RESEARCH ARTICLE

All-in-one functional supramolecular nanoparticles based on pillar[5]arene for controlled generation, storage and release of singlet oxygen

  • Bing Lu ,
  • Zhecheng Zhang ,
  • Meiyu Qi ,
  • Yuehua Zhang ,
  • Hualing Yang ,
  • Jin Wang ,
  • Yue Ding ,
  • Yang Wang ,
  • Yong Yao
Expand
  • College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
2020028lubing@ntu.edu.cn
yaoyong1986@ntu.edu.cn

Received date: 05 May 2022

Accepted date: 25 Jun 2022

Published date: 15 Mar 2023

Copyright

2022 Higher Education Press

Abstract

The storage and controlled release of singlet oxygen (1O2) have attracted increasing attention due to the wide application and microsecond lifetime of 1O2 in water. Herein we provide an integrated nanoplatform consisting of a diphenylanthracene derivative, a water-soluble pillar[5]arene and a photosensitizer tetrakis(4-hydroxyphenyl)porphyrin (TPP), that may provide the controlled generation, storage and release of singlet oxygen. We design a new diphenylanthracene derivative with two trimethylammonium bromide groups on both ends that can be well recognized by the pillar[5]arene. The formed nanocarriers can be used to load TPP through their supramolecular self-assembly. The resulting nanoparticles show good water-solubility and uniform spherical morphology. After laser irradiation (660 nm), the nanoparticles exhibit excellent ability for the generation and storage of 1O2. When the irradiated nanoparticles are heated above 80 °C, 1O2 can be released from the system. Therefore, in this paper we pioneer the use of noncovalent interaction to integrate the diphenylanthracene derivatives and photosensitizers into one functional system, which provides a new strategy for the controlled generation, storage and release of singlet oxygen. We believe this groundbreaking strategy will have a great potential in providing necessary amounts of 1O2 for the photodynamic therapy of tumors in dark.

Cite this article

Bing Lu , Zhecheng Zhang , Meiyu Qi , Yuehua Zhang , Hualing Yang , Jin Wang , Yue Ding , Yang Wang , Yong Yao . All-in-one functional supramolecular nanoparticles based on pillar[5]arene for controlled generation, storage and release of singlet oxygen[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(3) : 307 -313 . DOI: 10.1007/s11705-022-2216-5

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21801139, 21871227), the Innovation and Entrepreneurship Program of Jiangsu Province (Grant No. JSSCBS20211106) and the National Undergraduates Innovating Experimentation Project (Grant No. 202110304134H).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2216-5 and is accessible for authorized users.
1
Ushakov D B, Gilmore K, Kopetzki D, McQuade D T, Seeberger P H. Continuous-flow oxidative cyanation of primary and secondary amines using singlet oxygen. Angewandte Chemie International Edition, 2014, 53(2): 557–561

DOI

2
Nonell S, Flors C. Singlet Oxygen: Applications in Biosciences and Nanosciences. Cambridge: Royal Society of Chemistry, 2016,

3
Zhou Z, Song J, Nie L, Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chemical Society Reviews, 2016, 45(23): 6597–6626

DOI

4
Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chemical Society Reviews, 2019, 48(7): 2053–2108

DOI

5
Lu D, Tao R, Wang Z. Carbon-based materials for photodynamic therapy: a mini-review. Frontiers of Chemical Science and Engineering, 2019, 13(2): 310–323

DOI

6
Wang H, Jiang S, Liu W, Zhang X, Zhang Q, Luo Y, Xie Y. Ketones as molecular Co-catalysts for boosting exciton-based photocatalytic molecular oxygen activation. Angewandte Chemie International Edition, 2020, 59(27): 11093–11100

DOI

7
Lu B, Zhang Z, Jin D, Yuan X, Wang J, Ding Y, Wang Y, Yao Y. A–DA′D–A fused-ring small molecule-based nanoparticles for combined photothermal and photodynamic therapy of cancer. Chemical Communications, 2021, 57(90): 12020–12023

DOI

8
Wasserman H H, Scheffer J R. Singlet oxygen reactions from photoperoxides. Journal of the American Chemical Society, 1967, 89(12): 3073–3075

DOI

9
Filatov M A, Senge M O. Molecular devices based on reversible singlet oxygen binding in optical and photomedical applications. Molecular Systems Design & Engineering, 2016, 1(3): 258–272

