RESEARCH ARTICLE

Cystine-assisted accumulation of gold nanoparticles on ZnO to construct a sensitive surface-enhanced Raman spectroscopy substrate

  • Qi Qu 1 ,
  • Chuan Zeng 5 ,
  • Jing Huang 5 ,
  • Mengfan Wang , 1,2,4 ,
  • Wei Qi 1,3,4 ,
  • Zhimin He 1
Expand
  • 1. School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, China
  • 2. School of Life Sciences, Tianjin University, Tianjin 300072, China
  • 3. Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
  • 4. Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, China
  • 5. Technical Centre of Gongbei Customs District of China, Zhuhai 519000, China

Received date: 25 Jan 2022

Accepted date: 15 Apr 2022

Published date: 15 Jan 2023

Copyright

2022 Higher Education Press

Abstract

Recently, various semiconductor/metal composites have been developed to fabricate surface-enhanced Raman spectroscopy substrates. However, low metal loading on semiconductors is still a challenge. In this study, cystine was introduced to increase the accumulation of gold nanoparticles on zinc oxide, owing to the biomineralization property of cystine. Morphological analysis revealed that the obtained ZnO/Au/cystine composite not only had a higher metal loading but also formed a porous structure, which is beneficial for Raman performance. Compared with ZnO/Au, the ZnO/Au/cystine substrate displayed a 40-fold enhancement in the Raman signal and a lower limit of detection (10–11 mol·L−1) in the detection of rhodamine 6G. Moreover, the substrate has favorable homogeneity and stability. Finally, ZnO/Au/cystine displayed excellent performance toward crystal violet and methylene blue in a test based on river water samples. This study provided a promising method to fabricate sensitive semiconductor/noble metal-based surface-enhanced Raman spectroscopy substrates for Raman detection.

Cite this article

Qi Qu , Chuan Zeng , Jing Huang , Mengfan Wang , Wei Qi , Zhimin He . Cystine-assisted accumulation of gold nanoparticles on ZnO to construct a sensitive surface-enhanced Raman spectroscopy substrate[J]. Frontiers of Chemical Science and Engineering, 2023 , 17(1) : 15 -23 . DOI: 10.1007/s11705-022-2177-8

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Grant Nos. 21621004 and 22178260), the Tianjin Development Program for Innovation and Entrepreneurship (2018), and the Cooperative Program of Technical Center of Gongbei Customs District of China (Grant No. 2020GKF-0281).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://dx.doi.org/10.1007/s11705-022-2177-8 and is accessible for authorized users.
1
Fan M, Andrade G F S, Brolo A G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Analytica Chimica Acta, 2020, 1097 : 1– 29

DOI

2
Neng J, Zhang Q, Sun P L. Application of surface-enhanced Raman spectroscopy in fast detection of toxic and harmful substances in food. Biosensors & Bioelectronics, 2020, 167 : 112480

DOI

3
Zong C, Xu M, Xu L J, Wei T, Ma X, Zheng X S, Hu R, Ren B. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chemical Reviews, 2018, 118( 10): 4946– 4980

DOI

4
Cialla May D, Zheng X S, Weber K, Popp J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chemical Society Reviews, 2017, 46( 13): 3945– 3961

DOI

5
Xu M L, Gao Y, Han X X, Zhao B. Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: a review. Journal of Agricultural and Food Chemistry, 2017, 65( 32): 6719– 6726

DOI

6
Chakraborty A, Ghosh A, Barui A. Advances in surface-enhanced Raman spectroscopy for cancer diagnosis and staging. Journal of Raman Spectroscopy, 2020, 51( 1): 7– 36

DOI

7
Yang B, Wang Y, Guo S, Jin S, Park E, Chen L, Jung Y M. Charge transfer study for semiconductor and semiconductor/metal composites based on surface-enhanced Raman scattering. Bulletin of the Korean Chemical Society, 2021, 42( 11): 1411– 1418

DOI

8
Sharma B, Frontiera R R, Henry A I, Ringe E, Van Duyne R P. SERS: materials, applications, and the future. Materials Today, 2012, 15( 1-2): 16– 25

