REVIEW ARTICLE

Membrane bioreactors for hospital wastewater treatment: recent advancements in membranes and processes

  • Yan Zhao 1 ,
  • Yangbo Qiu 2 ,
  • Natalie Mamrol 3 ,
  • Longfei Ren 2 ,
  • Xin Li 1 ,
  • Jiahui Shao , 2 ,
  • Xing Yang , 1 ,
  • Bart van der Bruggen , 1
Expand
  • 1. Department of Chemical Engineering, KU Leuven, B-3001 Leuven, Belgium
  • 2. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received date: 22 Jun 2021

Accepted date: 15 Aug 2021

Published date: 15 May 2022

Copyright

2021 Higher Education Press

Abstract

Discharged hospital wastewater contains various pathogenic microorganisms, antibiotic groups, toxic organic compounds, radioactive elements, and ionic pollutants. These contaminants harm the environment and human health causing the spread of disease. Thus, effective treatment of hospital wastewater is an urgent task for sustainable development. Membranes, with controllable porous and nonporous structures, have been rapidly developed for molecular separations. In particular, membrane bioreactor (MBR) technology demonstrated high removal efficiency toward organic compounds and low waste sludge production. To further enhance the separation efficiency and achieve material recovery from hospital waste streams, novel concepts of MBRs and their applications are rapidly evolved through hybridizing novel membranes (non hydrophilic ultrafiltration/microfiltration) into the MBR units (hybrid MBRs) or the MBR as a pretreatment step and integrating other membrane processes as subsequent secondary purification step (integrated MBR-membrane systems). However, there is a lack of reviews on the latest advancement in MBR technologies for hospital wastewater treatment, and analysis on its major challenges and future trends. This review started with an overview of main pollutants in common hospital wastewater, followed by an understanding on the key performance indicators/criteria in MBR membranes (i.e., solute selectivity) and processes (e.g., fouling). Then, an in-depth analysis was provided into the recent development of hybrid MBR and integrated MBR-membrane system concepts, and applications correlated with wastewater sources, with a particular focus on hospital wastewaters. It is anticipated that this review will shed light on the knowledge gaps in the field, highlighting the potential contribution of hybrid MBRs and integrated MBR-membrane systems toward global epidemic prevention.

Cite this article

Yan Zhao , Yangbo Qiu , Natalie Mamrol , Longfei Ren , Xin Li , Jiahui Shao , Xing Yang , Bart van der Bruggen . Membrane bioreactors for hospital wastewater treatment: recent advancements in membranes and processes[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(5) : 634 -660 . DOI: 10.1007/s11705-021-2107-1

Acknowledgments

Yan Zhao would like to acknowledge the support provided by the China Scholarship Council (CSC) of the Ministry of Education, China (CSC No. 201708330281).
1
Wolfel R, Corman V M, Guggemos W, Seilmaier M, Zange S, Muller M A, Niemeyer D, Jones T C, Vollmar P, Rothe C, . Virological assessment of hospitalized patients with COVID-2019. Nature, 2020, 581(7809): 465–469

DOI

2
Wu F, Zhao S, Yu B, Chen Y M, Wang W, Song Z G, Hu Y, Tao Z W, Tian J H, Pei Y Y, . A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798): 265–269

DOI

3
Wu J T, Leung K, Bushman M, Kishore N, Niehus R, de Salazar P M, Cowling B J, Lipsitch M, Leung G M. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nature Medicine, 2020, 26(4): 506–510

DOI

4
Qu G, Li X, Hu L, Jiang G. An imperative need for research on the role of environmental factors in transmission of novel coronavirus (COVID-19). Environmental Science & Technology, 2020, 54(7): 3730–3732

DOI

5
Liu Y, Gu P, Yang Y, Jia L, Zhang M, Zhang G. Removal of radioactive iodide from simulated liquid waste in an integrated precipitation reactor and membrane separator (PR-MS) system. Separation and Purification Technology, 2016, 171: 221–228

DOI

6
Feng X, Zong Z, Elsaidi S K, Jasinski J B, Krishna R, Thallapally P K, Carreon M A. Kr/Xe separation over a chabazite zeolite membrane. Journal of the American Chemical Society, 2016, 138(31): 9791–9794

DOI

7
Liu Y J, Lo S L, Liou Y H, Hu C Y. Removal of nonsteroidal anti-inflammatory drugs (NSAIDs) by electrocoagulation-flotation with a cationic surfactant. Separation and Purification Technology, 2015, 152: 148–154

DOI

8
Xu Y, Li X, Zhu B, Liang H, Fang C, Gong Y, Guo Q, Sun X, Zhao D, Shen J, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nature Medicine, 2020, 26(4): 502–505

DOI

9
Luo Y, Feng L, Liu Y, Zhang L. Disinfection by-products formation and acute toxicity variation of hospital wastewater under different disinfection processes. Separation and Purification Technology, 2020, 238: 116405

DOI

10
Liu Q, Zhou Y, Chen L, Zheng X. Application of MBR for hospital wastewater treatment in China. Desalination, 2010, 250(2): 605–608

DOI

11
Gautam A K, Kumar S, Sabumon P C. Preliminary study of physico-chemical treatment options for hospital wastewater. Journal of Environmental Management, 2007, 83(3): 298–306

DOI

12
Watson K, Shaw G, Leusch F D, Knight N L. Chlorine disinfection by-products in wastewater effluent: bioassay-based assessment of toxicological impact. Water Research, 2012, 46(18): 6069–6083

DOI

13
Chen W, Su Y, Peng J, Zhao X, Jiang Z, Dong Y, Zhang Y, Liang Y, Liu J. Efficient wastewater treatment by membranes through constructing tunable antifouling membrane surfaces. Environmental Science & Technology, 2011, 45(15): 6545–6552

DOI

14
Zhao Y, Liu Y, Wang C, Ortega E, Wang X, Xie Y F, Shen J, Gao C, Van der Bruggen B. Electric field-based ionic control of selective separation layers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(8): 4244–4251

DOI

15
Tang Y P, Luo L, Thong Z, Chung T S. Recent advances in membrane materials and technologies for boron removal. Journal of Membrane Science, 2017, 541: 434–446

DOI

16
Nunes S P, Culfaz-Emecen P Z, Ramon G Z, Visser T, Koops G H, Jin W, Ulbricht M. Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes. Journal of Membrane Science, 2020, 598: 117761

DOI

17
Li X, Mo Y, Qing W, Shao S, Tang C Y, Li J. Membrane-based technologies for lithium recovery from water lithium resources: a review. Journal of Membrane Science, 2019, 591: 117317

DOI

18
Li P, Wang Z, Qiao Z, Liu Y, Cao X, Li W, Wang J, Wang S. Recent developments in membranes for efficient hydrogen purification. Journal of Membrane Science, 2015, 495: 130–168

DOI

19
Uliana A A, Bui N T, Kamcev J, Taylor M K, Urban J J, Long J R. Ion-capture electrodialysis using multifunctional adsorptive membranes. Science, 2021, 372(6539): 296–299

DOI

20
Chaudhry R M, Nelson K L, Drewes J E. Mechanisms of pathogenic virus removal in a full-scale membrane bioreactor. Environmental Science & Technology, 2015, 49(5): 2815–2822

DOI

21
Bodzek M, Konieczny K, Rajca M. Membranes in water and wastewater disinfection—review. Archives of Environmental Protection, 2019, 45: 3–18

