Impact of H2S on Hg0 capture performance over nitrogen-doped carbon microsphere sorbent: experimental and theoretical insights
Received date: 18 Oct 2023
Accepted date: 11 Dec 2023
Copyright
A nitrogen-doped carbon microsphere sorbent with a hierarchical porous structure was synthesized via aggregation-hydrothermal carbonization. The Hg0 adsorption performance of the nitrogen-doped carbon microsphere sorbent was tested and compared with that of the coconut shell activated carbon prepared in the laboratory. The effect of H2S on Hg0 adsorption was also investigated. The nitrogen-doped carbon microsphere sorbent exhibited superior mercury removal performance compared with that of coconut shell activated carbon. In the absence of H2S at a low temperature (≤ 100 °C), the Hg0 removal efficiency of the nitrogen-doped carbon microsphere sorbent exceeded 90%. This value is significantly higher than that of coconut shell activated carbon, which is approximately 45%. H2S significantly enhanced the Hg0 removal performance of the nitrogen-doped carbon microsphere sorbent at higher temperatures (100–180 °C). The hierarchical porous structure facilitated the diffusion and adsorption of H2S and Hg0, while the nitrogen-containing active sites significantly improved the adsorption and dissociation capabilities of H2S, contributing to the generation of more active sulfur species on the surface of the nitrogen-doped carbon microsphere sorbent. The formation of active sulfur species and HgS on the sorbent surface was further confirmed using X-ray photoelectron spectroscopy and Hg0 temperature-programmed desorption tests. Density functional theory was employed to elucidate the adsorption and transformation of Hg0 on the sorbent surface. H2S adsorbed and dissociated on the sorbent surface, generating active sulfur species that reacted with gaseous Hg0 to form HgS.
Key words: nitrogen-doped carbon microsphere; H2S; Hg0 removal; adsorption mechanism
Guopei Zhang , Xiaoyang Zhang , Xiangwen Xing , Xiangru Kong , Lin Cui , Dong Yong . Impact of H2S on Hg0 capture performance over nitrogen-doped carbon microsphere sorbent: experimental and theoretical insights[J]. Frontiers of Chemical Science and Engineering, 2024 , 18(3) : 32 . DOI: 10.1007/s11705-024-2396-2
1 |
Wang F , Wang S , Zhang L , Yang H , Wu Q , Hao J . Characteristics of mercury cycling in the cement production process. Journal of Hazardous Materials, 2016, 302: 27–35
|
2 |
Li H , Zhu L , Wang J , Li L , Shih K . Development of nano-sulfide sorbent for efficient removal of elemental mercury from coal combustion fuel gas. Environmental Science & Technology, 2016, 50(17): 9551–9557
|
3 |
Pacyna E , Pacyna J , Sundseth K , Munthe J , Kindbom K , Wilson S , Steenhuisen F , Maxson P . Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment, 2010, 44(20): 2487–2499
|
4 |
Pirrone N , Cinnirella S , Feng X , Finkelman R , Friedli H , Leaner J , Mason R , Mukherjee A , Stracher G , Streets D G .
|
5 |
Guo Y , Chen B , Li J , Yang Q , Wu Z , Tang X . The evolution of China’s provincial shared producer and consumer responsibilities for energy-related mercury emissions. Journal of Cleaner Production, 2020, 245(1): 118678
|
6 |
Zhang L , Wang S , Wang L , Wu Y , Duan L , Wu Q , Wang F , Yang M , Yang H , Hao J .
