RESEARCH ARTICLE

Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO2 heterostructures

  • Hongtao Xie 1,2 ,
  • Qin Geng 2 ,
  • Xiaoyue Liu 1 ,
  • Jian Mao , 1
Expand
  • 1. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
  • 2. Yangtze Delta Region Institute of University of Electronic Science and Technology of China, Huzhou 313000, China

Received date: 28 Dec 2020

Accepted date: 21 Mar 2021

Published date: 15 Mar 2022

Copyright

2021 Higher Education Press

Abstract

To realize renewable energy conversion, it is important to develop low-cost and high-efficiency electrocatalyst for oxygen evolution reaction. In this communication, a novel bijunction CoS/CeO2 electrocatalyst grown on carbon cloth is prepared by the interface engineering. The interface engineering of CoS and CeO2 facilitates a rapid charge transfer from CeO2 to CoS. Such an electrocatalyst exhibits outstanding electrocatalytic activity with a low overpotential of 311 mV at 10 mA∙cm−2 and low Tafel slope of 76.2 mV∙dec–1, and is superior to that of CoS (372 mV) and CeO2 (530 mV) counterparts. And it has long-term durability under alkaline media.

Cite this article

Hongtao Xie , Qin Geng , Xiaoyue Liu , Jian Mao . Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO2 heterostructures[J]. Frontiers of Chemical Science and Engineering, 2022 , 16(3) : 376 -383 . DOI: 10.1007/s11705-021-2062-x

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11705-021-2062-x and is accessible for authorized users.
1
Jiao Y, Zheng Y, Jaroniec M, Qiao S Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews, 2015, 44(8): 2060–2086

DOI

2
Hao J, Yang W, Peng Z, Zhang C, Huang Z, Shi W. A nitrogen doping method for CoS2 electrocatalysts with enhanced water oxidation performance. ACS Catalysis, 2017, 7(6): 4214–4220

DOI

3
Shi Q, Zhu C, Du D, Lin Y. Robust noble metal-based electrocatalysts for oxygen evolution reaction. Chemical Society Reviews, 2019, 48(12): 3181–3192

DOI

4
Wang F, Xia L, Li X, Yang W, Zhao Y, Mao J. Nano-ferric oxide embedded in graphene oxide: high-performance electrocatalyst for nitrogen reduction at ambient condition. Energy & Environmental Materials, 2021, 4(1): 88–94

5
Liu C, Zhou W, Zhang J, Chen Z, Liu S, Zhang Y, Yang J, Xu L, Hu W, Chen Y, Deng Y. Air-assisted transient synthesis of metastable nickel oxide boosting alkaline fuel oxidation reaction. Advanced Energy Materials, 2020, 10(46): 2070187

DOI

6
Zhao D, Zhuang Z, Cao X, Zhang C, Peng Q, Chen C, Li Y. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chemical Society Reviews, 2020, 49(7): 2215–2264

DOI

7
Ou H, Wang D, Li Y. How to select effective electrocatalysts: nano or single atom? Nano Select, 2020, 2(3): 492–511

DOI

8
Kenney M J, Huang J E, Zhu Y, Meng Y, Xu M, Zhu G, Hung W H, Kuang Y, Lin M, Sun X, et al. An electrodeposition approach to metal/metal oxide heterostructures for active hydrogen evolution catalysts in near-neutral electrolytes. Nano Research, 2019, 12(6): 1431–1435

DOI

9
Wang H F, Chen L, Pang H, Kaskel S, Xu Q. MOF-derived electrocatalysts for oxygen reduction oxygen evolution and hydrogen evolution reactions. Chemical Society Reviews, 2020, 49(5): 1414–1448

DOI

10
Li X, Yang X, Xue H, Pang H, Xu Q. Metal-organic frameworks as a platform for clean energy applications. EnergyChem, 2020, 2(2): 100027

DOI

11
Li D, Xu H Q, Jiao L, Jiang H L. Metal-organic frameworks for catalysis: state of the art challenges and opportunities. EnergyChem, 2019, 1(1): 100005