22
Vieira W T, de Farias M B, Spaolonzi M P, Carlos da Silva M G, Adeodato Vieira M G. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review. Environmental Chemistry Letters, 2020, 18(4): 1113–1143

DOI

23
Bradshaw J L, Ashoori N, Osorio M, Luthy R G. Modelingcost, energy, and total organic carbon trade-offs for stormwater spreading basin systems receiving recycled water produced using membrane-based, ozone-based, and hybrid advanced treatment trains. Environmental Science & Technology, 2019, 53(6): 3128–3139

DOI

24
Carolin C F, Kumar P S, Joshiba G J, Kumar V V. Analysis and removal of pharmaceutical residues from wastewater using membrane bioreactors: a review. Environmental Chemistry Letters, 2021, 19(1): 329–343

DOI

25
Yin X, Li J, Li X, Hua Z, Wang X, Ren Y. Self-generated electric field to suppress sludge production and fouling development in a membrane bioreactor for wastewater treatment. Chemosphere, 2020, 261: 128046

DOI

26
Hu Y, Cheng H, Ji J, Li Y Y. A review of anaerobic membrane bioreactors for municipal wastewater treatment with a focus on multicomponent biogas and membrane fouling control. Environmental Science. Water Research & Technology, 2020, 6(10): 2641–2663

DOI

27
Tiwari B, Sellamuthu B, Piche-Choquette S, Drogui P, Tyagi R D, Vaudreuil M A, Sauve S, Buelna G, Dube R. Acclimatization of microbial community of submerged membrane bioreactor treating hospital wastewater. Bioresource Technology, 2021, 319: 124223

DOI

28
Taoufik N, Boumya W, Janani F Z, Elhalil A, Mahjoubi F Z, Barka N. Removal of emerging pharmaceutical pollutants: a systematic mapping study review. Journal of Environmental Chemical Engineering, 2020, 8(5): 104251

DOI

29
Qin L, Gao M, Zhang M, Feng L, Liu Q, Zhang G. Application of encapsulated algae into MBR for high-ammonia nitrogen wastewater treatment and biofouling control. Water Research, 2020, 187: 116430

DOI

30
Xu Z, Song X, Xie M, Wang Y, Huda N, Li G, Luo W. Effects of surfactant addition to draw solution on the performance of osmotic membrane bioreactor. Journal of Membrane Science, 2021, 618: 118634

DOI

31
Wang S, Chew J W, Liu Y. Development of an integrated aerobic granular sludge MBR and reverse osmosis process for municipal wastewater reclamation. Science of the Total Environment, 2020, 748: 141309

DOI

32
Song W, Xu D, Bi X, Ng H Y, Shi X. Intertidal wetland sediment as a novel inoculation source for developing aerobic granular sludge in membrane bioreactor treating high-salinity antibiotic manufacturing wastewater. Bioresource Technology, 2020, 314: 123715

DOI

33
Pervez M N, Balakrishnan M, Hasan S W, Choo K H, Zhao Y, Cai Y, Zarra T, Belgiorno V, Naddeo V. A critical review on nanomaterials membrane bioreactor (NMs-MBR) for wastewater treatment. npj Clean Water, 2020, 3: 43

34
Verlicchi P, Galletti A, Petrovic M, Barceló D. Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. Journal of Hydrology, 2010, 389(3-4): 416–428

DOI

35
Wiedenheft B, Sternberg S H, Doudna J A. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012, 482(7385): 331–338

DOI

36
Paez-Espino D, Eloe-Fadrosh E A, Pavlopoulos G A, Thomas A D, Huntemann M, Mikhailova N, Rubin E, Ivanova N N, Kyrpides N C. Uncovering Earth’s virome. Nature, 2016, 536(7617): 425–430

DOI

37
Schulz F, Roux S, Paez-Espino D, Jungbluth S, Walsh D A, Denef V J, McMahon K D, Konstantinidis K T, Eloe-Fadrosh E A, Kyrpides N C, . Giant virus diversity and host interactions through global metagenomics. Nature, 2020, 578(7795): 432–436

DOI

38
Casanova L, Rutala W A, Weber D J, Sobsey M D. Survival of surrogate coronaviruses in water. Water Research, 2009, 43(7): 1893–1898

DOI

39
Carraro E, Bonetta S, Bertino C, Lorenzi E, Bonetta S, Gilli G. Hospital effluents management: chemical, physical, microbiological risks and legislation in different countries. Journal of Environmental Management, 2016, 168: 185–199

DOI

40
Hai F, Riley T, Shawkat S, Magram S, Yamamoto K. Removal of pathogens by membrane bioreactors: a review of the mechanisms, influencing factors and reduction in chemical disinfectant dosing. Water, 2014, 6(12): 3603–3630

DOI

41
Yates M V. Adenovirus. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 471–477

42
Elmahdy E M, Ahmed N I, Shaheen M N F, Mohamed E C B, Loutfy S A. Molecular detection of human adenovirus in urban wastewater in Egypt and among children suffering from acute gastroenteritis. Journal of Water and Health, 2019, 17(2): 287–294

DOI

43
Yates M V. Astroviruses. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 479–491

44
He X Q, Cheng L, Zhang D Y, Xie X M, Wang D H, Wang Z. One-year monthly survey of rotavirus, astrovirus and norovirus in three sewage treatment plants in Beijing, China and associated health risk assessment. Water Science and Technology, 2011, 63(1): 191–198

DOI

45
Wathore R, Gupta A, Bherwani H, Labhasetwar N. Understanding air and water borne transmission and survival of coronavirus: insights and way forward for SARS-CoV-2. Science of the Total Environment, 2020, 749: 141486

DOI

46
Kataki S, Chatterjee S, Vairale M G, Sharma S, Dwivedi S K. Concerns and strategies for wastewater treatment during COVID-19 pandemic to stop plausible transmission. Resources, Conservation and Recycling, 2021, 164: 105156

DOI

47
Yates M V. Enterovirus. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 493–504

48
La Rosa G, Pourshaban M, Iaconelli M, Muscillo M. Quantitative real-time PCR of enteric viruses in influent and effluent samples from wastewater treatment plants in Italy. Environmental Issues of Health Concern, 2010, 46: 266–273

49
Yates M V. Hepatitis A Virus (HAV). In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 505–513

50
Yates M V. Norovirus. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 515–522

51
Okoh A I, Sibanda T, Gusha S S. Inadequately treated wastewater as a source of human enteric viruses in the environment. International Journal of Environmental Research and Public Health, 2010, 7(6): 2620–2637

DOI

52
Yates M V. Emerging Viruses. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 529–533

53
Ibrahim C, Hammami S, Chérif N, Mejri S, Pothier P, Hassen A. Detection of sapoviruses in two biological lines of Tunisian hospital wastewater treatment. International Journal of Environmental Research and Public Health, 2019, 29(4): 400–413

DOI

54
Chalmers R M. Cryptosporidium. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 287–326

55
Jiang W, Roellig D M, Li N, Wang L, Guo Y, Feng Y, Xiao L. Contribution of hospitals to the occurrence of enteric protists in urban wastewater. Parasitology Research, 2020, 119(9): 3033–3040