|
7 |
Wang Y , Dou Z , Tang X , Lian L , Liu Y . Oxidative absorption of elemental mercury in combustion flue gas using biochar-activated peroxydisulfate system. Journal of the Energy Institute, 2023, 108: 101248
|
8 |
Wang S , Zhang L , Wang L , Wu Q , Wang F , Hao J . A review of atmospheric mercury emissions, pollution and control in China. Frontiers of Environmental Science & Engineering, 2014, 8(5): 631–649
|
9 |
Minchener A . Coal gasification for advanced power generation. Fuel, 2015, 84(17): 2222–2235
|
10 |
Midilli A , Kucuk H , Topal M E , Akbulut U , Dincer I . A comprehensive review on hydrogen production from coal gasification: challenges and opportunities. International Journal of Hydrogen Energy, 2021, 46(50): 25385–25412
|
11 |
Zhao S , Sun C , Zhang Y , Jiao T , Zhang W , Liang P , Zhang H . Determination of mercury occurrence and thermal stability in high ash bituminous coal based on sink-float and sequential chemical extraction method. Fuel, 2019, 253: 571–579
|
12 |
Zhang H , Zhao S , Niu Q , Chen S , Meng X , Zhang D , Li M , Liang P . Mercury distribution in Guizhou bituminous coal and its releasing behavior during mild pyrolysis process. Fuel Processing Technology, 2019, 185: 38–45
|
13 |
Chalkidis A , Jampaiah D , Hartley P G , Sabri Y M , Bhargava S K . Mercury in natural gas streams: a review of materials and processes for abatement and remediation. Journal of Hazardous Materials, 2020, 382: 121036
|
14 |
Zhang B , Liu J , Zhang J , Zheng C , Chang M . Mercury oxidation mechanism on Pd(100) surface from first-principles calculations. Chemical Engineering Journal, 2014, 237(1): 344–351
|
15 |
Yang J , Zhao Y , Liang S , Zhang S , Ma S , Li H , Zhang J , Zheng C . Magnetic iron-manganese binary oxide supported on carbon nanofiber (Fe3−xMnxO4/CNF) for efficient removal of Hg0 from coal combustion flue gas. Chemical Engineering Journal, 2018, 334: 216–224
|
16 |
Shen F , Liu J , Dong Y , Wu D . Mercury removal by biomass-derived porous carbon: experimental and theoretical insights into the effect of H2S. Chemical Engineering Journal, 2018, 348: 409–415
|
17 |
Zhang H , Zhao J , Fang Y , Huang J , Wang Y . Catalytic oxidation and stabilized adsorption of elemental mercury from coal-derived fuel gas. Energy & Fuels, 2012, 26(3): 1629–1637
|
18 |
Huo Q , Wang Y , Chen H , Han L , Wang J , Bao W , Chang L , Xie K . ZnS/AC sorbent derived from the high sulfur petroleum coke for mercury removal. Fuel Processing Technology, 2019, 191: 36–43
|
19 |
Sun R , Luo G , Li X , Tian H , Yao H . Theoretical research on role of sulfur allotropes on activated carbon surface in adsorbing elemental mercury. Chemical Engineering Journal, 2021, 404: 126639
|
20 |
Reddy K S K , Shoaibi A A , Srinivasakannan C . Mercury removal using metal sulfide porous carbon complex. Process Safety and Environmental Protection, 2018, 114: 153–158
|
21 |
Rungnim C , Promarak V , Hannongbua S , Kungwan N , Namuangruk S . Complete reaction mechanisms of mercury oxidation on halogenated activated carbon. Journal of Hazardous Materials, 2016, 310: 253–260
|
22 |
Shen F , Liu J , Dong Y , Wu D , Gu C , Zhang Z . Elemental mercury removal from syngas by porous carbon-supported CuCl2 sorbents. Fuel, 2019, 239: 138–144
|
23 |
Hong D , Zhou J , Hu C , Zhou Q , Mao J , Qin Q . Mercury removal mechanism of AC prepared by one-step activation with ZnCl2. Fuel, 2019, 235: 326–335
|
24 |
Das T K , Banerjee S , Sharma P , Sudarsan V , Sastry P U . Nitrogen doped porous carbon derived from EDTA: effect of pores on hydrogen storage properties. International Journal of Hydrogen Energy, 2018, 43(17): 8385–8394
|
25 |
Yu Z , Wang X , Hou Y , Zhao Z , Li R , Qiu J . Facile preparation of nitrogen-doped porous carbons via salt melt synthesis with efficient catalytic desulfurization performance. Journal of Inorganic Materials, 2017, 32(7): 770–776
|
26 |
Xu C , Chen J , Li S , Gu Q , Wang D , Jiang C , Liu Y . N-doped honeycomb-like porous carbon derived from biomass as an efficient carbocatalyst for H2S selective oxidation. Journal of Hazardous Materials, 2021, 403: 123806
|
27 |
Huang M , Teng H . Nitrogen-containing carbons from phenol-formaldehyde resins and their catalytic activity in NO reduction with NH3. Carbon, 2003, 41(5): 951–957
|
28 |
Li X , Sun F , Qu Z , Zhu X , Gao J , Zhao G , Zhang L . Insight into synergistic effects of oxygen and nitrogen dual-dopants in carbon catalysts on selective catalytic reduction of NOx with NH3: a combined computational and experimental verification. Chemical Engineering Journal, 2023, 454: 140098