DOI

10
Kolemen S, Ozdemir T, Lee D, Kim G M, Karatas T, Yoon J, Akkaya E U. Remote-controlled release of singlet oxygen by the plasmonic heating of endoperoxide-modified gold nanorods: towards a paradigm change in photodynamic therapy. Angewandte Chemie International Edition, 2016, 55(11): 3606–3610

DOI

11
Lv W, Xia H, Zhang K Y, Chen Z, Liu S, Huang W, Zhao Q. Photothermal-triggered release of singlet oxygen from an endoperoxide-containing polymeric carrier for killing cancer cells. Materials Horizons, 2017, 4(6): 1185–1189

DOI

12
Fudickar W, Linker T. Release of singlet oxygen from aromatic endoperoxides by chemical triggers. Angewandte Chemie International Edition, 2018, 57(39): 12971–12975

DOI

13
You Y. Chemical tools for the generation and detection of singlet oxygen. Organic & Biomolecular Chemistry, 2018, 16(22): 4044–4060

DOI

14
Liu K, Lalancette R A, Jäkle F. Tuning the structure and electronic properties of B-N fused dipyridylanthracene and implications on the self-sensitized reactivity with singlet oxygen. Journal of the American Chemical Society, 2019, 141(18): 7453–7462

DOI

15
Brega V, Yan Y, Thomas S W I. Acenes beyond organic electronics: sensing of singlet oxygen and stimuli-responsive materials. Organic & Biomolecular Chemistry, 2020, 18(45): 189191–189209

DOI

16
He Y Q, Fudickar W, Tang J H, Wang H, Li X, Han J, Wang Z, Liu M, Zhong Y W, Linker T, Stang P J. Capture and release of singlet oxygen in coordination-driven self-assembled organoplatinum(II) metallacycles. Journal of the American Chemical Society, 2020, 142(5): 2601–2608

DOI

17
Yang C, Su M, Luo P, Liu Y, Yang F, Li C. A photosensitive polymeric carrier with a renewable singlet oxygen reservoir regulated by two NIR beams for enhanced antitumor phototherapy. Small, 2021, 17(29): 2101180

DOI

18
Lai H, Yan J, Liu S, Yang Q, Xing F, Xiao P. Peripheral RAFT polymerization on a covalent organic polymer with enhanced aqueous compatibility for controlled generation of singlet oxygen. Angewandte Chemie International Edition, 2020, 59(26): 10431–10435

DOI

19
Xie B R, Li C X, Yu Y, Zeng J Y, Zhang M K, Wang X S, Zeng X, Zhang X Z. A singlet oxygen reservoir based on poly-pyridone and porphyrin nanoscale metal−organic framework for cancer therapy. CCS Chemistry, 2021, 3(5): 1187–1202

DOI

20
Mongin C, Ardoy A M, Méreau R, Bassani D M, Bibal B. Singlet oxygen stimulus for switchable functional organic cages. Chemical Science, 2020, 11(6): 1478–1484

DOI

21
Yan D, Lin E, Jin F, Qiao S, Yang Y, Wang Z, Xiong F, Chen Y, Cheng P, Zhang Z. Engineering COFs as smart triggers for rapid capture and controlled release of singlet oxygen. Journal of Materials Chemistry A, 2021, 9(48): 27434–27441

DOI

22
Zou J, Li L, Zhu J, Li X, Yang Z, Huang W, Chen X. Singlet oxygen “afterglow” therapy with NIR-II fluorescent molecules. Advanced Materials, 2021, 33(44): 2103627

DOI

23
Martins S, Farinha J P S, Baleizão C, Berberan-Santos M N. Controlled release of singlet oxygen using diphenylanthracene functionalized polymer nanoparticles. Chemical Communications, 2014, 50(25): 3317–3320

DOI

24
Yuan Z, Yu S, Cao F, Mao Z, Gao C, Ling J. Near-infrared light triggered photothermal and photodynamic therapy with an oxygen-shuttle endoperoxide of anthracene against tumor hypoxia. Polymer Chemistry, 2018, 9(16): 2124–2133

DOI

25
Yu G, Jie K, Huang F. Supramolecular amphiphiles based on host−guest molecular recognition motifs. Chemical Reviews, 2015, 115(15): 7240–7303

DOI

26
Wang S, Gao W, Hu X Y, Shen Y Z, Wang L. Supramolecular strategy for smart windows. Chemical Communications, 2019, 55(29): 4137–4149