DOI

9
Itoh T, Yamamoto Y S. Recent topics on single-molecule fluctuation analysis using blinking in surface-enhanced resonance Raman scattering: clarification by the electromagnetic mechanism. Analyst (London), 2016, 141( 17): 5000– 5009

DOI

10
Yang M, Yu J, Lei F, Zhou H, Wei Y, Man B, Zhang C, Li C, Ren J, Yuan X. Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability. Sensors and Actuators B: Chemical, 2018, 256 : 268– 275

DOI

11
Hsieh S, Lin P Y, Chu L Y. Improved performance of solution-phase surface-enhanced Raman scattering at Ag/CuO nanocomposite surfaces. Journal of Physical Chemistry C, 2014, 118( 23): 12500– 12505

DOI

12
Yang L, Wang W, Jiang H, Zhang Q, Shan H, Zhang M, Zhu K, Lv J, He G, Sun Z. Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with Ag nanoparticles. Sensors and Actuators B: Chemical, 2017, 242 : 932– 939

DOI

13
Li P, Wang X, Zhang X, Zhang L, Yang X, Zhao B. Investigation of the charge-transfer between Ga-doped ZnO nanoparticles and molecules using surface-enhanced Raman scattering: doping induced band-gap shrinkage. Frontiers in Chemistry, 2019, 7 : 144

DOI

14
Doan Q K, Nguyen M H, Sai C D, Pham V T, Mai H H, Pham N H, Bach T C, Nguyen V T, Nguyen T T, Ho K H, Tran T H. Enhanced optical properties of ZnO nanorods decorated with gold nanoparticles for self-cleaning surface enhanced Raman applications. Applied Surface Science, 2020, 505 : 7

DOI

15
Liu Y, Ma H, Han X X, Zhao B. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer. Materials Horizons, 2021, 8( 2): 370– 382

DOI

16
Han X X, Ji W, Zhao B, Ozaki Y. Semiconductor-enhanced Raman scattering: active nanomaterials and applications. Nanoscale, 2017, 9( 15): 4847– 4861

DOI

17
Yang B, Jin S, Guo S, Park Y, Chen L, Zhao B, Jung Y M. Recent development of SERS technology: semiconductor-based study. ACS Omega, 2019, 4( 23): 20101– 20108

DOI

18
Araújo A, Pimentel A, Oliveira M J, Mendes M J, Franco R, Fortunato E, Águas H, Martins R. Direct growth of plasmonic nanorod forests on paper substrates for low-cost flexible 3D SERS platforms. Flexible and Printed Electronics, 2017, 2( 1): 014001

DOI

19
Pimentel A, Araújo A, Coelho B, Nunes D, Oliveira M, Mendes M, Águas H, Martins R, Fortunato E. 3D ZnO/Ag surface-enhanced Raman scattering on disposable and flexible cardboard platforms. Materials, 2017, 10( 12): 1351

DOI

20
Kim W, Lee S H, Kim J H, Ahn Y J, Kim Y H, Yu J S, Choi S. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal diseases in women. ACS Nano, 2018, 12( 7): 7100– 7108

DOI

21
Barbillon G, Graniel O, Bechelany M. Assembled Au/ZnO nano-urchins for SERS sensing of the pesticide thiram. Nanomaterials, 2021, 11( 9): 2174

DOI

22
Graniel O, Iatsunskyi I, Coy E, Humbert C, Barbillon G, Michel T, Maurin D, Balme S, Miele P, Bechelany M. Au-covered hollow urchin-like ZnO nanostructures for surface-enhanced Raman scattering sensing. Journal of Materials Chemistry C, 2019, 7( 47): 15066– 15073

DOI

23
Dong S, Wang Y, Liu Z, Zhang W, Yi K, Zhang X, Zhang X, Jiang C, Yang S, Wang F, Xiao X. Beehive-inspired macroporous SERS probe for cancer detection through capturing and analyzing exosomes in plasma. ACS Applied Materials & Interfaces, 2020, 12( 4): 5136– 5146

