RESEARCH ARTICLE

Novel hierarchical yolk-shell α-Ni(OH)2/Mn2O3 microspheres as high specific capacitance electrode materials for supercapacitors

  • Xiqing Luo ,
  • Miaomiao Jiang ,
  • Kun Shi ,
  • Zhangxian Chen ,
  • Zeheng Yang ,
  • Weixin Zhang
Expand
  • School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering, Hefei 230009, China

Received date: 19 Sep 2020

Accepted date: 27 Dec 2020

Published date: 15 Oct 2021

Copyright

2021 Higher Education Press

Abstract

For high performance supercapacitors, novel hierarchical yolk-shell a-Ni(OH)2/Mn2O3 microspheres were controllably synthesized using a facile two-step method based on the solvothermal treatment. The unique a-Ni(OH)2 based yolk-shell microstructures decorated with numerous interconnected nanosheets and the hetero-composition features can synergistically enhance reactive site exposure and electron conduction within the microspheres, facilitate charge transfer between electrolyte and electrode materials, and release structural stress during OH chemisorption/desorption. Moreover, the Mn2O3 sediments distributed over the a-Ni(OH)2 microspheres can serve as an effective protective layer for electrochemical reactions. Consequently, when tested in 1 mol·L−1 KOH aqueous electrolyte for supercapacitors, the yolk-shell a-Ni(OH)2/Mn2O3 microspheres exhibited a considerably high specific capacitance of 2228.6 F·g−1 at 1 A·g−1 and an impressive capacitance retention of 77.7% after 3000 cycles at 10 A·g−1. The proposed a-Ni(OH)2/Mn2O3 microspheres with hetero-composition and unique hierarchical yolk-shell microstructures are highly promising to be used as electrode materials in supercapacitors and other energy storage devices.

Cite this article

Xiqing Luo , Miaomiao Jiang , Kun Shi , Zhangxian Chen , Zeheng Yang , Weixin Zhang . Novel hierarchical yolk-shell α-Ni(OH)2/Mn2O3 microspheres as high specific capacitance electrode materials for supercapacitors[J]. Frontiers of Chemical Science and Engineering, 2021 , 15(5) : 1322 -1331 . DOI: 10.1007/s11705-021-2036-z

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Grant Nos. 21908037, 91834301) and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2019HGBZ0147).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11705-021-2036-z and is accessible for authorized users.
1
Zhu Q C, Zhao D Y, Cheng M Y, Zhou J Q, Owusu K A, Mai L Q, Yu Y. A new view of supercapacitors: integrated supercapacitors. Advanced Energy Materials, 2019, 9(36): 1901081–1901091

DOI

2
Yan J, Li S H, Lan B B, Wu Y C, Lee P S. Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Advanced Functional Materials, 2020, 30(2): 1902564–1902598

DOI

3
Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J. Asymmetric supercapacitor electrodes and devices. Advanced Materials, 2017, 29(21): 1605336–1605365

DOI

4
Patrice S, Gogotsi Y. Materials for electrochemical capacitors. Nature Materials, 2008, 7(11): 845–854

DOI

5
Thubsuang U, Chotirut S, Thongnok A, Promraksa A, Nisoa M, Manmuanpom N, Wongkasemjit S, Chaisuwan T. Facile preparation of polybenzoxazine-based carbon microspheres with nitrogen functionalities: effects of mixed solvents on pore structure and supercapacitive performance. Frontiers of Chemical Science and Engineering, 2020, 14(1): 1–15

DOI

6
Bi S, Banda H, Chen M, Niu L, Chen M Y, Wu T Z, Wang J S, Wang R X, Feng J M, Chen T Y, Dincă M, Kornyshev A A, Feng G. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nature Materials, 2020, 19(5): 552–560

DOI

7
Choi C, Ashby D S, Butts D M, DeBlock R H, Wei Q L, Lau J, Dunn B. Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews. Materials, 2020, 5(1): 5–19

DOI

8
Mofarah S S, Adabifiroozjaei E, Yao Y, Koshy P, Lim S, Webster R, Liu X H, Nekouei R K, Cazorla C, Liu Z, Proton-assisted creation of controllable volumetric oxygen vacancies in ultrathin CeO2−x for pseudocapacitive energy storage applications. Nature Communications, 2019, 10(1): 2594–2602

DOI

9
Huang Y, Yang C, Deng B H, Wang C, Li Q W, Thibault C D, Huang K, Huo K F, Wu H. Nanostructured pseudocapacitors with pH-tunable electrolyte for electrochromic smart windows. Nano Energy, 2019, 66: 104200–104205

DOI

10
Morag A, Maman N, Froumin N, Ezersky V, Rechav K, Jelinek R. Nanostructured nickel/ruthenium/ruthenium-oxide supercapacitor displaying exceptional high frequency response. Advanced Electronic Materials, 2019, 6(1): 1900844–1900852

DOI

11
Yu X Y, Lou X W. Mixed metal sulfides for electrochemical energy storage and conversion. Advanced Energy Materials, 2018, 8(3): 1701592–1701628

