RESEARCH ARTICLE

An investigation of the CH3OH and CO selectivity of CO2 hydrogenation over Cu–Ce–Zr catalysts

  • Weiwei Wang , 1 ,
  • Xiaoyu Zhang 2 ,
  • Min Guo 1 ,
  • Jianan Li 3 ,
  • Chong Peng , 4
Expand
  • 1. School of Life Science and Chemistry, MinNan Science and Technology University, Quanzhou 362332, China
  • 2. Sinochem Quanzhou Petrochemical Co., Ltd., Quanzhou 362100, China
  • 3. School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
  • 4. Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 20 Sep 2021

Accepted date: 31 Jan 2022

Published date: 15 Jun 2022

Copyright

2022 Higher Education Press

Abstract

A series of Cu–Ce–Zr catalysts with different Ce contents are applied to the hydrogenation of CO2 to CO/CH3OH products. The Cu–Ce–Zr catalyst with 2 wt% Ce loading shows higher CO selectivity (SCO = 0.0%–87.8%) from 200–300 °C, while the Cu–Ce–Zr catalyst with 8 wt% Ce loading presents higher CO2 conversion ( X C O2 = 5.4%–15.6%) and CH3OH selectivity ( S C H3OH = 97.8%–40.6%). The number of hydroxyl groups and solid solution nature play a significant role in changing the reaction pathway. The solid solution enhances the CO2 adsorption ability. At the CO2 adsorption step, a larger number of hydroxyl groups over the Cu–Ce–Zr catalyst with 8 wt% Ce loading leads to the production of H-containing adsorption species. At the CO2 hydrogenation step, a larger number of hydroxyl groups assists in encouraging the further hydrogenation of intermediate species to CH3OH and improving the hydrogenation rate. Hence, the Cu–Ce–Zr catalyst with 8 wt% Ce loading favors CH3OH selectivity and CO2 activation, while CO is preferred on the Cu–Ce–Zr catalyst with 2 wt% Ce loading, a smaller number of hydroxyl groups and a solid solution nature. Additionally, high-pressure in situ diffuse reflectance infrared Fourier transform spectroscopy shows that CO is produced from formate decomposition and that both monodentate formate and bidentate formate are active intermediate species of CO2 hydrogenation to CH3OH.

Cite this article

Weiwei Wang , Xiaoyu Zhang , Min Guo , Jianan Li , Chong Peng . An investigation of the CH3OH and CO selectivity of CO2 hydrogenation over Cu–Ce–Zr catalysts[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(6) : 950 -962 . DOI: 10.1007/s11705-022-2162-2

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant No. 22122807), Education and Scientific Research Project of Young and Middle-aged Teachers in Fujian Province (Science and Technology, JAT200979), National and Provincial College Students’ Innovation and Entrepreneurship Training Plan (Grant No. 202112992003), Doctoral Initiation Fund for Liaoning (Grant No. 2019-BS-054), Liao Ning Revitalization Talents Program (Grant No. XLYC1807245) and Natural Science Foundation of Shanghai (Grant No. 21ZR1425700).
1
ZhouW, ChengK, KangJ C, ZhouC, SubramanianV, ZhangQ H, WangY. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chemical Society Reviews, 2019, 48( 12): 3193– 3228

DOI

2
NieX, Jiang X, WangH Z, LuoW J, JanikM J, ChenY G, GuoX W, SongC S. Mechanistic understanding of alloy effect and water promotion for Pd-Cu bimetallic catalysts in CO2 hydrogenation to methanol. ACS Catalysis, 2018, 8( 6): 4873– 4892

DOI

3
LiuX M, BaiS F, ZhuangH D, YanZ F. Preparation of Cu/ZrO2 catalysts for methanol synthesis from CO2/H2. Frontiers of Chemical Science and Engineering, 2012, 6( 1): 47– 52

DOI

4
KattelS, LiuP, Chen J G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. Journal of the American Chemical Society, 2017, 139( 29): 9739– 9754

