RESEARCH ARTICLE

Strengthening mechanisms in carbon nanotube reinforced bioglass composites

  • Jing ZHANG , 1 ,
  • Chengchang JIA 2 ,
  • Zhizhong JIA 2 ,
  • Jillian LADEGARD 3 ,
  • Yanhong GU 3 ,
  • Junhui NIE 2
Expand
  • 1. Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
  • 2. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • 3. Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA

Received date: 26 Sep 2011

Accepted date: 16 Jan 2012

Published date: 05 Jun 2012

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Carbon nanotube reinforced bioglass composites have been successfully synthesized by two comparative sintering techniques, i.e., spark plasma sintering (SPS) and conventional compaction and sinteirng. The composites show improved mechanical properties, with SPS technique substantially better than conventional compact and sintering approach. Using SPS, compared with the 45S5Bioglass matrix, the maximum flexural strength and fracture toughness increased by 159% and 105%, respectively. Enhanced strength and toughness are attributed to the interfacial bonding and bridging effects between the carbon nanotubes and bioglass powders during crack propagations.

Cite this article

Jing ZHANG , Chengchang JIA , Zhizhong JIA , Jillian LADEGARD , Yanhong GU , Junhui NIE . Strengthening mechanisms in carbon nanotube reinforced bioglass composites[J]. Frontiers of Chemical Science and Engineering, 2012 , 6(2) : 126 -131 . DOI: 10.1007/s11705-012-1279-0

Acknowledgments

Jing ZHANG thanks the support from the National Science Foundation (Grant No. 0723244).
1
Best S M, Porter A E, Thian E S, Huang J. Bioceramics: past, present and for the future. Journal of the European Ceramic Society, 2008, 28(7): 1319-1327

DOI

2
Hench L L, Splinter R J, Allen W C, Greenlee T K. Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 1971, 5(6): 117-141

DOI

3
Lefebvre L, Chevalier J, Gremillard L, Zenati R, Thollet G, Bernache-Assolant D, Govin A. Structural transformations of bioactive glass 45S5 with thermal treatments. Acta Materialia, 2007, 55(10): 3305-3313

DOI

4
Xynos I D, Hukkanen M V J, Batten J J, Buttery L D, Hench L L, Polak J M. Bioglass ®45S5 stimulates osteoblast turnover and enhances bone formation: implications and applications for bone tissue engineering. Calcified Tissue International, 2000, 67(4): 321-329

DOI

5
Stanley H R, Hall M B, Clark A E. C J K III, Hench L L, Berte J J. Using 45S5 Bioglass cones as endosseous ridge maintenance implants to prevent alveolar ridge resorption: a 5-year evaluation. International Journal of Oral & Maxillofacial Implants, 1997, 12: 95-105

6
Beherei H H, Mohamed K R, El-Bassyouni G T. Fabrication and characterization of bioactive glass (45S5)/titania biocomposites. Ceramics International, 2009, 35(5): 1991-1997

DOI

7
Guo H B, Miao X, Chen Y, Cheang P, Khor K A. Characterization of hydroxyapatite- and bioglass-316L fibre composites prepared by spark plasma sintering. Materials Letters, 2004, 58(3-4): 304-307

DOI

8
Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56-58

DOI

9
Popov V N. Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports, 2004, 43(3): 61-102

DOI

10
Baughman R H, Zakhidov A A, de Heer W A. Carbon Nanotubes—the route toward applications. Science, 2002, 297(5582): 787-792

DOI

11
Meyyappan M. Carbon nanotubes: Science and Applications. Florida: CRC Press, 2004, 321-325

12
Wijewardane S. Potential applicability of CNT and CNT/composites to implement ASEC concept: a review article. Solar Energy, 2009, 83(8): 1379-1389

DOI

13
Esawi A M K, Morsi K, Sayed A, Gawad A A, Borah P. Fabrication and properties of dispersed carbon nanotube-aluminum composites. Materials Science and Engineering A, 2009, 508(1-2): 167-173

DOI

14
Zhao C, Hu G, Justice R, Schaefer D W, Zhang S, Yang M, Han C C. Synthesis and characterization of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer, 2005, 46(14): 5125-5132

DOI

15
Cha S I, Kim K T, Lee K H, Mo C B, Hong S H. Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. Scripta Materialia, 2005, 53(7): 793-797

DOI

16
Dai P Q, Xu W C, Huang Q Y. Mechanical properties and microstructure of nanocrystalline nickel-carbon nanotube composites produced by electrodeposition. Materials Science and Engineering A, 2008, 483-484: 172-174

DOI

17
Mukhopadhyay A, Chu B T T, Green M L H, Todd R I. Understanding the mechanical reinforcement of uniformly dispersed multiwalled carbon nanotubes in alumino-borosilicate glass ceramic. Acta Materialia, 2010, 58(7): 2685-2697

DOI

18
Mazaheri M, Mari D, Hesabi Z R, Schaller R, Fantozzi G. Multi-walled carbon nanotube/nanostructured zirconia composites: outstanding mechanical properties in a wide range of temperature. Composites Science and Technology, 2011, 71(7): 939-945

DOI

19
Hulbert D M, Anders A, Dudina D V, Andersson J, Jiang D, Unuvar C, Anselmi-Tamburini U, Lavernia E J, Mukherjee A K. The absence of plasma in “spark plasma sintering”. Journal of Applied Physics, 2008, 104(3): 033305-033307

DOI

20
Lin K, Chang J, Liu Z, Zeng Y, Shen R. Fabrication and characterization of 45S5 bioglass reinforced macroporous calcium silicate bioceramics. Journal of the European Ceramic Society, 2009, 29(14): 2937-2943

DOI

21
Tjong S C. Carbon Nanotube Reinforced Composites: Metals and Ceramic Materials. Weinheim: Wiley-VCH, 2009, 185-187

Outlines

/