DOI

56
Chalmers R M. Entamoeba histolytica. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 355–373

57
Berglund B, Dienus O, Sokolova E, Berglind E, Matussek A, Pettersson T, Lindgren P E. Occurrence and removal efficiency of parasitic protozoa in Swedish wastewater treatment plants. Science of the Total Environment, 2017, 598: 821–827

DOI

58
Robertson L J. Giardia duodenalis. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 375–405

59
Percival S L, Williams D W. Campylobacter. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 65–78

60
Rinsoz T, Hilfiker S, Oppliger A. Quantification of thermotolerant campylobacter in Swiss water treatment plants, by real-time quantitative polymerase chain reaction. Water Environment Research, 2009, 81(9): 929–933

DOI

61
Percival S L, Williams D W. Escherichia coli. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier. 2014, 89–117

62
Kristanto G A, Koven W. Preliminary study of antibiotic resistant Escherichia coli in hospital wastewater treatment plants in Indonesia. International Journal of Technology, 2019, 10(4): 765

DOI

63
Percival S L, Williams D W. Legionella. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 155–175

64
Huang S W, Hsu B M, Ma P H, Chien K T. Legionella prevalence in wastewater treatment plants of Taiwan. Water Science and Technology, 2009, 60(5): 1303–1310

DOI

65
Nuñez L, Moretton J. Disinfectant-resistant bacteria in Buenos Aires city hospital wastewater. Brazilian Journal of Microbiology, 2007, 38(4): 644–648

DOI

66
Percival S L, Williams D W. Salmonella. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 209–222

67
Fekadu S, Merid Y, Beyene H, Teshome W, Gebre-Selassie S. Assessment of antibiotic- and disinfectant-resistant bacteria in hospital wastewater, south Ethiopia: a cross-sectional study. Journal of Infection in Developing Countries, 2015, 9(02): 149–156

DOI

68
Tsai C T, Lai J S, Lin S T. Quantification of pathogenic micro-organisms in the sludge from treated hospital wastewater. Journal of Applied Microbiology, 1998, 85(1): 171–176

DOI

69
Percival S L, Williams D W. Shigella. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 223–236

70
Percival S L, Williams D W. Vibrio. In: Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier, 2014, 237–248

71
Nongogo V, Okoh A. Occurrence of vibrio pathotypes in the final effluents of five waste water treatment plants in Amathole and Chris Hani District Municipalities in South Africa. International Journal of Environmental Research and Public Health, 2014, 11(8): 7755–7766

DOI

72
Leekha S, Terrell C L, Edson R S. General principles of antimicrobial therapy. Mayo Clinic Proceedings, 2011, 86(2): 156–167

DOI

73
Singer A C, Jarhult J D, Grabic R, Khan G A, Lindberg R H, Fedorova G, Fick J, Bowes M J, Olsen B, Soderstrom H. Intra- and inter-pandemic variations of antiviral, antibiotics and decongestants in wastewater treatment plants and receiving rivers. PLoS One, 2014, 9(9): 108621

DOI

74
Senta I, Kostanjevecki P, Krizman-Matasic I, Terzic S, Ahel M. Occurrence and behavior of macrolide antibiotics in municipal wastewater treatment: possible importance of metabolites, synthesis byproducts, and transformation products. Environmental Science & Technology, 2019, 53(13): 7463–7472

DOI

75
Zhang H C, Zhang M Q, Yuan L, Zhang X, Sheng G P. Synergistic effect of permanganate and in situ synthesized hydrated manganese oxide for removing antibiotic resistance genes from wastewater treatment plant effluent. Environmental Science & Technology, 2019, 53(22): 13374–13381

DOI

76
Nannou C, Ofrydopoulou A, Evgenidou E, David H, Heath E, Lambropoulou D. Antiviral drugs in aquatic environment and wastewater treatment plants: a review on occurrence, fate, removal and ecotoxicity. Science of the Total Environment, 2020, 699: 134322

DOI

77
Frederic O, Yves P. Pharmaceuticals in hospital wastewater: their ecotoxicity and contribution to the environmental hazard of the effluent. Chemosphere, 2014, 115: 31–39

DOI

78
Prasse C, Schlusener M P, Ralf S, Ternes T A. Antiviral drugs in wastewater and surface waters: a new pharmaceutical class of environmental relevance? Environmental Science & Technology, 2010, 44(5): 1728–1735

DOI

79
Accinelli C, Sacca M L, Batisson I, Fick J, Mencarelli M, Grabic R. Removal of oseltamivir (Tamiflu) and other selected pharmaceuticals from wastewater using a granular bioplastic formulation entrapping propagules of Phanerochaete chrysosporium. Chemosphere, 2010, 81(3): 436–443

DOI

80
Slater F R, Singer A C, Turner S, Barr J J, Bond P L. Pandemic pharmaceutical dosing effects on wastewater treatment: no adaptation of activated sludge bacteria to degrade the antiviral drug oseltamivir (Tamiflu(R)) and loss of nutrient removal performance. FEMS Microbiology Letters, 2011, 315(1): 17–22

DOI

81
Fugere V, Hebert M P, da Costa N B, Xu C C Y, Barrett R D H, Beisner B E, Bell G, Fussmann G F, Shapiro B J, Yargeau V, Gonzalez A. Community rescue in experimental phytoplankton communities facing severe herbicide pollution. Nature Ecology & Evolution, 2020, 4(4): 578–588

DOI

82
Berendonk T U, Manaia C M, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Burgmann H, Sorum H, Norstrom M, Pons M N, . Tackling antibiotic resistance: the environmental framework. Nature Reviews. Microbiology, 2015, 13(5): 310–317

DOI

83
Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sànchez-Melsió A, Borrego C M, Barceló D, Balcázar J L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 2015, 69: 234–242

DOI

84
Wang Y, Wang X, Li M, Dong J, Sun C, Chen G. Removal of pharmaceutical and personal care products (PPCPs) from municipal waste water with integrated membrane systems, MBR-RO/NF. International Journal of Environmental Research and Public Health, 2018, 15(2): 269

DOI

85
Lien L, Hoa N, Chuc N, Thoa N, Phuc H, Diwan V, Dat N, Tamhankar A, Lundborg C. Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use-A one year study from Vietnam. International Journal of Environmental Research and Public Health, 2016, 13(6): 588

DOI

86
Kümmerer K. Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources: a review. Chemosphere, 2001, 45(6-7): 957–969

DOI

87
Kovalova L, Siegrist H, Singer H, Wittmer A, Mcardell C S. Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environmental Science & Technology, 2012, 46(3): 1536–1545

DOI

88
Moradali M F, Rehm B H A. Bacterial biopolymers: from pathogenesis to advanced materials. Nature Reviews. Microbiology, 2020, 18(4): 195–210

DOI

89
Reurink D M, Te Brinke E, Achterhuis I, Roesink H D W, de Vos W M. Nafion-based low-hydration polyelectrolyte multilayer membranes for enhanced water purification. ACS Applied Polymer Materials, 2019, 1(9): 2543–2551

DOI

90
Amaral-Zettler L A, Zettler E R, Mincer T J. Ecology of the plastisphere. Nature Reviews. Microbiology, 2020, 18(3): 139–151

DOI

91
Barry M C, Hristovski K, Westerhoff P. Membrane fouling by vesicles and prevention through ozonation. Environmental Science & Technology, 2014, 48(13): 7349–7356