DOI

5
StangelandK, NavarroH H, HuynhH L, TuchoW M, YuZ X. Tuning the interfacial sites between copper and metal oxides (Zn, Zr, In) for CO2 hydrogenation to methanol. Chemical Engineering Science, 2021, 238 : 116603

DOI

6
ZhuC, Wei X, LiW, PuY, Sun J F, TangK L, WanH Q, GeC Y, ZouW X, DongL. Crystal-plane effects of CeO2{110} and CeO2{100} on photocatalytic CO2 reduction: synergistic interactions of oxygen defects and hydroxyl groups. ACS Sustainable Chemistry & Engineering, 2020, 8( 38): 14397– 14406

DOI

7
PanY X, LiuC J, GeQ F. Effect of surface hydroxyls on selective CO2 hydrogenation over Ni4/gamma-Al2O3: a density functional theory study. Journal of Catalysis, 2010, 272( 2): 227– 234

DOI

8
YangC S, MuR T, WangG S, SongJ M, TianH, ZhaoZ J, GongJ L. Hydroxyl-mediated ethanol selectivity of CO2 hydrogenation. Chemical Science (Cambridge), 2019, 10( 11): 3161– 3167

DOI

9
PengY H, WangL B, CaoY, Dai Y Z, LiZ L, LiH L, ZhengX S, YanW S, YangJ L, ZengJ. Molecular-level insight into how hydroxyl groups boost catalytic activity in CO2 hydrogenation into methanol. Chem, 2018, 4( 3): 613– 625

DOI

10
JangamA, HongmanoromP, WaiM H, PoerjotoA J, XiS B, BorgnaA, KawiS. CO2 hydrogenation to methanol over partially reduced Cu–SiO2P catalysts: the crucial role of hydroxyls for methanol selectivity. ACS Applied Energy Materials, 2021, 4( 11): 12149– 12162

DOI

11
XuX L, LiuL, Tong Y Y, FangX Z, XuJ W, JiangD, WangX. Facile Cr3+ doping strategy dramatically promoting Ru/CeO2 for low-temperature CO2 methanation: unraveling the roles of surface oxygen vacancies and hydroxyl groups. ACS Catalysis, 2021, 11( 9): 5762– 5775

DOI

12
WangY H, GaoW H, LiK Z, NaW, Chen J G, WangH. Strong evidence of the role of H2O in affecting methanol selectivity from CO2 hydrogenation over Cu–ZnO–ZrO2. Chem, 2020, 6( 2): 419– 430

DOI

13
ZhangR G, WangB J, LiuH Y, LingL X. Effect of surface hydroxyls on CO2 hydrogenation over Cu/γ-Al2O3 catalyst: a theoretical study. Journal of Physical Chemistry C, 2011, 115( 40): 19811– 19818

DOI

14
KattelS, YanB, Yang Y, ChenJ G, LiuP. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper. Journal of the American Chemical Society, 2016, 138( 38): 12440– 12450

DOI

15
SunX, Gong C, LvG, BinF, Song C L. Effect of Ce/Zr molar ratio on the performance of CuCexZr1−x/TiO2 catalyst for selective catalytic reduction of NOx with NH3 in diesel exhaust. Materials Research Bulletin, 2014, 60 : 341– 347

DOI

16
JeongD, JangW, NaH, Shim J O, JhaA, RohH S. Comparative study on cubic and tetragonal Cu–CeO2–ZrO2 catalysts for water gas shift reaction. Journal of Industrial and Engineering Chemistry, 2015, 27 : 35– 39

DOI

17
XiX Y, ZengF, ZhangH, WuX F, RenJ, Bisswanger T, StampferC, HofmannJ P, PalkovitsR, HeeresH J. CO2 hydrogenation to higher alcohols over K-promoted bimetallic Fe–In catalysts on a Ce–ZrO2 support. ACS Sustainable Chemistry & Engineering, 2021, 9( 18): 6235– 6249

