Single-Ni-atoms on nitrogenated humic acid based porous carbon for CO2 electroreduction
Received date: 16 Nov 2023
Accepted date: 04 Jan 2024
Copyright
We proposed a facile synthesis of single-Ni-atom catalysts on low-cost porous carbon using a calcination method at the temperatures of 850–1000 °C, which were used for CO2 electrochemical reduction to CO. The porous carbon was prepared by carbonizing cheap and abundant humic acid. The structural characterizations of the as-synthesized catalysts and their electrocatalytic performances were analyzed. The results showed that the single-Ni-atom catalyst activated at 950 °C showed an optimum catalytic performance, and it reached a CO Faradaic efficiency of 91.9% with a CO partial current density of 6.9 mA·cm−2 at −0.9 V vs. reversible hydrogen electrode (RHE). Additionally, the CO Faradaic efficiency and current density of the optimum catalyst changed slightly after 8 h of continuous operation, suggesting that it possessed an excellent stability. The structure-activity relations indicate that the variation in the CO2 electrochemical reduction performance for the as-synthesized catalysts is ascribed to the combined effects of the increase in the content of pyrrolic N, the evaporation of Ni and N, the decrease in pore volume, and the change in graphitization degree.
Delei Yu , Ying Chen , Yao Chen , Xiangchun Liu , Xianwen Wei , Ping Cui . Single-Ni-atoms on nitrogenated humic acid based porous carbon for CO2 electroreduction[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(5) : 52 . DOI: 10.1007/s11705-024-2411-7
1 |
Long C , Liu X , Wan K , Jiang Y , An P , Yang C , Wu G , Wang W , Guo J , Li L .
|
2 |
Zhang Y , Yu C , Tan X , Cui S , Li W , Qiu J . Recent advances in multilevel nickel-nitrogen-carbon catalysts for CO2 electroreduction to CO. New Carbon Materials, 2021, 36(1): 19–33
|
3 |
Bo J , Li M , Zhu X , Ge Q , Han J , Wang H . Bamboo-like N-doped carbon nanotubes encapsulating M(Co, Fe)-Ni alloy for electrochemical production of syngas with potential-independent CO/H2 ratios. Frontiers of Chemical Science and Engineering, 2022, 16(4): 498–510
|
4 |
Li J , Pršlja P , Shinagawa T , Martín Fernández A J , Krumeich F , Artyushkova K , Atanassov P , Zitolo A , Zhou Y , García-Muelas R .
|
5 |
Zhao Y , Wang X , Sang X , Zheng S , Yang B , Lei L , Hou Y , Li Z . Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO2 electrolysis. Frontiers of Chemical Science and Engineering, 2022, 16(12): 1772–1781
|
6 |
Möller T , Ju W , Bagger A , Wang X , Luo F , Thanh T N , Varela A S , Rossmeisl J , Strasser P . Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy & Environmental Science, 2019, 12(2): 640–647
|
7 |
Long C , Wan K , Qiu X , Zhang X , Han J , An P , Yang Z , Li X , Guo J , Shi X .
|
8 |
Ju W , Bagger A , Hao G P , Varela A S , Sinev I , Bon V , Roldan Cuenya B , Kaskel S , Rossmeisl J , Strasser P . Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nature Communications, 2017, 8(1): 944
|
9 |
Sa Y J , Jung H , Shin D , Jeong H Y , Ringe S , Kim H , Hwang Y J , Joo S H . Thermal transformation of molecular Ni2+–N4 sites for enhanced CO2 electroreduction activity. ACS Catalysis, 2020, 10(19): 10920–10931
|
10 |
Varela A S , Ranjbar Sahraie N , Steinberg J , Ju W , Oh H S , Strasser P . Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angewandte Chemie International Edition, 2015, 54(37): 10758–10762
|
11 |
Su P , Iwase K , Nakanishi S , Hashimoto K , Kamiya K . Nickel-nitrogen-modified graphene: an efficient electrocatalyst for the reduction of carbon dioxide to carbon monoxide. Small, 2016, 12(44): 6083–6089
|
12 |
Yan C , Li H , Ye Y , Wu H , Cai F , Si R , Xiao J , Miao S , Xie S , Yang F .