DOI

92
Wang L, Li Y, Ben W, Hu J, Cui Z, Qu K, Qiang Z. In-situ sludge ozone-reduction process for effective removal of fluoroquinolone antibiotics in wastewater treatment plants. Separation and Purification Technology, 2019, 213: 419–425

DOI

93
Loeb S K, Alvarez P J J, Brame J A, Cates E L, Choi W, Crittenden J, Dionysiou D D, Li Q, Li-Puma G, Quan X, et al. The Technology horizon for photocatalytic water treatment: sunrise or sunset? Environmental Science & Technology, 2019, 53(6): 2937–2947

DOI

94
Lienert J, Koller M, Konrad J, McArdell C S, Schuwirth N. Multiple-criteria decision analysis reveals high stakeholder preference to remove pharmaceuticals from hospital wastewater. Environmental Science & Technology, 2011, 45(9): 3848–3857

DOI

95
Kosma C I, Lambropoulou D A, Albanis T A. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. Journal of Hazardous Materials, 2010, 179(1-3): 804–817

DOI

96
Gurung K, Ncibi M C, Thangaraj S K, Jänis J, Seyedsalehi M, Sillanpää M. Removal of pharmaceutically active compounds (PhACs) from real membrane bioreactor (MBR) effluents by photocatalytic degradation using composite Ag2O/P-25 photocatalyst. Separation and Purification Technology, 2019, 215: 317–328

DOI

97
Dong X, Ge Q. Metal ion-bridged forward osmosis membranes for efficient pharmaceutical wastewater reclamation. ACS Applied Materials & Interfaces, 2019, 11(40): 37163–37171

DOI

98
Kramer M, Scifoni E, Schuy C, Rovituso M, Tinganelli W, Maier A, Kaderka R, Kraft-Weyrather W, Brons S, Tessonnier T, et al. Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality. Medical Physics, 2016, 43(4): 1995–2004

DOI

99
Soyekwo F, Liu C, Zhao L, Wen H, Huang W, Cai C, Kanagaraj P, Hu Y. Nanofiltration membranes with metal cation-immobilized aminophosphonate networks for efficient heavy metal ion removal and organic dye degradation. ACS Applied Materials & Interfaces, 2019, 11(33): 30317–30331

DOI

100
Sepehr M N, Nasseri S, Zarrabi M, Samarghandi M R, Amrane A. Removal of Cr(III) from tanning effluent by Aspergillus niger in airlift bioreactor. Separation and Purification Technology, 2012, 96: 256–262

DOI

101
Saitoh T, Shibata K, Fujimori K, Ohtani Y. Rapid removal of tetracycline antibiotics from water by coagulation-flotation of sodium dodecyl sulfate and poly(allylamine hydrochloride) in the presence of Al(III) ions. Separation and Purification Technology, 2017, 187: 76–83

DOI

102
Zhao Y, Zhou C, Wang J, Liu H, Xu Y, Seo J W, Shen J, Gao C, Van der Bruggen B. Formation of morphologically confined nanospaces via self-assembly of graphene and nanospheres for selective separation of lithium. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(39): 18859–18864

DOI

103
Zhao Y, Qiu Y, Mai Z, Ortega E, Shen J, Gao C, van der Bruggen B. Symmetrically recombined nanofibers in a high-selectivity membrane for cation separation in high temperature and organic solvent. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(34): 20006–20012

DOI

104
Zhao Y, Tang K, Liu H, van der Bruggen B, Sotto Díaz A, Shen J, Gao C. An anion exchange membrane modified by alternate electro-deposition layers with enhanced monovalent selectivity. Journal of Membrane Science, 2016, 520: 262–271

DOI

105
Helmi A, Gallucci F. Latest developments in membrane (bio)reactors. Processes (Basel, Switzerland), 2020, 8(10): 1239

DOI

106
Gunder B, Krauth K. Replacement of secondary clarification by membrane separation-results with plate and hollow fibre modules. Water Science and Technology, 1998, 40(4-5): 311–320

DOI

107
Lv W, Xiang Z, Min Y, Yu Z, Ying L, Liu J. Virus removal performance and mechanism of a submerged membrane bioreactor. Process Biochemistry, 2006, 41(2): 299–304

DOI

108
Stuckey D C. Recent developments in anaerobic membrane reactors. Bioresource Technology, 2012, 122: 137–148

DOI

109
Ahmad A L, Abdulkarim A A, Ooi B S, Ismail S. Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chemical Engineering Journal, 2013, 223: 246–267

DOI

110
Meng F, Chae S R, Drews A, Kraume M, Shin H S, Yang F. Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Research, 2009, 43(6): 1489–1512

DOI

111
Samaei S M, Gato-Trinidad S, Ali A. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters: a review. Separation and Purification Technology, 2018, 200: 198–220

DOI

112
Mbaab C, Zzab C. Ceramic membrane technology for water and wastewater treatment: a critical review of performance, full-scale applications, membrane fouling and prospects. Chemical Engineering Journal, 2021, 418: 129418

113
Zhang S, Qu Y, Liu Y, Yang F, Yamada Y. Experimental study of domestic sewage treatment with a metal membrane bioreactor. Desalination, 2005, 177(1-3): 83–93

DOI

114
Xie Y H, Zhu T, Xu C H, Nozaki T, Furukawa K. Treatment of domestic sewage by a metal membrane bioreactor. Water Science and Technology, 2012, 65(6): 1102–1108

DOI

115
Dumée L, Li H, Bao L, Ailloux F M, Kong L. The fabrication and surface functionalization of porous metal frameworks—a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(48): 15185

DOI

116
Dlamini D S, Li J, Mamba B B. Critical review of montmorillonite/polymer mixed-matrix filtration membranes: possibilities and challenges. Applied Clay Science, 2019, 168: 21–30

DOI

117
Bilad M R, Marbelia L, Laine C, Vankelecom I. A PVC-silica mixed-matrix membrane (MMM) as novel type of membrane bioreactor (MBR) membrane. Journal of Membrane Science, 2015, 493: 19–27

DOI

118
Mathioudakis V L, Soares A, Briers H, Martin-Garcia I, Jefferson B. Treatment and energy efficiency of a granular sludge anaerobic membrane reactor handling domestic sewage. Procedia Engineering, 2012, 44: 1977–1979

DOI

119
Lin H J, Xie K, Mahendran B, Ba Gley D M, Leung K T, Liss S N, Liao B Q. Sludge properties and their effects on membrane fouling in submerged anaerobic membrane bioreactors (SAnMBRs). Water Research, 2009, 43(15): 3827–3837

DOI

120
Lin H, Chen J, Wang F, Ding L, Hong H. Feasibility evaluation of submerged anaerobic membrane bioreactor for municipal secondary wastewater treatment. Desalination, 2011, 280(1-3): 120–126

DOI

121
Chen R, Nie Y, Kato H, Wu J, Utashiro T, Lu J, Yue S, Jiang H, Zhang L, Li Y Y. Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature. Bioresource Technology, 2017, 228: 69–76

DOI

122
Nie Y, Kato H, Sugo T, Hojo T, Tian X, Li Y Y. Effect of anionic surfactant inhibition on sewage treatment by a submerged anaerobic membrane bioreactor: efficiency, sludge activity and methane recovery. Chemical Engineering Journal, 2017, 315: 83–91