DOI

18
FuG, Mao D, SunS, ZhiJ Y, YangQ. Preparation, characterization and CO oxidation activity of Cu–Ce–Zr mixed oxide catalysts via facile dry oxalate-precursor synthesis. Journal of Industrial and Engineering Chemistry, 2015, 31 : 283– 290

DOI

19
BacarizaM C, GraçaI, LopesJ M, HenriquesC. Ni–Ce/Zeolites for CO2 hydrogenation to CH4: effect of the metal incorporation order. ChemCatChem, 2018, 10( 13): 2773– 2781

DOI

20
Martínez-AriasA. Redox interplay at copper oxide-(Ce,Zr)Ox interfaces: influence of the presence of NO on the catalytic activity for CO oxidation over CuO/CeZrO4. Journal of Catalysis, 2003, 214( 2): 261– 272

DOI

21
AcuñaL M, FuentesR O, FantiniM C A, LamasD G. Structural studies of mesoporous ZrO2–CeO2 and ZrO2–CeO2/SiO2 mixed oxides for catalytical applications. Journal of Alloys and Compounds, 2016, 671 : 396– 402

DOI

22
YangB, DengW, GuoL M, IshiharaT. Copper-ceria solid solution with improved catalytic activity for hydrogenation of CO2 to CH3OH. Chinese Journal of Catalysis, 2020, 41( 9): 1348– 1359

DOI

23
RodriguezJ A, MaS, Liu P, HrbekJ, EvansJ, PérezM. Activity of CeOx and TiOx nanoparticles grown on Au (111) in the water-gas shift reaction. Science, 2007, 318( 5857): 1757– 1759

DOI

24
L’hospitalV, AngeloL, ZimmermannY, ParkhomenkoK, RogerA C. Influence of the Zn/Zr ratio in the support of a copper-based catalyst for the synthesis of methanol from CO2. Catalysis Today, 2021, 369 : 95– 104

DOI

25
ZengS H, ZhangX H, FuX J, ZhangL, SuH Q, PanH. Co/CexZr1−xO2 solid-solution catalysts with cubic fluorite structure for carbon dioxide reforming of methane. Applied Catalysis B: Environmental, 2013, 136-137 : 308– 316

DOI

26
PrymakI, KalevaruV N, WohlrabS, MartinA. Continuous synthesis of diethyl carbonate from ethanol and CO2 over Ce–Zr–O catalysts. Catalysis Science & Technology, 2015, 5( 4): 2322– 2331

DOI

27
MariaM, PatrickD C, JacquesA, SimeonC, MichaelT, MaríaE, StephanieO. Tailoring physicochemical and electrical properties of Ni/CeZrOx doped catalysts for high efficiency of plasma catalytic CO2 methanation. Applied Catalysis B: Environmental, 2021, 294 : 120233

DOI

28
WangW, GongJ L. Methanation of carbon dioxide: an overview. Frontiers of Chemical Science and Engineering, 2011, 5( 1): 2– 10

DOI

29
CuiY, Xu L L, ChenM D, LianX B, WuC E, YangB, MiaoZ C, WangF G, HuX. Facilely fabricating mesoporous nanocrystalline Ce–Zr solid solution supported CuO-based catalysts with advanced low-temperature activity toward CO oxidation. Catalysis Science & Technology, 2019, 9( 20): 5605– 5625

DOI

30
PuT C, ShenL, XuJ, Peng C, ZhuM H. Revealing the dependence of CO2 activation on hydrogen dissociation ability over supported nickel catalysts. AIChE Journal. American Institute of Chemical Engineers, 2021, 68( 1): 17458

31
JungK D, BellA T. Role of hydrogen spillover in methanol synthesis over Cu/ZrO2. Journal of Catalysis, 2021, 193( 2): 207– 223

