Frontiers of Chemical Science and Engineering >
Bioorthogonal chemistry based on-demand drug delivery system in cancer therapy
Received date: 02 May 2022
Accepted date: 26 Jul 2022
Copyright
Benefiting from the advantage of taking place in biological environments without interfering with an innate biochemical process, the bioorthogonal reaction that commonly contains the “bond formation” and “bond cleavage” system has been widely used in targeted therapy for a variety of tumors. Herein, several prominent cases based on the bioorthogonal reaction that tailoring the metabolic glycoengineering tactics to modified cells for cancer immunotherapy, and the innovative tactics for reducing the metal ions’ toxic and side effects with microneedle patches will be highlighted. Based on these applications, the complexities, potential pitfalls, and opportunities of bioorthogonal chemistry in future cancer therapy will be evaluated.
Lan Lin , Lai Jiang , En Ren , Gang Liu . Bioorthogonal chemistry based on-demand drug delivery system in cancer therapy[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(4) : 483 -489 . DOI: 10.1007/s11705-022-2227-2
1 |
Li L, Wang J, Kong H, Zeng Y, Liu G. Functional biomimetic nanoparticles for drug delivery and theranostic applications in cancer treatment. Science and Technology of Advanced Materials, 2018, 19(1): 771–790
|
2 |
Lu Y, Aimetti A A, Langer R, Gu Z. Bioresponsive materials. Nature Reviews Materials, 2017, 2(1): 16075
|
3 |
Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5): 646–674
|
4 |
Liang T X Z, Chen Z W, Li H J, Gu Z. Bioorthogonal catalysis for biomedical applications. Trends in Chemistry, 2022, 4(2): 157–168
|
5 |
Taiariol L, Chaix C, Farre C, Moreau E. Click and bioorthogonal chemistry: the future of active targeting of nanoparticles for nanomedicines?. Chemical Reviews, 2022, 122(1): 340–384
|
6 |
Bird R, Lemmel S, Yu X, Zhou Q. Bioorthogonal chemistry and its applications. Bioconjugate Chemistry, 2021, 32(12): 2457–2479
|
7 |
Kostenkova K, Scalese G, Gambino D, Crans D C. Highlighting the roles of transition metals and speciation in chemical biology. Current Opinion in Chemical Biology, 2022, 69: 102155
|
8 |
Gurruchaga-Pereda J, Martínez-Martínez V, Rezabal E, Lopez X, Garino C, Mancin F, Cortajarena A L, Salassa L. Flavin bioorthogonal photocatalysis toward platinum substrates. ACS Catalysis, 2020, 10(1): 187–196
|
9 |
Deb T, Tu J, Franzini R M. Mechanisms and substituent effects of metal-free bioorthogonal reactions. Chemical Reviews, 2021, 121(12): 6850–6914
|
10 |
Taylor M T, Blackman M L, Dmitrenko O, Fox J M. Design and synthesis of highly reactive dienophiles for the tetrazine-trans-cyclooctene ligation. Journal of the American Chemical Society, 2011, 133(25): 9646–9649
|
11 |
Bednarek C, Wehl I, Jung N, Schepers U, Bräse S. The staudinger ligation. Chemical Reviews, 2020, 120(10): 4301–4354
|
12 |
Li J, Chen P R. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nature Chemical Biology, 2016, 12(3): 129–137
|
13 |
Wang H, Mooney D J. Metabolic glycan labelling for cancer-targeted therapy. Nature Chemistry, 2020, 12(12): 1102–1114
|
14 |
Thirumurugan P, Matosiuk D, Jozwiak K. Click chemistry for drug development and diverse chemical-biology applications. Chemical Reviews, 2013, 113(7): 4905–4979
|
15 |
Ren E, Liu C, Lv P, Wang J, Liu G. Genetically engineered cellular membrane vesicles as tailorable shells for therapeutics. Advanced Science, 2021, 8(21): 2100460
|
16 |
Soriano del Amo D, Wang W, Jiang H, Besanceney C, Yan A C, Levy M, Liu Y, Marlow F L, Wu P. Biocompatible copper(I) catalysts for in vivo imaging of glycans. Journal of the American Chemical Society, 2010, 132(47): 16893–16899
|
17 |
Sletten E M, Bertozzi C R. From mechanism to mouse: a tale of two bioorthogonal reactions. Accounts of Chemical Research, 2011, 44(9): 666–676
|
18 |
Völker T, Meggers E. Transition-metal-mediated uncaging in living human cells—an emerging alternative to photolabile protecting groups. Current Opinion in Chemical Biology, 2015, 25: 48–54
|
19 |
Rakhit R, Navarro R, Wandless T J. Chemical biology strategies for posttranslational control of protein function. Chemistry & Biology, 2014, 21(9): 1238–1252
|
20 |
Yusop R M, Unciti-Broceta A, Johansson E M V, Sánchez-Martín R M, Bradley M. Palladium-mediated intracellular chemistry. Nature Chemistry, 2011, 3(3): 239–243
|
21 |
Li J, Yu J T, Zhao J Y, Wang J, Zheng S Q, Lin S X, Chen L, Yang M Y, Jia S, Zhang X Y, Chen P R. Palladium-triggered deprotection chemistry for protein activation in living cells. Nature Chemistry, 2014, 6(4): 352–361