DOI

123
Hui C, Yutaka H, Toshimasa H, Li Y Y. Upgrading methane fermentation of food waste by using a hollow fiber type anaerobic membrane bioreactor. Bioresource Technology, 2018, 267: 386–394

DOI

124
Trzcinski A P, Stuckey D C. Continuous treatment of the organic fraction of municipal solid waste in an anaerobic two-stage membrane process with liquid recycle. Water Research, 2009, 43(9): 2449–2462

DOI

125
Akram A, Stuckey D C. Flux and performance improvement in a submerged anaerobic membrane bioreactor (SAMBR) using powdered activated carbon (PAC). Process Biochemistry, 2008, 43(1): 93–102

DOI

126
Nie Y, Chen R, Tian X, Li Y Y. Impact of water characteristics on the bioenergy recovery from sewage treatment by anaerobic membrane bioreactor via a comprehensive study on the response of microbial community and methanogenic activity. Energy, 2017, 139(15): 459–467

DOI

127
Jang D, Hwang Y, Shin H, Lee W. Effects of salinity on the characteristics of biomass and membrane fouling in membrane bioreactors. Bioresource Technology, 2013, 141: 50–56

DOI

128
Tan S, Cui C, Chen X, Li W. Effect of bioflocculation on fouling-related biofoulants in a membrane bioreactor during saline wastewater treatments. Bioresource Technology, 2017, 224: 285–291

DOI

129
Biesheuvel P M, Verweij H. Design of ceramic membrane supports: permeability, tensile strength and stress. Journal of Membrane Science, 1999, 156(1): 141–152

DOI

130
Sownya S A, Madhu G M, Raizada A, Madhusoodana C D. Studies on effective treatment of waste water using submerged ceramic membrane bioreactor. Materials Today: Proceedings, 2020, 24: 1251–1262

DOI

131
Trouve E, Urbain V, Manem J. Treatment of municipal wastewater by a membrane bioreactor: results of a semi-industrial pilot-scale study. Water Science and Technology, 1994, 30(4): 151–157

DOI

132
Zhang S, Yang F, Liu Y, Zhang X, Yamada Y, Furukawa K. Performance of a metallic membrane bioreactor treating simulated distillery wastewater at temperatures of 30 to 45 °C. Desalination, 2006, 194(1-3): 146–155

DOI

133
Reif R, Besancon A, Le Corre K, Jefferson B, Lema J M, Omil F.Comparison of PPCPs removal on a parallel-operated MBR and AS system and evaluation of effluent post-treatment on vertical flow reed beds. Water ence & Technology, 2011, 63: 2411–2417

134
Wang J, Wang S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. Journal of Environmental Management, 2016, 182: 620–640

DOI

135
Ng A, Kim A S. A mini-review of modeling studies on membrane bioreactor (MBR) treatment for municipal wastewaters. Desalination, 2007, 212(1-3): 261–281

DOI

136
Yurtsever A, Sahinkaya E, Akta Z, Uar D, Wang Z. Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater. Bioresource Technology, 2015, 192: 564–573

DOI

137
Smith A L, Stadler L B, Cao L, Love N G, Raskin L, Skerlos S J. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environmental Science & Technology, 2014, 48(10): 5972–5981

DOI

138
Liu W, Song X, Huda N, Xie M, Li G, Luo W. Comparison between aerobic and anaerobic membrane bioreactors for trace organic contaminant removal in wastewater treatment. Environmental Technology & Innovation, 2020, 17: 100564

DOI

139
Monteoliva-Garcia A, Martin-Pascual J, Munio M M, Poyatos J M. Effects of carrier addition on water quality and pharmaceutical removal capacity of a membrane bioreactor—advanced oxidation process combined treatment. Science of the Total Environment, 2020, 708: 135104

DOI

140
Xiao K, Liang S, Wang X, Chen C, Huang X. Current state and challenges of full-scale membrane bioreactor applications: a critical review. Bioresource Technology, 2019, 271: 473–481

DOI

141
Blandin G, Gautier C, Sauchelli Toran M, Monclús H, Rodriguez-Roda I, Comas J. Retrofitting membrane bioreactor (MBR) into osmotic membrane bioreactor (OMBR): a pilot scale study. Chemical Engineering Journal, 2018, 339: 268–277

DOI

142
Li X, Liu Y, Wang J, Gascon J, Li J, van der Bruggen B. Metal-organic frameworks based membranes for liquid separation. Chemical Society Reviews, 2017, 46(23): 7124–7144

DOI

143
Chen X, Selloni A. Introduction: titanium dioxide (TiO2) nanomaterials. Chemical Reviews, 2014, 114(19): 9281–9282

DOI

144
Tiwari J N, Tiwari R N, Kim K S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 2012, 57(4): 724–803

DOI

145
Sutisna B, Musteata V, Pulido B, Puspasari T, Smilgies D M, Hadjichristidis N, Nunes S P. High flux membranes, based on self-assembled and H-bond linked triblock copolymer nanospheres. Journal of Membrane Science, 2019, 585: 10–18

DOI

146
Yan W, Shi M, Wang Z, Zhou Y, Liu L, Zhao S, Ji Y, Wang J, Gao C. Amino-modified hollow mesoporous silica nanospheres-incorporated reverse osmosis membrane with high performance. Journal of Membrane Science, 2019, 581: 168–177

DOI

147
Zou D, Chen X, Drioli E, Ke X, Qiu M, Fan Y. Facile co-sintering process to fabricate sustainable antifouling silver nanoparticles (AgNPs)-enhanced tight ceramic ultrafiltration membranes for protein separation. Journal of Membrane Science, 2020, 593: 117402

DOI

148
Hinds B J, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas L G. Aligned multiwalled carbon nanotube membranes. Science, 2004, 303(5654): 62–65

DOI

149
Sholl D S, Johnson J K. Making high-flux membranes with carbon nanotubes. Science, 2006, 312(5776): 1003–1004

DOI

150
Zhao X, Cheng L, Wang R, Jia N, Liu L, Gao C. Bioinspired synthesis of polyzwitterion/titania functionalized carbon nanotube membrane with superwetting property for efficient oil-in-water emulsion separation. Journal of Membrane Science, 2019, 589: 117257

DOI

151
Li J, Li X, van der Bruggen B. An MXene-based membrane for molecular separation. Environmental Science. Nano, 2020, 7(5): 1289–1304

DOI

152
Zhao Y, Wu M, Guo Y, Mamrol N, Yang X, Gao C, van der Bruggen B. Metal-organic framework based membranes for selective separation of target ions. Journal of Membrane Science, 2021, 634: 119407

DOI

153
Yang H, Yang L, Wang H, Xu Z, Zhao Y, Luo Y, Nasir N, Song Y, Wu H, Pan F, Jiang Z. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nature Communications, 2019, 10(1): 2101

DOI

154
Gao Z F, Feng Y, Ma D, Chung T S. Vapor-phase crosslinked mixed matrix membranes with UiO-66-NH2 for organic solvent nanofiltration. Journal of Membrane Science, 2019, 574: 124–135

DOI

155
Gao Z F, Naderi A, Wei W, Chung T S. Selection of crosslinkers and control of microstructure of vapor-phase crosslinked composite membranes for organic solvent nanofiltration. Journal of Membrane Science, 2020, 616: 118582