DOI

27
Zhou Y, Jie K, Zhao R, Huang F. Supramolecular-macrocycle-based crystalline organic materials. Advanced Materials, 2019, 32(20): 1904824

DOI

28
Hashimoto T, Kumai M, Maeda M, Miyoshi K, Tsuchido Y, Fujiwara S, Hayashita T. Structural effect of fluorophore on phenylboronic acid fluorophore/cyclodextrin complex for selective glucose recognition. Frontiers of Chemical Science and Engineering, 2019, 14(1): 53–60

DOI

29
Xiao T, Qi L, Zhong W, Lin C, Wang R, Wang L. Stimuli-responsive nanocarriers constructed from pillar[n]arene-based supra-amphiphiles. Materials Chemistry Frontiers, 2019, 3(10): 1973–1993

DOI

30
Zhang H, Liu Z, Zhao Y. Pillararene-based self-assembled amphiphiles. Chemical Society Reviews, 2018, 47(14): 5491–5528

DOI

31
Ogoshi T, Yamagishi T A, Nakamoto Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chemical Reviews, 2016, 116(14): 7937–8002

DOI

32
Wu X, Yu Y, Gao L, Hu X Y, Wang L. Stimuli-responsive supramolecular gel constructed by pillar[5]arene-based pseudo[2]rotaxanes via orthogonal metal−ligand coordination and hydrogen bonding interaction. Organic Chemistry Frontiers, 2016, 3(8): 966–970

DOI

33
Li Y F, Li Z, Lin Q, Yang Y W. Functional supramolecular gels based on pillar[n]arene macrocycles. Nanoscale, 2020, 12(4): 2180–2200

DOI

34
Dai D, Li Z, Yang J, Wang C, Wu J R, Wang Y, Zhang D, Yang Y W. Supramolecular assembly-induced emission enhancement for efficient mercury(II) detection and removal. Journal of the American Chemical Society, 2019, 141(11): 1414756–1414763

DOI

35
Wang J, Zhou L, Bei J, Zhao Q, Li X, He J, Cai Y, Chen T, Du Y, Yao Y. An enhanced photo-electrochemical sensor constructed from pillar[5]arene functionalized au nps for ultrasensitive detection of caffeic acid. Talanta, 2022, 243: 243123322

DOI

36
Zhu H, Wang H, Shi B, Shangguan L, Tong W, Yu G, Mao Z, Huang F. Supramolecular peptide constructed by molecular lego allowing programmable self-assembly for photodynamic therapy. Nature Communications, 2019, 10(1): 2412

DOI

37
Cen M, Ding Y, Wang J, Yuan X, Lu B, Wang Y, Yao Y. Cationic water-soluble pillar[5]arene-modified Cu2–xSe nanoparticles: supramolecular trap for atp and application in targeted photothermal therapy in the NIR-II window. ACS Macro Letters, 2020, 9(11): 1558–1562

DOI

38
Wang Y, Lv M Z, Song N, Liu Z J, Wang C, Yang Y W. Dual-stimuli-responsive fluorescent supramolecular polymer based on a diselenium-bridged pillar[5]arene dimer and an AIE-active tetraphenylethylene guest. Macromolecules, 2017, 50(15): 5759–5766

DOI

39
Guo H, Yan X, Lu B, Wang J, Yuan X, Han Y, Ding Y, Wang Y, Yan C, Yao Y. Pillar[5]arene-based supramolecular assemblies with two-step sequential fluorescence enhancement for mitochondria-targeted cell imaging. Journal of Materials Chemistry C, 2020, 8(44): 15622–15625

DOI

40
Li Y, Wen J, Li J, Wu Z, Li W, Yang K. Recent applications of pillar[n]arene-based host–guest recognition in chemosensing and imaging. ACS Sensors, 2021, 6(11): 3882–3897

DOI

41
Feng W X, Sun Z, Barboiu M. Pillar[n]arenes for construction of artificial transmembrane channels. Israel Journal of Chemistry, 2018, 58(11): 1209–1218

DOI

42
Xin P, Kong H, Sun Y, Zhao L, Fang H, Zhu H, Jiang T, Guo J, Zhang Q, Dong W, Chen C P. Artificial K+ channels formed by pillararene-cyclodextrin hybrid molecules: tuning cation selectivity and generating membrane potential. Angewandte Chemie International Edition, 2019, 58(9): 2779–2784

DOI

Outlines

/