DOI

24
Liu K, Yuan C Q, Zou Q L, Xie Z C, Yan X H. Self-assembled zinc/cystine-based chloroplast mimics capable of photoenzymatic reactions for sustainable fuel synthesis. Angewandte Chemie International Edition, 2017, 56( 27): 7876– 7880

DOI

25
Guan M, Wang M, Qi W, Su R, He Z. Biomineralization-inspired copper-cystine nanoleaves capable of laccase-like catalysis for the colorimetric detection of epinephrine. Frontiers of Chemical Science and Engineering, 2020, 15( 2): 310– 318

DOI

26
Ejgenberg M, Mastai Y. Biomimetic crystallization of L-cystine hierarchical structures. Crystal Growth & Design, 2012, 12( 10): 4995– 5001

DOI

27
Moe O W. Kidney stones: pathophysiology and medical management. Lancet, 2006, 367( 9507): 333– 344

DOI

28
Jana N R, Gearheart L, Murphy C J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir, 2001, 17( 22): 6782– 6786

DOI

29
Yang L L, Yang Y, Ma Y F, Li S, Wei Y Q, Huang Z R, Long N V. Fabrication of semiconductor ZnO nanostructures for versatile SERS application. Nanomaterials, 2017, 7( 11): 398

DOI

30
Subramanian V, Wolf E E, Kamat P V. Green emission to probe photoinduced charging events in ZnO−Au nanoparticles. Charge distribution and fermi-level equilibration. Journal of Physical Chemistry B, 2003, 107( 30): 7479– 7485

DOI

31
Nuzzo R G, Fusco F A, Allara D L. Spontaneously organized molecular assemblies. 3. Preparation and properties of solution adsorbed monolayers of organic disulfides on gold surfaces. Journal of the American Chemical Society, 1987, 109( 8): 2358– 2368

DOI

32
Nuzzo R G, Allara D L. Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 1983, 105( 13): 4481– 4483

DOI

33
Nuzzo R G, Zegarski B R, Dubois L H. Fundamental studies of the chemisorption of organosulfur compounds on gold (111). Implications for molecular self-assembly on gold surfaces. Journal of the American Chemical Society, 1987, 109( 3): 733– 740

DOI

34
Pal A K, Pagal S, Prashanth K, Chandra G K, Umapathy S, Mohan D B. Ag/ZnO/Au 3D hybrid structured reusable SERS substrate as highly sensitive platform for DNA detection. Sensors and Actuators B: Chemical, 2019, 279 : 157– 169

DOI

35
Bharadwaj S, Pandey A, Yagci B, Ozguz V, Qureshi A. Graphene nano−mesh−Ag−ZnO hybrid paper for sensitive SERS sensing and self-cleaning of organic pollutants. Chemical Engineering Journal, 2018, 336 : 445– 455

DOI

36
Zhang J, Liu X, Wu S, Cao B, Zheng S. One-pot synthesis of Au-supported ZnO nanoplates with enhanced gas sensor performance. Sensors and Actuators B: Chemical, 2012, 169 : 61– 66

DOI

37
Ma Z F, Han H L. One-step synthesis of cystine-coated gold nanoparticles in aqueous solution. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 317( 1-3): 229– 233

DOI

38
Di Felice R, Selloni A. Adsorption modes of cysteine on Au(111): thiolate, amino-thiolate, disulfide. Journal of Chemical Physics, 2004, 120( 10): 4906– 4914

DOI

39
Qi D, Lu L, Wang L, Zhang J. Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling. Journal of the American Chemical Society, 2014, 136( 28): 9886– 9889

DOI

40
Macias Montero M, Pelaez R J, Rico V J, Saghi Z, Midgley P, Afonso C N, Gonzalez Elipe A R, Borras A. Laser treatment of Ag@ZnO nanorods as long-life-span SERS surfaces. ACS Applied Materials & Interfaces, 2015, 7( 4): 2331– 2339

DOI

41
He X, Wang H, Li Z, Chen D, Liu J, Zhang Q. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO−Ag nanorod hybrids. Nanoscale, 2015, 7( 18): 8619– 8626

DOI

Outlines

/