation mechanism of solid product produced from co-pyrolysis of Pingdingshan lean coal with organic matter in Huadian oil shale. Frontiers of Chemical Science and Engineering, 2021, 15(2): 363–372

DOI

32
Yang M , Wang L , Li M , Hou T , Li Y . Structural stability and O2 dissociation on nitrogen-doped graphene with transition metal atoms embedded: a first-principles study. AIP Advances, 2015, 5(6): 067136

DOI

33
Yang H B , Hung S F , Liu S , Yuan K , Miao S , Zhang L , Huang X , Wang H Y , Cai W , Chen R . . Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nature Energy, 2018, 3(2): 140–147

DOI

34
Brazzolotto D , Gennari M , Queyriaux N , Simmons T R , Pécaut J , Demeshko S , Meyer F , Orio M , Artero V , Duboc C . Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase. Nature Chemistry, 2016, 8(11): 1054–1060

DOI

35
Ebner S , Jaun B , Goenrich M , Thauer R K , Harmer J . Binding of coenzyme B induces a major conformational change in the active site of methyl-coenzyme M reductase. Journal of the American Chemical Society, 2010, 132(2): 567–575

DOI

36
Jia Q , Ramaswamy N , Hafiz H , Tylus U , Strickland K , Wu G , Barbiellini B , Bansil A , Holby E F , Zelenay P . . Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity. ACS Nano, 2015, 9(12): 12496–12505

DOI

37
Yu J Q , Guo Q H , Ding L , Gong Y , Yu G S . Studying effects of solid structure evolution on gasification reactivity of coal chars by in-situ Raman spectroscopy. Fuel, 2020, 270: 117603

DOI

38
Xiong Y K , Jin L J , Yang H , Li Y , Hu H Q . Insight into the aromatic ring structures of a low-rank coal by step-wise oxidation degradation. Fuel Processing Technology, 2020, 210: 106563

DOI

39
Li X J , Hayashi J I , Li C Z . FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel, 2006, 85(12–13): 1700–1707

DOI

40
Ni W , Liu Z , Zhang Y , Ma C , Deng H , Zhang S , Wang S . Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe–N4 site. Advanced Materials, 2021, 33(1): e2003238

DOI

41
Liu X , Li G , Zhao H , Ye Y , Xie R , Zhao Z , Lei Z , Cui P . Changes in caking properties of caking bituminous coals during low-temperature pyrolysis process. Fuel, 2022, 321: 124023

DOI

42
Lu L , Sahajwalla V , Harris D . Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace. Energy & Fuels, 2000, 14(4): 869–876

DOI

43
Liu X C , Fang B , Zhao Z G , Xie R L , Lei Z , Ling Q , Cui P . Modification mechanism of caking and coking properties of Shenmu subbituminous coal by low-temperature rapid pyrolysis treatment. Journal of Iron and Steel Research International, 2019, 26(10): 1052–1060

DOI

44
Ghosh D , Periyasamy G , Pandey B , Pati S K . Computational studies on magnetism and the optical properties of transition metal embedded graphitic carbon nitride sheets. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(37): 7943–7951

DOI

45
Li S , Zhao S , Lu X , Ceccato M , Hu X M , Roldan A , Catalano J , Liu M , Skrydstrup T , Daasbjerg K . Low-valence Znδ+ (0 < δ < 2) single-atom material as highly efficient electrocatalyst for CO2 reduction. Angewandte Chemie International Edition, 2021, 60(42): 22826–22832

DOI

46
Jia M , Choi C , Wu T S , Ma C , Kang P , Tao H , Fan Q , Hong S , Liu S , Soo Y L . . Carbon-supported Ni nanoparticles for efficient CO2 electroreduction. Chemical Science, 2018, 9(47): 8775–8780

DOI

47
Wang F , Miao Z , Mu J , Zhao Y , Liang M , Meng J , Wu X , Zhou P , Zhao J , Zhuo S . . A Ni nanoparticles encapsulated in N-doped carbon catalyst for efficient electroreduction CO2: identification of active sites for adsorption and activation of CO2 molecules. Chemical Engineering Journal, 2022, 428: 131323

DOI

Outlines

/