DOI

156
Lee T H, Oh J Y, Hong S P, Lee J M, Roh S M, Kim S H, Park H B. ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: importance of particle deposition. Journal of Membrane Science, 2019, 570–571: 23–33

DOI

157
Zhao D L, Zhao Q, Chung T S. Fabrication of defect-free thin-film nanocomposite (TFN) membranes for reverse osmosis desalination. Desalination, 2021, 516: 115230

DOI

158
Zhang Z, Li P, Kong X Y, Xie G, Qian Y, Wang Z, Tian Y, Wen L, Jiang L. Bioinspired heterogeneous ion pump membranes: unidirectional selective pumping and controllable gating properties stemming from asymmetric ionic group distribution. Journal of the American Chemical Society, 2018, 140(3): 1083–1090

DOI

159
Yan S, Luan S, Shi H, Xu X, Zhang J, Yuan S, Yang Y, Yin J. Hierarchical polymer brushes with dominant antibacterial mechanisms switching from bactericidal to bacteria repellent. Biomacromolecules, 2016, 17(5): 1696–1704

DOI

160
Shahid M K, Choi Y G. The comparative study for scale inhibition on surface of RO membranes in wastewater reclamation: CO2 purging versus three different antiscalants. Journal of Membrane Science, 2018, 546: 61–69

DOI

161
Wang Z, Wu Z, Yin X, Tian L. Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: membrane foulant and gel layer characterization. Journal of Membrane Science, 2008, 325(1): 238–244

DOI

162
Mikhaylin S, Bazinet L. Fouling on ion-exchange membranes: classification, characterization and strategies of prevention and control. Advances in Colloid and Interface Science, 2016, 229: 34–56

DOI

163
Firouzjaei M D, Seyedpour S F, Aktij S A, Giagnorio M, Bazrafshan N, Mollahosseini A, Samadi F, Ahmadalipour S, Firouzjaei F D, Esfahani M R, . Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. Journal of Membrane Science, 2020, 596: 117604

DOI

164
Malaeb L, Le-Clech P, Vrouwenvelder J S, Ayoub G M, Saikaly P E. Do biological-based strategies hold promise to biofouling control in MBRs? Water Research, 2013, 47(15): 5447–5463

DOI

165
Bogler A, Lin S, Bar-Zeev E. Biofouling of membrane distillation, forward osmosis and pressure retarded osmosis: principles, impacts and future directions. Journal of Membrane Science, 2017, 542: 378–398

DOI

166
Sánchez O. Microbial diversity in biofilms from reverse osmosis membranes: a short review. Journal of Membrane Science, 2018, 545: 240–249

DOI

167
Bar-Zeev E, Passow U, Castrillon S R, Elimelech M. Transparent exopolymer particles: from aquatic environments and engineered systems to membrane biofouling. Environmental Science & Technology, 2015, 49(2): 691–707

DOI

168
Oh H S, Lee C H. Origin and evolution of quorum quenching technology for biofouling control in MBRs for wastewater treatment. Journal of Membrane Science, 2018, 554: 331–345

DOI

169
Ridgway H F, Orbell J, Gray S. Molecular simulations of polyamide membrane materials used in desalination and water reuse applications: recent developments and future prospects. Journal of Membrane Science, 2017, 524: 436–448

DOI

170
Kochkodan V, Johnson D J, Hilal N. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling. Advances in Colloid and Interface Science, 2014, 206: 116–140

DOI

171
Dickhout J M, Moreno J, Biesheuvel P M, Boels L, Lammertink R G H, de Vos W M. Produced water treatment by membranes: a review from a colloidal perspective. Journal of Colloid and Interface Science, 2017, 487: 523–534

DOI

172
Al Mamun M A, Sadrzadeh M, Chatterjee R, Bhattacharjee S, De S. Colloidal fouling of nanofiltration membranes: a novel transient electrokinetic model and experimental study. Chemical Engineering Science, 2015, 138: 153–163

DOI

173
Dersoir B, Schofield A B, de Saint Vincent M R, Tabuteau H. Dynamics of pore fouling by colloidal particles at the particle level. Journal of Membrane Science, 2019, 573: 411–424

DOI

174
Lohaus J, Perez Y M, Wessling M. What are the microscopic events of colloidal membrane fouling? Journal of Membrane Science, 2018, 553: 90–98

DOI

175
Haddad M, Bazinet L, Savadogo O, Paris J. Electrochemical acidification of Kraft black liquor: impacts of pulsed electric field application on bipolar membrane colloidal fouling and process intensification. Journal of Membrane Science, 2017, 524: 482–492

DOI

176
Lin Y L. Effects of organic, biological and colloidal fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes. Journal of Membrane Science, 2017, 542: 342–351

DOI

177
Mi B, Elimelech M. Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, 2010, 348(1-2): 337–345

DOI

178
Wang X M, Waite T D. Role of gelling soluble and colloidal microbial products in membrane fouling. Environmental Science & Technology, 2009, 43(24): 9341–9347

DOI

179
Wang Q, Wang Z, Wu Z, Ma J, Jiang Z. Insights into membrane fouling of submerged membrane bioreactors by characterizing different fouling layers formed on membrane surfaces. Chemical Engineering Journal, 2012, 179: 169–177

DOI

180
Zhao Y, Liu H, Tang K, Jin Y, Pan J, Van der Bruggen B, Shen J, Gao C. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane. Scientific Reports, 2016, 6(1): 37285

DOI

181
Amy G. Fundamental understanding of organic matter fouling of membranes. Desalination, 2008, 231(1-3): 44–51

DOI

182
Tong T, Wallace A F, Zhao S, Wang Z. Mineral scaling in membrane desalination: mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes. Journal of Membrane Science, 2019, 579: 52–69

DOI

183
Zhao Y, Yao M, Shen P, Uytterhoeven C, Marmrol N, Shen J, Gao C, Van der Bruggen B. Composite anti-scaling membrane made of interpenetrating networks of nanofibers for selective separation of lithium. Journal of Membrane Science, 2021, 618: 118668

DOI

184
Tinggang L I, Liu J, Bai R, Wong F S. Membrane-aerated biofilm reactor for the treatment of acetonitrile wastewater. Environmental Science & Technology, 2008, 42(6): 2099–2104

DOI

185
Tian H, Hu Y, Xu X, Hui M, Li B. Enhanced wastewater treatment with high o-aminophenol concentration by two-stage MABR and its biodegradation mechanism. Bioresource Technology, 2019, 289: 121649

DOI

186
Tian H, Xu X, Qu J, Li H, Hu Y, Huang L, He W, Li B. Biodegradation of phenolic compounds in high saline wastewater by biofilms adhering on aerated membranes. Journal of Hazardous Materials, 2020, 392: 122463

DOI

187
Livingston A G. Extractive membrane bioreactors: a new process technology for detoxifying chemical industry wastewaters. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1994, 60(2): 117–124

DOI

188
Yeo B J, Goh S, Livingston A G, Fane A G. Controlling biofilm development in the extractive membrane bioreactor. Separation and Purification Technology, 2017, 52: 113–121

189
Skouteris G, Saroj D, Melidis P, Hai F I, Ouki S. The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation—A critical review. Bioresource Technology, 2015, 185: 399–410

DOI

190
Yeo B J, Goh S, Zhang J, Livingston A G, Fane A G. Novel MBRs for the removal of organic priority pollutants from industrial wastewaters: a review. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2015, 90(11): 1949–1967