|
29 |
Yu Z , Wang X , Song X , Liu Y , Qiu J . Molten salt synthesis of nitrogen-doped porous carbons for hydrogen sulfide adsorptive removal. Carbon, 2015, 95: 852–860
|
30 |
Yu Z , Wang X , Hou Y , Pan X , Zhao Z , Qiu J . Nitrogen-doped mesoporous carbon nanosheets derived from metal-organic frameworks in a molten salt medium for efficient desulfurization. Carbon, 2017, 117: 376–382
|
31 |
Sun F , Liu J , Chen H , Zhang Z , Qiao W , Long D , Ling L . Nitrogen-rich mesoporous carbons: highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S. ACS Catalysis, 2013, 3(5): 862–870
|
32 |
Shi M , Luo G , Xu Y , Zou R , Zhu H , Hu J , Li X , Yao H . Using H2S plasma to modify activated carbon for elemental mercury removal. Fuel, 2019, 254: 115549
|
33 |
Zhang H , Zhang D , Wang J , Xu W , Yang D , Jiao T , Zhang W , Liang P . Simultaneous removal of Hg0 and H2S at a high space velocity by water-resistant SnO2/carbon aerogel. Journal of Hazardous Materials, 2019, 371: 123–129
|
34 |
Clark S , Segall M , Pickard C , Hasnip P , Probert M , Refson K , Payne M . First principles methods using CASTEP. Crystalline Materials, 2005, 220(5–6): 567–570
|
35 |
Perdew J , Burke K , Ernzerhof M . Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
|
36 |
Govind N , Peterson M , Fitzgerald G , King-Smith D , Andzelm J . A generalized synchronous transit method for transition state location. Computational Materials Science, 2003, 28(2): 250–258
|
37 |
Li Y , Li D , Rao Y , Zhao X , Wu M . Superior CO2, CH4, and H2 uptakes over ultrahigh-surface-area carbon spheres prepared from sustainable biomass-derived char by CO2 activation. Carbon, 2016, 105: 454–462
|
38 |
Long C , Qi D , Wei T , Yan J , Jiang L , Fan Z . Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Advanced Functional Materials, 2014, 24(25): 3953–3961
|
39 |
Veselá P , Slovák V , Zelenka T , Koštejn M , Mucha M . The influence of pyrolytic temperature on sorption ability of carbon xerogel based on 3-aminophenol-formaldehyde polymer for Cu(II) ions and phenol. Journal of Analytical and Applied Pyrolysis, 2016, 121: 29–40
|
40 |
Zhang G , Sun S , Yang D , Dodelet J , Sacher E . The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. Carbon, 2008, 46(2): 196–205
|
41 |
Izquierdo M T , Rubio B , Mayoral C , Andrés J M . Low cost coal-based carbons for combined SO2 and NO removal from exhaust gas. Fuel, 2003, 82(2): 147–151
|
42 |
ZhangHChenJZhaoKNiuQWangL. Removal of vapor-phase elemental mercury from simulated syngas using semi-coke modified by Mn/Ce doping. Journal of Fuel Chemistry & Technology, 2016, 44(4): 394–400 (in Chinese)
|
43 |
Wang Z , Liu J , Yang Y , Miao S , Shen F . Effect of the mechanism of H2S on elemental mercury removal using the MnO2 sorbent during coal gasification. Energy & Fuels, 2018, 32(4): 4453–4460
|
44 |
Sun R , Zhu H , Shi M , Luo G , Xu Y , Li X , Yao H . Preparation of fly ash adsorbents utilizing non-thermal plasma to add S active sites for Hg0 removal from flue gas. Fuel, 2020, 266: 116936
|
45 |
Zou S , Liao Y , Xiong S , Huang N , Geng Y , Yang S . H2S-modified Fe–Ti spinel: a recyclable magnetic sorbent for recovering gaseous elemental mercury from flue gas as a co-benefit of wet electrostatic precipitators. Environmental Science & Technology, 2017, 51(6): 3426–3434
|
46 |
Liu H , Xie X , Chen H , Yang S , Liu C , Liu Z , Yang Z , Li Q , Yan X . SO2 promoted ultrafine nano-sulfur dispersion for efficient and stable removal of gaseous elemental mercury. Fuel, 2020, 261(1): 116367
|
47 |
Wang Z , Liu J , Yang Y , Yu Y , Yan X , Zhang Z . Regenerable CoxMn3−xO4 spinel sorbents for elemental mercury removal from syngas: experimental and DFT studies. Fuel, 2020, 266: 117105
|
48 |
Yang S , Wang D , Liu H , Liu C , Xie X , Xu Z , Liu Z . Highly stable activated carbon composite material to selectively capture gas-phase elemental mercury from smelting flue gas: copper polysulfide modification. Chemical Engineering Journal, 2019, 358: 1235–1242
|
49 |
Sun P , Zhang B , Zeng X , Luo G , Li X , Yao H , Zheng C . Deep study on effects of activated carbon’s oxygen functional groups for elemental mercury adsorption using temperature programmed desorption method. Fuel, 2017, 200: 100–106
|
50 |
Rumayor M , Diaz-Somoano M , Lopez-Anton M , Martinez-Tarazona M . Application of thermal desorption for the identification of mercury species in solids derived from coal utilization. Chemosphere, 2015, 119: 459–465
|
/
〈 | 〉 |