|
22 |
Weiss J T, Dawson J C, Macleod K G, Rybski W, Fraser C, Torres-Sánchez C, Patton E E, Bradley M, Carragher N O, Unciti-Broceta A. Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nature Communications, 2014, 5(1): 3277
|
23 |
Yang W, Nan H X, Xu Z F, Huang Z X, Chen S, Li J Y, Li J, Yang H H. DNA-templated glycan labeling for monitoring receptor spatial distribution in living cells. Analytical Chemistry, 2021, 93(36): 12265–12272
|
24 |
Hu Q Y, Sun W J, Wang J Q, Ruan H T, Zhang X D, Ye Y Q, Shen S, Wang C, Lu W Y, Cheng K, Dotti G, Zeidner J F, Wang J, Gu Z. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nature Biomedical Engineering, 2018, 2(11): 831–840
|
25 |
Pawlak J B, Gential G P P, Ruckwardt T J, Bremmers J S, Meeuwenoord N J, Ossendorp F A, Overkleeft H S, Filippov D V, van Kasteren S I. Bioorthogonal deprotection on the dendritic cell surface for chemical control of antigen cross-presentation. Angewandte Chemie International Edition, 2015, 54(19): 5628–5631
|
26 |
Wu D, Yang K K, Zhang Z K, Feng Y X, Rao L, Chen X Y, Yu G C. Metal-free bioorthogonal click chemistry in cancer theranostics. Chemical Society Reviews, 2022, 51(4): 1336–1376
|
27 |
Völker T, Dempwolff F, Graumann P L, Meggers E. Progress towards bioorthogonal catalysis with organometallic compounds. Angewandte Chemie International Edition, 2014, 53(39): 10536–10540
|
28 |
Lim R K, Lin Q. Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells. Accounts of Chemical Research, 2011, 44(9): 828–839
|
29 |
Chang P V, Prescher J A, Sletten E M, Baskin J M, Miller I A, Agard N J, Lo A, Bertozzi C R. Copper-free click chemistry in living animals. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5): 1821–1826
|
30 |
Laughlin S T, Bertozzi C R. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nature Protocols, 2007, 2(11): 2930–2944
|
31 |
Li W J, Pan H, He H M, Meng X Q, Ren Q, Gong P, Jiang X, Liang Z G, Liu L L, Zheng M B, Shao X, Ma Y, Cai L. Bio-orthogonal T cell targeting strategy for robustly enhancing cytotoxicity against tumor cells. Small, 2019, 15(4): e1804383
|
32 |
Prescher J A, Bertozzi C R. Chemical technologies for probing glycans. Cell, 2006, 126(5): 851–854
|
33 |
Ren E, Chu C C, Zhang Y M, Wang J Q, Pang X, Lin X N, Liu C, Shi X X, Dai Q X, Lv P, Wang X, Chen X, Liu G. Mimovirus vesicle-based biological orthogonal reaction for cancer diagnosis. Small Methods, 2020, 4(9): 2000291
|
34 |
Wang H, Wang R B, Cai K M, He H, Liu Y, Yen J, Wang Z Y, Xu M, Sun Y W, Zhou X, Yin Q, Tang L, Dobrucki I T, Dobrucki L W, Chaney E J, Boppart S A, Fan T M, Lezmi S, Chen X, Yin L, Cheng J. Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nature Chemical Biology, 2017, 13(4): 415–424
|
35 |
Shim M K, Yoon H Y, Ryu J H, Koo H, Lee S, Park J H, Kim J H, Lee S, Pomper M G, Kwon I C, Kim K. Cathepsin B-specific metabolic precursor for in vivo tumor-specific fluorescence imaging. Angewandte Chemie International Edition, 2016, 55(47): 14698–14703
|
36 |
Xie R, Dong L, Huang R B, Hong S L, Lei R X, Chen X. Targeted imaging and proteomic analysis of tumor-associated glycans in living animals. Angewandte Chemie International Edition, 2014, 53(51): 14082–14086
|
37 |
Wang H, Gauthier M, Kelly J R, Miller R J, Xu M, O’Brien W D Jr, Cheng J J. Targeted ultrasound-assisted cancer-selective chemical labeling and subsequent cancer imaging using click chemistry. Angewandte Chemie International Edition, 2016, 55(18): 5452–5456
|
38 |
Wang H, Sobral M C, Zhang D K Y, Cartwright A N, Li A W, Dellacherie M O, Tringides C M, Koshy S T, Wucherpfennig K W, Mooney D J. Metabolic labeling and targeted modulation of dendritic cells. Nature Materials, 2020, 19(11): 1244–1252
|
39 |
Chen Z W, Li H J, Bian Y J, Wang Z J, Chen G J, Zhang X D, Miao Y M, Wen D, Wang J Q, Wan G, Zeng Y, Abdou P, Fang J, Li S, Sun C J, Gu Z. Bioorthogonal catalytic patch. Nature Nanotechnology, 2021, 16(8): 933–941
|
40 |
Yu J C, Wang J Q, Zhang Y Q, Chen G J, Mao W W, Ye Y Q, Kahkoska A R, Buse J B, Langer R, Gu Z. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nature Biomedical Engineering, 2020, 4(5): 499–506
|
41 |
Wang C Q, Zhang H, Zhang T, Zou X Y, Wang H, Rosenberger J E, Vannam R, Trout W S, Grimm J B, Lavis L D, Thorpe C, Jia X, Li Z, Fox J M. Enabling in vivo photocatalytic activation of rapid bioorthogonal chemistry by repurposing silicon-rhodamine fluorophores as cytocompatible far-red photocatalysts. Journal of the American Chemical Society, 2021, 143(28): 10793–10803
|
/
〈 | 〉 |