DOI

12
Kulkarni P, Nataraj S K, Balakrishna R G, Nagaraju D H, Reddy M V. Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(42): 22040–22094

DOI

13
Banerjee J, Dutta K, Kader M A, Nayak S K. An overview on the recent developments in polyaniline-based supercapacitors. Polymers for Advanced Technologies, 2019, 30(8): 1902–1921

DOI

14
Girl S, Ghosh D, Das C K. Growth of vertically aligned tunable polyaniline on graphene/ZrO2 nanocomposites for supercapacitor energy-storage application. Advanced Functional Materials, 2014, 24(9): 1312–1324

DOI

15
Liu P B, Yan J, Guang Z X, Huang Y, Li X F, Huang W H. Recent advancements of polyaniline-based nanocomposites for supercapacitors. Journal of Power Sources, 2019, 424: 108–130

DOI

16
Gao B A, Li X X, Ding K, Huang C, Li Q W, Chu P K, Huo K F. Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(1): 14–37

DOI

17
Li K Z, Zhao B C, Bai J, Ma H Y, Fang Z T, Zhu X B, Sun Y P. A high-energy-density hybrid supercapacitor with P-Ni(OH)2@Co(OH)2 core-shell heterostructure and Fe2O3 nanoneedle arrays as advanced integrated electrodes. Small, 2020, 16(32): 2001974–2001982

DOI

18
Pan Y M, Mei Z S, Yang Z H, Zhang W X, Pei B, Yao H X. Facile synthesis of mesoporous MnO2/C spheres for supercapacitor electrodes. Chemical Engineering Journal, 2014, 242: 397–403

DOI

19
Yang Z H, Xu F F, Zhang W X, Mei Z S, Pei B, Zhu X. Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application. Journal of Power Sources, 2014, 246: 24–31

DOI

20
Shao Z M, Fan X M, Liu X Y, Yang Z H, Wang L, Chen Z X, Zhang W X. Hierarchical micro/nanostructured WO3 with structural water for high-performance pseudocapacitors. Journal of Alloys and Compounds, 2018, 765: 489–496

DOI

21
Xu J S, Fan X M, Xia Q, Shao Z M, Pei B, Yang Z H, Chen Z X, Zhang W X. A highly atom-efficient strategy to synthesize reduced graphene oxide-Mn3O4 nanoparticles composites for supercapacitors. Journal of Alloys and Compounds, 2016, 685: 949–956

DOI

22
Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407(6803): 496–499

DOI

23
Li J B, Cao W, Zhou N, Xu F, Chen N, Liu Y, Du G P. Hierarchically nanostructured Ni(OH)2-MnO2@C ternary composites derived from Ni-MOFs grown on nickel foam as high-performance integrated electrodes for hybrid supercapacitors. Electrochimica Acta, 2020, 343: 136139–136149

DOI

24
Krishnaveni M, Suresh C M, Wu J J, Asiri A M, Anandan S, Ashokkumar M. Synthesis of 3D marigold flower-like rGO/BN/Ni(OH)2 ternary nanocomposites for supercapacitor applications. Sustainable Energy & Fuels, 2020, 4(6): 3090–3101

DOI

25
Mohammed M M, Abd-Elrahim A, Chun D M. One-step deposition of a Ni(OH)2-graphene hybrid prepared by vacuum kinetic spray for high energy density hybrid supercapacitor. Materials Chemistry and Physics, 2020, 244: 122701–122710

DOI

26
Aricò A S, Bruce P, Scrosati B, Tarascon J M, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366–377

DOI

27
Yu G H, Xie X, Pan L J, Bao Z N, Cui Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013, 2(2): 213–234

DOI

28
Chen G, Liaw S L, Li B S, Xu Y, Dunwell M, Deng S G, Fan H Y, Luo H M. Microwave-assisted synthesis of hybrid CoxNi1–x(OH)2 nanosheets: tuning the composition for high performance supercapacitor. Journal of Power Sources, 2014, 251: 338–343

DOI

29
Li M, Xu S H, Zhu Y P, Yang P X, Wang L W, Chu P K. Heterostructured Ni(OH)2-Co(OH)2 composites on 3D ordered Ni-Co nanoparticles fabricated on microchannel plates for advanced miniature supercapacitor. Journal of Alloys and Compounds, 2014, 589: 364–371

DOI

30
Chuo H X, Gao H, Yang Q, Zhang N, Bu W B, Zhang X T. Rationally designed hierarchical ZnCo2O4/Ni(OH)2 nanostructures for high-performance pseudocapacitor electrodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(48): 20462–20469

DOI

31
Ke Q Q, Guan C, Zheng M R, Hu Y T, Ho K H, Wang J. 3D hierarchical SnO2@Ni(OH)2 core–shell nanowire arrays on carbon cloth for energy storage application. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(18): 9538–9542