DOI

191
Busca G, Berardinelli S, Resini C, Arrighi L. Technologies for the removal of phenol from fluid streams: a short review of recent developments. Journal of Hazardous Materials, 2008, 160(2-3): 265–288

DOI

192
Livingston A G, Arcangeli J P, Boam A T, Zhang S, Marangon M, Santos L M F D. Extractive membrane bioreactors for detoxification of chemical industry wastes: process development. Journal of Membrane Science, 1998, 151(1): 29–44

DOI

193
Livingston A G. A novel membrane bioreactor for detoxifying industrial wastewater: I. Biodegradation of phenol in a synthetically concocted wastewater. Biotechnology and Bioengineering, 1993, 41(10): 915–926

DOI

194
Xiao M, Zhou J, Tan Y, Zhang A, Xia Y, Ji L. Treatment of highly-concentrated phenol wastewater with an extractive membrane reactor using silicone rubber. Desalination, 2006, 195(1-3): 281–293

DOI

195
Ren L F, Adeel M, Li J, Xu C, Xu Z, Zhang X, Shao J, He Y. Phenol separation from phenol-laden saline wastewater by membrane aromatic recovery system-like membrane contactor using superhydrophobic/organophilic electrospun PDMS/PMMA membrane. Water Research, 2018, 135: 31–43

DOI

196
Ren L F, Ngo H H, Bu C, Ge C, Ni S Q, Shao J, He Y. Novel external extractive membrane bioreactor (EMBR) using electrospun polydimethylsiloxane/polymethyl methacrylate membrane for phenol-laden saline wastewater. Chemical Engineering Journal, 2020, 383: 123179

DOI

197
Liao Y, Goh S, Tian M, Wang R, Fane A G. Design, development and evaluation of nanofibrous composite membranes with opposing membrane wetting properties for extractive membrane bioreactors. Journal of Membrane Science, 2018, 551: 55–65

DOI

198
Jin M Y, Liao Y, Loh C H, Tan C H, Wang R. Preparation of polydimethylsiloxane-polyvinylidene fluoride composite membranes for phenol removal in extractive membrane bioreactor. Industrial & Engineering Chemistry Research, 2017, 56(12): 3436–3445

DOI

199
Freitas Santos L M D, Hömmerich U, Livingston A G. Dichloroethane removal from gas streams by an extractive membrane bioreactor. Biotechnology Progress, 1995, 11(2): 194–201

DOI

200
Dos Santos L F, Biundo G L. Treatment of pharmaceutical industry process wastewater using the extractive membrane bioreactor. Environment and Progress, 1999, 18(1): 34–39

DOI

201
Chuichulcherm S, Nagpal S, Peeva L, Livingston A. Treatment of metal—containing wastewaters with a novel extractive membrane reactor using sulfate—reducing bacteria. Environmental & Clean Technology, 2001, 76(1): 61–68

DOI

202
Luo W, Hai F I, Price W E, Guo W, Ngo H H, Yamamoto K, Nghiem L D. High retention membrane bioreactors: challenges and opportunities. Bioresource Technology, 2014, 167: 539–546

DOI

203
Liu Y L, Wang X M, Yang H W, Xie Y F, Huang X. Preparation of nanofiltration membranes for high rejection of organic micropollutants and low rejection of divalent cations. Journal of Membrane Science, 2019, 572(15): 152–160

DOI

204
Choi J H, Fukushi K, Yamamoto K. A submerged nanofiltration membrane bioreactor for domestic wastewater treatment: the performance of cellulose acetate nanofiltration membranes for long-term operation. Separation and Purification Technology, 2007, 52(3): 470–477

DOI

205
Zaviska F, Drogui P, Grasmick A, Azais A, Héran M. Nanofiltration membrane bioreactor for removing pharmaceutical compounds. Journal of Membrane Science, 2013, 429: 121–129

DOI

206
Li D, Wang H. Recent developments in reverse osmosis desalination membranes. Journal of Materials Chemistry, 2010, 20(22): 4551–4566

DOI

207
Ming F T, Lee S, Xu H, Jeong K, Chong T H. Impact of salt accumulation in the bioreactor on the performance of nanofiltration membrane bioreactor (NF-MBR) + reverse osmosis (RO) process for water reclamation. Water Research, 2019, 170: 115352

208
Waszak M, Markowska-Szczupak A, Gryta M. Application of nanofiltration for production of 1,3-propanediol in membrane bioreactor. Catalysis Today, 2016, 268(15): 164–170

DOI

209
Snowdon J, Singh K S, Zanatta G. Optimization of an external nanofiltration anaerobic membrane bioreactor treating a high-strength starch-based wastewater. Journal of Environmental Engineering, 2018, 144(6): 04018032

DOI

210
Cornelissen E R, Harmsen D, Korte K, Ruiken C J, Qin J J, Oo H, Wessels L P. Membrane fouling and process performance of forward osmosis membranes on activated sludge. Journal of Membrane Science, 2008, 319(1-2): 158–168

DOI

211
Holloway R W, Achilli A, Cath T Y. The osmotic membrane bioreactor: a critical review. Environmental Science & Technology, 2015, 1: 581–605

212
Wang X, Chang V, Tang C Y. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: advances, challenges, and prospects for the future. Journal of Membrane Science, 2016, 504: 113–132

DOI

213
Achilli A, Cath T Y, Marchand E A, Childress A E. The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes. Desalination, 2009, 239(1-3): 10–21

DOI

214
Wei J Y, Zhang J, Lay W, Cao B, Fane A G, Yu L. State of the art of osmotic membrane bioreactors for water reclamation. Bioresource Technology, 2012, 122: 217–222

DOI

215
Lay W C L, Zhang Q, Zhang J, McDougald D, Tang C, Wang R, Liu Y, Fane A G. Effect of pharmaceuticals on the performance of a novel osmotic membrane bioreactor (OMBR). Separation Science and Technology, 2012, 47(4): 543–554

DOI

216
Alturki A, Mcdonald J, Khan S J, Hai F I, Long D N. Performance of a novel osmotic membrane bioreactor (OMBR) system: flux stability and removal of trace organics. Bioresource Technology, 2012, 113: 201–206

DOI

217
Kwon D, Kwon S J, Kim J, Lee J H. Feasibility of the highly-permselective forward osmosis membrane process for the post-treatment of the anaerobic fluidized bed bioreactor effluent. Desalination, 2020, 485: 114451

DOI

218
Tan S, Acquah I, Li W. Cultivation of marine activated sludge to treat saline wastewater. Fresenius Environmental Bulletin, 2016, 25: 3134–3141

219
Lu Y, He Z. Mitigation of salinity buildup and recovery of wasted salts in a hybrid osmotic membrane bioreactor-electrodialysis system. Environmental Science & Technology, 2015, 49(17): 10529–10535

DOI

220
Viet N D, Cho J, Yoon Y, Jang A. Enhancing the removal efficiency of osmotic membrane bioreactors: a comprehensive review of influencing parameters and hybrid configurations. Chemosphere, 2019, 236: 124363

DOI

221
Geng Y K, Wang Y, Pan X R, Sheng G P. Electricity generation and in situ phosphate recovery from enhanced biological phosphorus removal sludge by electrodialysis membrane bioreactor. Bioresource Technology, 2018, 247: 471–476

