1 Introduction
2 Theoretical background
2.1 Surrogate models
2.1.1 Automated learning of algebraic models
2.1.2 Delaunay triangulation regression (DTR)
2.1.3 Gaussian process regression (GPR)
2.1.4 ANN
2.2 SSO
2.2.1 Surrogate-assisted MINLP
2.2.2 Surrogate-assisted mixed-integer linear program (MILP)
2.2.3 Surrogate-assisted series of nonlinear programs (NLP)
2.3 SBO
2.4 Optimization under uncertainty
2.5 Framework S3O
2.5.1 Selection of product sets, substrates, and operations
2.5.2 SSO
2.5.3 Simulation optimization
3 Case study and results
3.1 Selection of product sets, substrate and operations
Fig.6 Illustration of the entire initial bottom-up composed superstructure for the base-case process design of the introduced case study with a hemicellulose, a cellulose, and a lignin process train; the reduced superstructure which will serve as the base case in this study is marked in bold. |
Tab.1 Overview of all flowsheet options with their respective cID and the units composing the flowsheet. |
cID | Flowsheet |
---|---|
1 | PT-UCH-FX-EX-CX1-CX2 |
2 | PT-UCH-FX-EX-CX1 |
3 | PT-UCH-FX-CX1-CX2 |
4 | PT-UCH-FX-CX1 |
5 | PT-FX-EX-CX1-CX2 |
6 | PT-FX-EX-CX1 |
7 | PT-FX-CX1-CX2 |
8 | PT-FX-CX1 |
3.2 SSO
3.2.1 Flowsheet sensitivity analysis
Fig.7 Violin plots of the results from the design space exploration of flowsheets (a) cID 1, (b) cID 2, (c) cID 5, and (d) cID 6 with the outputs: the mass of produced xylitol (upper left), the concentration of 5-hydroymethylfurfural in the final stage (upper right), the concentration of acetic acid in the final stage (lower left) and the CO2 ratio (lower right). |
3.2.2 Surrogate model performance assessment
Fig.9 Parity plots of the ALAMO, the GPR, and the ANN surrogate models for all flowsheets (ALAMO: (a) cID 1, (d) cID 2, (g) cID 5, and (j) cID 6; GPR: (b) cID 1, (e) cID 2, (h) cID 5, and (k) cID 6; ANN: (c) cID 1, (f) cID 2, (i) cID 5, and (l) cID 6) indicating the predicted outputs over the simulated outputs for N = 500 (dark blue, blue, turquoise) and N = 1000 samples (green, bright green, yellow). |
Tab.2 Cross-validation metrics of all surrogate models for flowsheet option cID 1 for both N = 500 and N = 1000 samples for the output variable being the amount of produced xylitol |
Model | ALAMO | DTR | GPR | ANN | ||||
---|---|---|---|---|---|---|---|---|
N = 500 | N = 1000 | N = 500 | N = 1000 | N = 500 | N = 1000 | N = 500 | N = 1000 | |
R2 | 0.822 | 0.765 | 1 | 1 | 1 | 1 | 0.997 | 0.994 |
RMSE | 5.27 | 6.29 | 0 | 0 | 0.007 | 0.017 | 0.597 | 0.922 |
R2train | 0.817 | 0.762 | 1 | 1 | 0.997 | 1 | 0.997 | 0.994 |
R2test | 0.722 | 0.724 | 0.487 | 0.642 | 0.933 | 0.952 | 0.895 | 0.956 |
RMSEtrain | 5.35 | 6.31 | 0 | 0 | 0.423 | 0.121 | 0.674 | 0.944 |
RMSEtest | 6.54 | 6.99 | 8.802 | 7.677 | 2.945 | 2.66 | 4.002 | 2.535 |
3.2.3 SSO results
Tab.3 Results from the SSO of flowsheet cID 1 with N = 500 samples with all surrogate models and their respective solvers. |
cID 1-500 | ub | lb | ALAMO/BARON | DTR/Gurobi | GPR/fmincon | ANN/fmincon | ||||
---|---|---|---|---|---|---|---|---|---|---|
opt | val | opt | val | opt | val | opt | val | |||
TPT | 173 | 195 | 179.581 | 184.31 | 187.74 | 177.24 | ||||
Acid | 0.5 | 2 | 0.672 | 1.456 | 1.337 | 2.000 | ||||
Inoc | 0.5 | 3 | 3.000 | 1.523 | 1.497 | 1.191 | ||||
tFX | 8 | 16 | 47.938 | 43.207 | 42.656 | 47.727 | ||||
vEX | 0.99 | 0.998 | 0.995 | 0.996 | 0.998 | 0.998 | ||||
MXyo | 59.852 | 0.000 | 49.094 | 48.964 | 54.083 | 43.410 | 85.240 | 45.682 | ||
CHmf | 0.5 | 0.000 | 0.028 | 0.058 | 0.060 | 0.034 | 0.006 | 0.020 | 0.007 | |
CAac | 0.5 | 0.002 | 0.004 | 0.002 | 0.002 | 0.001 | 0.000 | 0.001 | 0.000 | |
ϕ | 0.1 | 0.140 | 0.000 | 0.118 | 0.117 | 0.116 | 0.100 | 0.100 | 0.114 |
Tab.4 Results from the SSO of flowsheet cID 2 with N = 500 samples with all surrogate models and their respective solvers. |