DOI

12
Zheng S. Zheng S, Li Q, Xue H, Pang H, Xu Q. A highly alkaline-stable metal oxide@metal-organic framework composite for high-performance electrochemical energy storage. National Science Review, 2020, 7(2): 305–314

DOI

13
Liu P, Yin H, Fu H, Zu M, Yang H, Zhao H. Activation strategies of water-splitting electrocatalysts. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(20): 10096–10129

DOI

14
Nong H, Falling L, Bergmann A, Klingenhof M, Tran H, Spöri C, Mom R, Timoshenko J, Zichittella G, Knop-Gericke A, et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature, 2020, 587(7834): 408–413

DOI

15
Zhang J, Zhang H, Ren T, Yuan Z, Bandosz T. FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2021, 15(2): 279–287

DOI

16
Sheng T, Tian N, Zhou Z, Lin W, Sun S. Designing Pt-based electrocatalysts with high surface energy. ACS Energy Letters, 2017, 2(8): 1892–1900

DOI

17
Xiong Y, Dong J, Huang Z, Xin P, Chen W, Wang Y, Li Z, Jin Z, Xing W, Zhuang Z, et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nature Nanotechnology, 2020, 15(5): 390–397

DOI

18
Zhuang Z, Wang Y, Xu C, Liu S, Chen C, Peng Q, Zhuang Z, Xiao H, Pan Y, Lu S, et al. Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nature Communications, 2019, 10(1): 4875

DOI

19
Pei J, Mao J, Liang X, Chen C, Peng Q, Wang D, Li Y. Ir-Cu nanoframes: one-pot synthesis and efficient electrocatalysts for oxygen evolution reaction. Chemical Communications, 2016, 52(19): 3793–3796

DOI

20
Wu Z, Lu X, Zang S, Lou X. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Advanced Functional Materials, 2020, 30(15): 1910274

DOI

21
Zhang Y, Xiao J, Lv Q, Wang S. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes. Frontiers of Chemical Science and Engineering, 2018, 12(3): 494–508

DOI

22
Sun H, Yan Z, Liu F, Xu W, Cheng F, Chen J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Advanced Materials, 2020, 32(3): e1806326

DOI

23
Li Y, Yin J, An L, Lu M, Sun K, Zhao Y, Gao D, Cheng F, Xi P. FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small, 2018, 14(26): e1801070

DOI

24
Wang J, Cui W, Liu Q, Xing Z, Asiri A M, Sun X. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Advanced Materials, 2016, 28(2): 215–230

DOI

25
Cui B, Hu Z, Liu C, Liu S, Chen F, Hu S, Zhang J, Zhou W, Deng Y, Qin Z, et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Research, 2021, 14(4): 1149–1155

DOI

26
Zhu Y, Guo C, Zheng Y, Qiao S Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Accounts of Chemical Research, 2017, 50(4): 915–923

DOI

27
Huang W, Li X, Yang X, Zhang H, Liu P, Ma Y, Lu X. CeO2-embedded mesoporous CoS/MoS2 as highly efficient and robust oxygen evolution electrocatalyst. Chemical Engineering Journal, 2021, 420: 127595

DOI

28
Long X, Lin H, Zhou D, An Y, Yang S. Enhancing full water-splitting performance of transition metal bifunctional electrocatalysts in alkaline solutions by tailoring CeO2-transition metal oxides-Ni nanointerfaces. ACS Energy Letters, 2018, 3(2): 290–296

DOI

29
Li M, Pan X, Jiang M, Zhang Y, Tang Y, Fu G. Interface engineering of oxygen-vacancy-rich CoP/CeO2 heterostructure boosts oxygen evolution reaction. Chemical Engineering Journal, 2020, 395: 125160

DOI

30
Feng J, Ye S, Xu H, Tong Y, Li G. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Advanced Materials, 2016, 28(23): 4698–4703

DOI

31
Xie H, Geng Q, Liu X, Xu X, Wang F, Mao L M, Mao J. Solvent-assisted synthesis of dendritic cerium hexacyanocobaltate and derived porous dendritic Co3O4/CeO2 as supercapacitor electrode materials. CrystEngComm, 2021, 23(8): 1704–1708