|
13 |
Jiang K , Siahrostami S , Zheng T , Hu Y , Hwang S , Stavitski E , Peng Y , Dynes J , Gangisetty M , Su D .
|
14 |
Daiyan R , Zhu X , Tong Z , Gong L , Razmjou A , Liu R S , Xia Z , Lu X , Dai L , Amal R . Transforming active sites in nickel-nitrogen-carbon catalysts for efficient electrochemical CO2 reduction to CO. Nano Energy, 2020, 78: 105213
|
15 |
Yang X , Cheng J , Xuan X , Liu N , Liu J . Boosting defective carbon by anchoring well-defined atomically dispersed Ni–N4 sites for electrocatalytic CO2 reduction. ACS Sustainable Chemistry & Engineering, 2020, 8(28): 10536–10543
|
16 |
Boppella R , Austeria P M , Kim Y , Kim E , Song I , Eom Y , Kumar D P , Balamurugan M , Sim E , Kim D H .
|
17 |
Wu J , Yadav R M , Liu M , Sharma P P , Tiwary C S , Ma L , Zou X , Zhou X D , Yakobson B I , Lou J .
|
18 |
Sharma P P , Wu J , Yadav R M , Liu M , Wright C J , Tiwary C S , Yakobson B I , Lou J , Ajayan P M , Zhou X D . Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. Angewandte Chemie International Edition, 2015, 54(46): 13701–13705
|
19 |
Jiang K , Siahrostami S , Akey A J , Li Y , Lu Z , Lattimer J , Hu Y , Stokes C , Gangishetty M , Chen G .
|
20 |
Mo Z , Ajmal S , Tabish M , Kumar A , Yasin G , Zhao W . Metal-organic frameworks-based advanced catalysts for anthropogenic CO2 conversion toward sustainable future. Fuel Processing Technology, 2023, 244: 107705
|
21 |
Zheng T , Jiang K , Ta N , Hu Y , Zeng J , Liu J , Wang H . Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule, 2019, 3(1): 265–278
|
22 |
Wang C , Cheng T , Zhang D , Pan X . Electrochemical properties of humic acid and its novel applications: A tip of the iceberg. Science of the Total Environment, 2023, 863: 160755
|
23 |
Huang G , Kang W , Xing B , Chen L , Zhang C . Oxygen-rich and hierarchical porous carbons prepared from coal based humic acid for supercapacitor electrodes. Fuel Processing Technology, 2016, 142: 1–5
|
24 |
Zhong M , Gao S , Zhou Q , Yue J , Ma F , Xu G . Characterization of char from high temperature fluidized bed coal pyrolysis in complex atmospheres. Particuology, 2016, 25: 59–67
|
25 |
Li Y , Adli N M , Shan W , Wang M , Zachman M J , Hwang S , Tabassum H , Karakalos S , Feng Z , Wang G .
|
26 |
Liang S , Jiang Q , Wang Q , Liu Y . Revealing the real role of nickel decorated nitrogen-doped carbon catalysts for electrochemical reduction of CO2 to CO. Advanced Energy Materials, 2021, 11(36): 2101477
|
27 |
Li X , Bi W , Chen M , Sun Y , Ju H , Yan W , Zhu J , Wu X , Chu W , Wu C .