DOI

32
Chen H, Hu L F, Yan Y, Che R C, Chen M, Wu L M. One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance. Advanced Energy Materials, 2013, 3(12): 1636–1646

DOI

33
Ma Q, Hu W M, Peng D C, Shen R H, Xia X H, Chen H, Chen Y X, Liu H B. Freestanding core-shell Ni(OH)2@MnO2 structure with enhanced energy density and cyclic performance for asymmetric supercapacitors. Journal of Alloys and Compounds, 2019, 803: 866–874

DOI

34
Chen H, Zhou S X, Wu L M. Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Applied Materials & Interfaces, 2014, 6(11): 8621–8630

DOI

35
Shi X, Key J, Ji S, Linkov V, Liu F S, Wang H, Cai H J, Wang R F. Ni(OH)2 nanoflakes supported on 3D Ni3Se2 nanowire array as highly efficient electrodes for asymmetric supercapacitor and Ni/MH battery. Small, 2019, 15(29): 1802861–1802870

DOI

36
Jiang H, Li C Z, Sun T, Ma J. High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core-shell nanostructures. Chemical Communications (Cambridge), 2012, 48(20): 2606–2608

DOI

37
Ren Q, Wang R F, Wang H, Key J L, Brett D J L, Ji S, Yin S B, Shen P K. Ranunculus flower-like Ni(OH)2@Mn2O3 as a high specific capacitance cathode material for alkaline supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(20): 7591–7595

DOI

38
Yuan S, Ma D L, Wang S, Liu Y B, Yang X H, Cao Z Y. Hierarchical porous SnO2/Mn2O3 core/shell microspheres as advanced anode materials for lithium-ion batteries. Materials Letters, 2015, 145: 104–107

DOI

39
Xu J, Deng Y Q, Luo Y, Mao W, Yang X J, Han Y F. Operando Raman spectroscopy and kinetic study of low-temperature CO oxidation on an α-Mn2O3 nanocatalyst. Journal of Catalysis, 2013, 300: 225–234

DOI

40
Han Y F, Chen F X, Zhong Z Y, Ramesh K, Chen L, Widjaja E. Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15. Journal of Physical Chemistry B, 2006, 110(48): 24450–24456

DOI

41
Yuan S, Chen W B, Zhang L, Liu Z K, Liu J Q, Liu T, Li G J, Wang Q. Nitrogen-doped graphene-buffered Mn2O3 nanocomposite anodes for fast charging and high discharge capacity lithium-ion batteries. Small, 2019, 15(50): 1903311–1903319

DOI

42
Feng L Y, Sun J K, Liu Y H, Li X X, Ye L, Zhao L J. 3D sponge-like porous structure of Mn2O3 tiny nanosheets coated on Ni(OH)2/Mn2O3 nanosheet arrays for quasi-solid-state asymmetric supercapacitors with high performance. Chemical Engineering Journal, 2018, 339: 61–70

DOI

43
Ramesh S, Karuppasamy K, Msolli S, Kim H S, Kim H S, Kim J H. A nanocrystalline structured NiO/MnO2@nitrogen-doped graphene oxide hybrid nanocomposite for high performance supercapacitors. New Journal of Chemistry, 2017, 41(24): 15517–15527

DOI

44
Ma Y Y, Wang R F, Wang H, Key J, Ji S. Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. Journal of Power Sources, 2015, 280: 526–532

DOI

45
Tao P, Shao M H, Song C W, Wu S H, Cheng M R, Cui Z. Preparation of porous and hollow Mn2O3 microspheres and their adsorption studies on heavy metal ions from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3128–3133

DOI

46
Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity. Pure and Applied Chemistry, 1985, 54(4): 603–619

DOI

47
Tang Y F, Liu Y Y, Yu S X, Zhao Y F, Mu S C, Gao F M. Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors. Electrochimica Acta, 2014, 123: 158–166

DOI

48
Nathan T, Cloke M, Prabaharan S R S. Electrode properties of Mn2O3 nanospheres synthesized by combined sonochemical/solvothermal method for use in electrochemical capacitors. Journal of Nanomaterials, 2008, 2008: 81–88

DOI

49
Tang Y F, Liu Y Y, Guo W C, Chen T, Wang H C, Yu S X, Gao F M. Highly oxidized graphene anchored Ni(OH)2 nanoflakes as pseudocapacitor materials for ultrahigh loading electrode with high areal specific capacitance. Journal of Physical Chemistry C, 2014, 118(43): 24866–24876

DOI

50
Xiong X H, Ding D, Chen D C, Waller G, Bu Y F, Wang Z X, Liu M L. Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors. Nano Energy, 2015, 11: 154–161

DOI

51
Ye L, Zhao L J, Zhang H, Zhang B, Wang H Y. One-pot formation of ultra-thin Ni/Co hydroxides with a sheet-like structure for enhanced asymmetric supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(23): 9160–9168

DOI

52
Yu L, Zhang G Q, Yuan C Z, Lou X W. Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chemical Communications, 2013, 49(2): 137–139

DOI

Outlines

/