DOI

32
Hao J, Luo W, Yang W, Li L, Shi W. Origin of the enhanced oxygen evolution reaction activity and stability of a nitrogen and cerium co-doped CoS2 electrocatalyst. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(43): 22694–22702

DOI

33
Liu B, Qu S, Kou Y, Liu Z, Chen X, Wu Y, Han X, Deng Y, Hu W, Zhong C. In situ electrodeposition of cobalt sulfide nanosheet arrays on carbon cloth as a highly efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions. ACS Applied Materials & Interfaces, 2018, 10(36): 30433–30440

DOI

34
Xie H, Geng Q, Li X, Wang T, Luo Y, Alshehri A, Alzahrani K, Li B, Wang Z, Mao J. Ceria-reduced graphene oxide nanocomposite as an efficient electrocatalyst towards artificial N2 conversion to NH3 under ambient conditions. Chemical Communications, 2019, 55(72): 10717–10720

DOI

35
Qiu B, Wang C, Zhang N, Cai L, Xiong Y, Chai Y. CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation. ACS Catalysis, 2019, 9(7): 6484–6490

DOI

36
Sung M, Lee G, Kim D. CeO2/Co(OH)2 hybrid electrocatalysts for efficient hydrogen and oxygen evolution reaction. Journal of Alloys and Compounds, 2019, 800: 450–455

DOI

37
Xie H, Mao L, Mao J. Structural evolution of Ce[Fe(CN)6] and derived porous Fe-CeO2 with high performance for supercapacitor. Chemical Engineering Journal, 2021, 421: 127826

DOI

38
Xie H, Wang H, Geng Q, Xing Z, Wang W, Chen J, Ji L, Chang L, Wang Z, Mao J. Oxygen vacancies of Cr-doped CeO2 nanorods that efficiently enhance the performance of electrocatalytic N2 fixation to NH3 under ambient conditions. Inorganic Chemistry, 2019, 58(9): 5423–5427

DOI

39
Liu P, Li X, Yang S, Zu M, Liu P, Zhang B, Zheng L, Zhao H, Yang H. Ni2P(O)/Fe2P(O) interface can boost oxygen evolution electrocatalysis. ACS Energy Letters, 2017, 2(10): 2257–2263

DOI

40
Sun L, Zhou L, Yang C, Yuan Y. CeO2 nanoparticle-decorated reduced graphene oxide as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. International Journal of Hydrogen Energy, 2017, 42(22): 15140–15148

DOI

41
Hu J, Li S, Chu J, Niu S, Wang J, Du Y, Li Z, Han X, Xu P. Understanding the phase-induced electrocatalytic oxygen evolution reaction activity on FeOOH nanostructures. ACS Catalysis, 2019, 9(12): 10705–10711

DOI

42
Li T, Li S, Liu Q, Tian Y, Zhang Y, Fu G, Tang Y. Hollow Co3O4/CeO2 heterostructures in situ embedded in N-doped carbon nanofibers enable outstanding oxygen evolution. ACS Sustainable Chemistry & Engineering, 2019, 7(21): 17950–17957

DOI

43
Xue Z, Li X, Liu Q, Cai M, Liu K, Liu M, Ke Z, Liu X, Li G. Interfacial electronic structure modulation of NiTe nanoarrays with NiS nanodots facilitates electrocatalytic oxygen evolution. Advanced Materials, 2019, 31(21): e1900430

DOI

44
Zhang J, Yu L, Chen Y, Lu X, Gao S, Lou X. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction. Advanced Materials, 2020, 32(16): e1906432

DOI

45
Zhang Y, Ouyang B, Xu J, Jia G, Chen S, Rawat R, Fan H. Rapid synthesis of cobalt nitride Nanowires: highly efficient and low-cost catalysts for oxygen evolution. Angewandte Chemie International Edition, 2016, 55(30): 8670–8674