|
28 |
Sun Z , Ma T , Tao H , Fan Q , Han B . Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem, 2017, 3(4): 560–587
|
29 |
Lu Q , Rosen J , Zhou Y , Hutchings G S , Kimmel Y C , Chen J G , Jiao F . A selective and efficient electrocatalyst for carbon dioxide reduction. Nature Communications, 2014, 5(1): 3242
|
30 |
Gao M R , Liang J X , Zheng Y R , Xu Y F , Jiang J , Gao Q , Li J , Yu S H . An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nature Communications, 2015, 6(1): 5982
|
31 |
Liu X C , Hu J , Xie R L , Fang B , Cui P . Formation mechanism of solid product produced from co-pyrolysis of Pingdingshan lean coal with organic matter in Huadian oil shale. Frontiers of Chemical Science and Engineering, 2021, 15(2): 363–372
|
32 |
Yang M , Wang L , Li M , Hou T , Li Y . Structural stability and O2 dissociation on nitrogen-doped graphene with transition metal atoms embedded: a first-principles study. AIP Advances, 2015, 5(6): 067136
|
33 |
Yang H B , Hung S F , Liu S , Yuan K , Miao S , Zhang L , Huang X , Wang H Y , Cai W , Chen R .
|
34 |
Brazzolotto D , Gennari M , Queyriaux N , Simmons T R , Pécaut J , Demeshko S , Meyer F , Orio M , Artero V , Duboc C . Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase. Nature Chemistry, 2016, 8(11): 1054–1060
|
35 |
Ebner S , Jaun B , Goenrich M , Thauer R K , Harmer J . Binding of coenzyme B induces a major conformational change in the active site of methyl-coenzyme M reductase. Journal of the American Chemical Society, 2010, 132(2): 567–575
|
36 |
Jia Q , Ramaswamy N , Hafiz H , Tylus U , Strickland K , Wu G , Barbiellini B , Bansil A , Holby E F , Zelenay P .
|
37 |
Yu J Q , Guo Q H , Ding L , Gong Y , Yu G S . Studying effects of solid structure evolution on gasification reactivity of coal chars by in-situ Raman spectroscopy. Fuel, 2020, 270: 117603
|
38 |
Xiong Y K , Jin L J , Yang H , Li Y , Hu H Q . Insight into the aromatic ring structures of a low-rank coal by step-wise oxidation degradation. Fuel Processing Technology, 2020, 210: 106563
|
39 |
Li X J , Hayashi J I , Li C Z . FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel, 2006, 85(12–13): 1700–1707
|
40 |
Ni W , Liu Z , Zhang Y , Ma C , Deng H , Zhang S , Wang S . Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe–N4 site. Advanced Materials, 2021, 33(1): e2003238
|
41 |
Liu X , Li G , Zhao H , Ye Y , Xie R , Zhao Z , Lei Z , Cui P . Changes in caking properties of caking bituminous coals during low-temperature pyrolysis process. Fuel, 2022, 321: 124023
|
42 |
Lu L , Sahajwalla V , Harris D . Characteristics of chars prepared from various pulverized coals at different temperatures using drop-tube furnace. Energy & Fuels, 2000, 14(4): 869–876
|
43 |
Liu X C , Fang B , Zhao Z G , Xie R L , Lei Z , Ling Q , Cui P . Modification mechanism of caking and coking properties of Shenmu subbituminous coal by low-temperature rapid pyrolysis treatment. Journal of Iron and Steel Research International, 2019, 26(10): 1052–1060
|
44 |
Ghosh D , Periyasamy G , Pandey B , Pati S K . Computational studies on magnetism and the optical properties of transition metal embedded graphitic carbon nitride sheets. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(37): 7943–7951
|
45 |
Li S , Zhao S , Lu X , Ceccato M , Hu X M , Roldan A , Catalano J , Liu M , Skrydstrup T , Daasbjerg K . Low-valence Znδ+ (0 < δ < 2) single-atom material as highly efficient electrocatalyst for CO2 reduction. Angewandte Chemie International Edition, 2021, 60(42): 22826–22832
|
46 |
Jia M , Choi C , Wu T S , Ma C , Kang P , Tao H , Fan Q , Hong S , Liu S , Soo Y L .
|
47 |
Wang F , Miao Z , Mu J , Zhao Y , Liang M , Meng J , Wu X , Zhou P , Zhao J , Zhuo S .
|
/
〈 | 〉 |