DOI

32
GuoH J, LiQ L, ZhangH R, PengF, XiongL, YaoS M, HuangC, ChenX D. CO2 hydrogenation over acid-activated Attapulgite/Ce0.75Zr0.25O2 nanocomposite supported Cu–ZnO based catalysts. Molecular Catalysis, 2019, 476 : 110499

DOI

33
DongapureP, BagchiS, MayadeviS, DeviR N. Variations in activity of Ru/TiO2 and Ru/Al2O3 catalysts for CO2 hydrogenation: an investigation by in-situ infrared spectroscopy studies. Molecular Catalysis, 2019, 482 : 110700

DOI

34
KarelovicA, RuizP. CO2 hydrogenation at low temperature over Rh/ gamma-Al2O3 catalysts: effect of the metal particle size on catalytic performances and reaction mechanism. Applied Catalysis B: Environmental, 2012, 113( 12): 237– 249

DOI

35
LuoM, Ma J, LuJ, SongY, WangY. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation. Journal of Catalysis, 2007, 246( 1): 52– 59

DOI

36
NomuraN, TagawaT, GotoS. In situ FTIR study on hydrogenation of carbon dioxide over titania-supported copper catalysts. Applied Catalysis A: General, 1998, 166( 2): 321– 326

DOI

37
KarelovicA, RuizP. The role of copper particle size in low pressure methanol synthesis via CO2 hydrogenation over Cu/ZnO catalysts. Catalysis Science & Technology, 2015, 5( 2): 869– 881

DOI

38
ZhuJ, Zhang G H, LiW H, ZhangX B, DingF S, SongC S, GuoX W. Deconvolution of the particle size effect on CO2 hydrogenation over iron-based catalysts. ACS Catalysis, 2020, 10( 13): 7424– 7433

DOI

39
HaoZ E, ShenJ D, LinS X, HanX Y, ChangX, LiuJ, Li M S, MaX B. Decoupling the effect of Ni particle size and surface oxygen deficiencies in CO2 methanation over ceria supported Ni. Applied Catalysis B: Environmental, 2021, 286 : 119922

DOI

40
ChoiH, OhS Y, TranS B T, ParkJ Y. Size-controlled model Ni catalysts on Ga2O3 for CO2 hydrogenation to methanol. Journal of Catalysis, 2019, 376 : 68– 76

DOI

41
ChoiH, OhS Y, ParkJ Y. High methane selective Pt cluster catalyst supported on Ga2O3 for CO2 hydrogenation. Catalysis Today, 2020, 352 : 212– 219

DOI

42
Naumannd’Alnoncourt R, XiaX, Strunk J, LofflerE, HinrichsenO, MuhleM. The influence of strongly reducing conditions on strong metal-support interactions in Cu/ZnO catalysts used for methanol synthesis. Physical Chemistry Chemical Physics, 2006, 8( 13): 1525– 1538

DOI

43
LiS W, XuY, Chen Y F, LiW Z, LinL L, LiM Z, DengY C, WangX P, GeB H, YangC. . Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with a strong metal-support interaction. Angewandte Chemie International Edition, 2017, 56( 36): 10761– 10765

DOI

44
ZhouX W, QuJ, Xu F, HuJ P, FoordJ S, ZengZ Y, HongX L, TsangS C E. Shape selective plate-form Ga2O3 with strong metal-support interaction to overlying Pd for hydrogenation of CO2 to CH3OH. Chemical Communications, 2013, 49( 17): 1747– 1749

DOI

45
TranS B T, ChoiH, OhS Y, ParkJ Y. Influence of support acidity of Pt/Nb2O5 catalysts on selectivity of CO2 hydrogenation. Catalysis Letters, 2019, 149( 10): 2823– 2835

DOI

46
GaoP, Li F, ZhanH J, ZhaoN, XiaoF K, WeiW, Zhong L S, WangH, SunY H. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Journal of Catalysis, 2013, 298 : 51– 60

DOI

Outlines

/