DOI

46
Tang S, Wang X, Zhang Y, Courte M, Fan H, Fichou D. Combining Co3S4 and Ni:Co3S4 nanowires as efficient catalysts for overall water splitting: an experimental and theoretical study. Nanoscale, 2019, 11(5): 2202–2210

DOI

47
Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R, Liu S, Zhuang X, Feng X. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angewandte Chemie International Edition, 2016, 55(23): 6702–6707

DOI

48
He X, Yi X, Yin F, Chen B, Li G, Yin H. Less active CeO2 regulating bifunctional oxygen electrocatalytic activity of Co3O4@N-doped carbon for Zn-air batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(12): 6753–6765

DOI

49
Dou Y, He C, Zhang L, Yin H, Al-Mamun M, Ma J, Zhao H. Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy. Nature Communications, 2020, 11(1): 1664

DOI

50
Zheng Y, Gao M, Gao Q, Li H, Xu J, Wu Z, Yu S. An efficient CeO2/CoSe2 nanobelt composite for electrochemical water oxidation. Small, 2015, 11(2): 182–188

DOI

51
Wu J, Ren Z, Du S, Kong L, Liu B, Xi W, Zhu J, Fu H. A highly active oxygen evolution electrocatalyst: ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Research, 2016, 9(3): 713–725

DOI

52
Yoon H, Song H, Ju B, Kim D. Cobalt phosphide nanoarrays with crystalline-amorphous hybrid phase for hydrogen production in universal-pH. Nano Research, 2020, 13(9): 2469–2477

DOI

53
Zhang X, Yang Z, Lu Z, Wang W. Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: a theoretical evaluation. Carbon, 2018, 130: 112–119

DOI

54
Xu Y, Li B, Zheng S, Wu P, Zhan J, Xue H, Xu Q, Pang H. Ultrathin two-dimensional cobalt–organic framework nanosheets for high-performance electrocatalytic oxygen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(44): 22070–22076

DOI

55
Guo M, Xu K, Qu Y, Zeng F, Yuan C. Porous Co3O4/CoS2 nanosheet-assembled hierarchical microspheres as superior electrocatalyst towards oxygen evolution reaction. Electrochimica Acta, 2018, 268: 10–19

DOI

56
Li Y, Mao Z, Wang Q, Li D, Wang R, He B, Gong Y, Wang H. Hollow nanosheet array of phosphorus-anion-decorated cobalt disulfide as an efficient electrocatalyst for overall water splitting. Chemical Engineering Journal, 2020, 390: 124556

DOI

57
Zhu Y, Song L, Song N, Li M, Wang C, Lu X. Bifunctional and efficient CoS2-C@MoS2 core-shell nanofiber electrocatalyst for water splitting. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 2899–2905

DOI

58
Wu X, Zhang T, Wei J, Feng P, Yan X, Tang Y. Facile synthesis of Co and Ce dual-doped Ni3S2 nanosheets on Ni foam for enhanced oxygen evolution reaction. Nano Research, 2020, 13(8): 2130–2135

DOI

59
Yang Z, Liang X. Self-magnetic-attracted NixFe(1−x)@NixFe(1−x)O nanoparticles on nickel foam as highly active and stable electrocatalysts towards alkaline oxygen evolution reaction. Nano Research, 2020, 13(2): 461–466

DOI

60
Cui B, Hu Z, Liu C, Liu S, Chen F, Hu S, Zhang J, Zhou W, Deng Y, Qin Z, Wu Z, Chen Y, Cui L, Hu W. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Research, 2020, 14(4): 1149–1155

DOI

61
Wu Y, Wang H, Ji S, Pollet B, Wang X, Wang R. Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Research, 2020, 13(8): 2098–2105

DOI

62
Wang F, Mao J. Extra Li-Ion storage and rapid Li-ion transfer of a graphene quantum dot tiling hollow porous SiO2 anode. ACS Applied Materials & Interfaces, 2021, 13(11): 13191–13199

DOI

63
Xie H, Wang J, Wang W. Constructing porous carbon nanomaterials using redox-induced low molecular weight hydrogels and their application as supercapacitors. ChemistrySelect, 2017, 2(29): 9330–9335

DOI

Outlines

/