cID 2-500 | ub | lb | ALAMO/BARON | DTR/Gurobi | GPR/fmincon | ANN/fmincon | ||||
---|---|---|---|---|---|---|---|---|---|---|
opt | val | opt | val | opt | val | opt | val | |||
Acid | 0.5 | 2 | 0.685 | 0.762 | 0.874 | 2.000 | ||||
Inoc | 0.5 | 3 | 2.998 | 1.493 | 0.500 | 2.736 | ||||
tFX | 12 | 48 | 47.999 | 46.427 | 40.493 | 12.490 | ||||
vEX | 0.99 | 0.998 | 0.996 | 0.997 | 0.990 | 0.998 | ||||
vUCH | 0.4 | 0.6 | 0.512 | 0.520 | 0.585 | 0.423 | ||||
MXyo | 53.004 | 0.000 | 50.017 | 51.123 | 13.315 | 0.078 | 4.410 | 11.938 | ||
CHmf | 0.5 | 0.500 | 3.935 | 0.500 | 0.451 | 1.830 | 0.779 | 1.467 | 0.136 | |
CAac | 0.5 | 0.000 | 0.289 | 0.022 | 0.021 | 0.082 | 0.048 | 0.057 | 0.008 | |
ϕ | 0.1 | 0.123 | 0.000 | 0.117 | 0.120 | 0.028 | 0.000 | 0.037 | 0.028 |
Tab.5 Results from the SSO of flowsheet cID 5 with N = 500 samples with all surrogate models and their respective solvers. |
cID 5-500 | ub | lb | ALAMO/BARON | DTR/Gurobi | GPR/fmincon | ANN/fmincon | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
opt | opt | val | opt | val | |||||||
TPT | 173 | 195 | 193.69 | 185.50 | 186.6 | ||||||
Acid | 0.5 | 2 | 0.776 | 1.188 | 1.127 | ||||||
inoc | 0.5 | 3 | 2.315 | 0.963 | 0.782 | ||||||
tFX | 8 | 16 | 28.415 | 45.079 | 48.000 | ||||||
vEX | 0.99 | 0.998 | 0.993 | 0.998 | 0.998 | ||||||
MXyo | Infeasible | 47.915 | 47.86 | 54.829 | 48.12 | 67.400 | 46.86 | ||||
CHmf | 0.5 | 0.152 | 0.152 | 0.057 | 0.038 | 0.044 | 0.022 | ||||
CAac | 0.5 | 0.012 | 0.126 | 0.003 | 0.002 | 0.002 | 0.001 | ||||
φ | 0.1 | 0.118 | 0.118 | 0.132 | 0.123 | 0.168 | 0.117 |
Tab.6 Results from the SSO of flowsheet cID 6 with N = 500 samples with all surrogate models and their respective solvers. |
cID 6-500 | ub | lb | ALAMO/BARON | DTR/Gurobi | GPR/fmincon | ANN/fmincon | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
opt | val | opt | val | opt | val | opt | val | ||||
TPT | 173 | 195 | 184.00 | 184.00 | 191.04 | ||||||
Acid | 0.5 | 2 | 0.960 | 1.265 | 1.609 | ||||||
inoc | 0.5 | 3 | 2.536 | 2.507 | 0.976 | ||||||
tFX | 8 | 16 | 23.221 | 22.465 | 45.041 | ||||||
vEX | 0.99 | 0.998 | 0.998 | 0.998 | 0.997 | ||||||
MXyo | Infeasible | 43.688 | 43.95 | 47.727 | 43.58 | 0.016 | 26.35 | ||||
CHmf | 0.5 | 0.373 | 0.347 | 0.500 | 0.322 | 11.321 | 4.627 | ||||
CAac | 0.5 | 0.022 | 0.021 | 0.014 | 0.018 | 0.243 | 0.134 | ||||
φ | 0.1 | 0.112 | 0.112 | 0.101 | 0.111 | 0.000 | 0.066 |
Fig.10 Bubble plot for the visualization of the consistency metrics of the different superstructure modeling approaches, the center of each sphere indicating the predicted value in the optimization problem, the radius of the sphere being the RMSE of the testing dataset in the cross-validation, and the cross/saltire indicating the respective validation simulation for (a) cID 1, (b) cID 2, (c) cID 5 and (d) cID 6 for respectively N = 500 samples (blue, cross) and N = 1000 samples (yellow, saltire). |
3.3 SBO results
Tab.7 Results from the SBO for all candidate process topologies with the MOSKopt solver, using 25 initial sampling points, 75 iterations, the mean value as hedge against uncertainty, and the multi-constraint FEI criterion |
Item | ub | lb | cID 1 | cID 2 | cID 5 | |||
---|---|---|---|---|---|---|---|---|
opt | val | opt | val | opt | val | |||
TPT | 173 | 195 | 195.000 | 195 | ||||
Acid | 0.5 | 2 | 0.715 | 0.984 | 0.879 | |||
Inoc | 0.5 | 3 | 1.611 | 3.000 | 3 | |||
tFX | 8 | 16 | 44.994 | 30.367 | 24.271 | |||
vEX | 0.99 | 0.998 | 0.997 | 0.998 | 0.998 | |||
vUCH | 0.4 | 0.6 | 0.400 | |||||
MXyo | 56.310 | 56.736 | 53.760 | 54.224 | 53.96 | 54.17 | ||
CHmf | 0.5 | 0.045 | 0.032 | 0.492 | 0.471 | 0.062 | 0.061 | |
CAac | 0.5 | 0.001 | 0.001 | 0.019 | 0.020 | 0.002 | 0.002 | |
ϕ | 0.1 | 0.119 | 0.125 | 0.127 | 0.129 | 0.128 | 0.128 |