DOI

222
Wang Y K, Geng Y K, Pan X R, Sheng G P. In situ utilization of generated electricity for nutrient recovery in urine treatment using a selective electrodialysis membrane bioreactor. Chemical Engineering Science, 2017, 171(2): 451–458

DOI

223
Mamo J, García-Galán M J, Stefani M, Rodríguez-Mozaz S, Barceló D, Monclús H, Rodriguez-Roda I, Comas J. Fate of pharmaceuticals and their transformation products in integrated membrane systems for wastewater reclamation. Chemical Engineering Journal, 2018, 331: 450–461

DOI

224
Racar M, Dolar D, Karadakić K, Čavarović N, Glumac N, Ašperger D, Košutić K. Challenges of municipal wastewater reclamation for irrigation by MBR and NF/RO: physico-chemical and microbiological parameters, and emerging contaminants. Science of the Total Environment, 2020, 722: 137959

DOI

225
Díaz O, Gonzalez E, Vera L, Porlán L, Rodríguez-Sevilla J, Afonso-Olivares C, Ferrera Z, Santana Rodriguez J J. Nanofiltration/reverse osmosis as pretreatment technique for water reuse: ultrafiltration versus tertiary membrane reactor. Clean (Weinheim), 2017, 45(5): 1600014

DOI

226
Dhangar K, Kumar M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: a review. Science of the Total Environment, 2020, 738: 140320

DOI

227
Beier S, Köster S, Veltmann K, Schröder H, Pinnekamp J. Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis. Water Science and Technology, 2010, 61(7): 1691–1698

DOI

228
Tam L S, Tang T W, Lau G N, Sharma K R, Chen G H. A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems. Desalination, 2007, 202(1-3): 106–113

DOI

229
Comerton A M, Andrews R C, Bagley D M. Evaluation of an MBR-RO system to produce high quality reuse water: microbial control, DBP formation and nitrate. Water Research, 2005, 39(16): 3982–3990

DOI

230
Prado T, De Castro Bruni A, Barbosa M R F, Garcia S C, De Jesus Melo A M, Sato M I Z. Performance of wastewater reclamation systems in enteric virus removal. Science of the Total Environment, 2019, 678: 33–42

DOI

231
Prado T, De Castro Bruni A, Barbosa M R F, Garcia S C, Moreno L Z, Sato M I Z. Noroviruses in raw sewage, secondary effluents and reclaimed water produced by sand-anthracite filters and membrane bioreactor/reverse osmosis system. Science of the Total Environment, 2019, 646: 427–437

DOI

232
Plevri A, Noutsopoulos C, Mamais D, Makropoulos C, Andreadakis A, Lytras E, Samios S. Priority pollutants and other micropollutants removal in an MBR-RO wastewater treatment system. Desalination and Water Treatment, 2018, 127: 121–131

DOI

233
Plevri A, Mamais D, Noutsopoulos C, Makropoulos C, Andreadakis A, Rippis K, Smeti E, Lytras E, Lioumis C. Promoting on-site urban wastewater reuse through MBR-RO treatment. Desalination and Water Treatment, 2017, 91: 2–11

DOI

234
Li C, Cabassud C, Guigui C. Evaluation of membrane bioreactor on removal of pharmaceutical micropollutants: a review. Desalination and Water Treatment, 2014, 55(4): 845–858

DOI

235
Sahar E, David I, Gelman Y, Chikurel H, Aharoni A, Messalem R, Brenner A. The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination, 2011, 273(1): 142–147

DOI

236
Dolar D, Gros M, Rodriguez-Mozaz S, Moreno J, Comas J, Rodriguez-Roda I, Barceló D. Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. Journal of Hazardous Materials, 2012, 239–240: 64–69

DOI

237
Aziz M, Ojumu T. Exclusion of estrogenic and androgenic steroid hormones from municipal membrane bioreactor wastewater using UF/NF/RO membranes for water reuse application. Membranes, 2020, 10(3): 37

DOI

238
Wu B, Kitade T, Chong T H, Uemura T, Fane A G. Impact of membrane bioreactor operating conditions on fouling behavior of reverse osmosis membranes in MBR-RO processes. Desalination, 2013, 311(15): 37–45

DOI

239
Wang G, Fan Z, Wu D, Qin L, Zhang G, Gao C, Meng Q. Anoxic/aerobic granular active carbon assisted MBR integrated with nanofiltration and reverse osmosis for advanced treatment of municipal landfill leachate. Desalination, 2014, 349: 136–144

DOI

240
Wang J, Li K, Wei Y, Cheng Y, Wei D, Li M. Performance and fate of organics in a pilot MBR-NF for treating antibiotic production wastewater with recycling NF concentrate. Chemosphere, 2015, 121: 92–100

DOI

241
Hacıfazlıoğlu M C, Parlarİ, Pek T Ö, Kabay N. Evaluation of chemical cleaning to control fouling on nanofiltration and reverse osmosis membranes after desalination of MBR effluent. Desalination, 2019, 466: 44–51

DOI

242
Rautenbach R, Mellis R. Waste water treatment by a combination of bioreactor and nanofiltration. Desalination, 1994, 95(2): 171–188

DOI

243
Tran T, Nguyen T, Ho H, Le D, Lam T, Nguyen D, Hoang A, Do T, Hoang L, Nguyen T, et al. Integration of membrane bioreactor and nanofiltration for the treatment process of real hospital wastewater in Ho Chi Minh City, Vietnam. Processes (Basel, Switzerland), 2019, 7(3): 123

DOI

244
Parlar I, Hacıfazlıoğlu M, Kabay N, Pek T Ö, Yüksel M. Performance comparison of reverse osmosis (RO) with integrated nanofiltration (NF) and reverse osmosis process for desalination of MBR effluent. Journal of Water Process Engineering, 2019, 29: 100640

DOI

245
Lan Y, Groenen-Serrano K, Coetsier C, Causserand C. Fouling control using critical, threshold and limiting fluxes concepts for cross-flow NF of a complex matrix: membrane bioreactor effluent. Journal of Membrane Science, 2017, 524: 288–298

DOI

246
Lan Y, Groenen-Serrano K, Coetsier C, Causserand C. Nanofiltration performances after membrane bioreactor for hospital wastewater treatment: fouling mechanisms and the quantitative link between stable fluxes and the water matrix. Water Research, 2018, 146: 77–87

DOI

247
Geoswami L, Kumar R V, Borah S N, Manikandan N A, Pakshirajan K, Pugazhenthi G. Membrane bioreactor and integrated membrane bioreactor systems for micropollutant removal from wastewater: A review. Journal of Water Process Engineering, 2018, 26: 314–328

DOI

248
Arola K, Hatakka H, Mänttäri M, Kallioinen M. Novel process concept alternatives for improved removal of micropollutants in wastewater treatment. Separation and Purification Technology, 2017, 186: 333–341

DOI

249
Alturki A A, Tadkaew N, Mcdonald J A, Khan S J, Price W E, Nghiem L D. Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications. Journal of Membrane Science, 2010, 365(1-2): 206–215

DOI

250
Chon K, Sarp S, Lee S, Lee J H, Lopez-Ramirez J A, Cho J. Evaluation of a membrane bioreactor and nanofiltration for municipal wastewater reclamation: trace contaminant control and fouling mitigation. Desalination, 2011, 272(1-3): 128–134

DOI

Outlines

/