RESEARCH ARTICLE

Biomineralization-inspired copper-cystine nanoleaves capable of laccase-like catalysis for the colorimetric detection of epinephrine

  • Miao Guan 1 ,
  • Mengfan Wang , 1,3 ,
  • Wei Qi 1,2,3 ,
  • Rongxin Su 1,2,3 ,
  • Zhimin He 1
Expand
  • 1. School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, China
  • 2. The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300350, China
  • 3. Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, China

Received date: 21 Feb 2020

Accepted date: 30 Mar 2020

Published date: 15 Apr 2021

Copyright

2020 Higher Education Press

Abstract

Recently, many efforts have been dedicated to creating enzyme-mimicking catalysts to replace natural enzymes in practical fields. Inspired by the pathological biomineralization behaviour of L-cystine, in this study, we constructed a laccase-like catalyst through the co-assembly of L-cystine with Cu ions. Structural analysis revealed that the formed catalytic Cu-cystine nanoleaves (Cu-Cys NLs) possess a Cu(I)-Cu(II) electron transfer system similar to that in natural laccase. Reaction kinetic studies demonstrated that the catalyst follows the typical Michaelis-Menten model. Compared with natural laccase, the Cu-Cys NLs exhibit superior stability during long-term incubation under extreme pH, high-temperature or high-salt conditions. Remarkably, the Cu-Cys NLs could be easily recovered and still maintained 76% of their activity after 8 cycles. Finally, this laccase mimic was employed to develop a colorimetric method for epinephrine detection, which achieved a wider linear range (9–455 μmol·L−1) and lower limit of detection (2.7 μmol·L−1). The Cu-Cys NLs also displayed excellent specificity and sensitivity towards epinephrine in a test based on urine samples.

Cite this article

Miao Guan , Mengfan Wang , Wei Qi , Rongxin Su , Zhimin He . Biomineralization-inspired copper-cystine nanoleaves capable of laccase-like catalysis for the colorimetric detection of epinephrine[J]. Frontiers of Chemical Science and Engineering, 2021 , 15(2) : 310 -318 . DOI: 10.1007/s11705-020-1940-y

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21621004 and 21676191).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-020-1940-y and is accessible for authorized users.
1
Sun H, Zhou Y, Ren J, Qu X. Carbon nanozymes: Enzymatic properties, catalytic mechanism, and applications. Angewandte Chemie International Edition in English, 2018, 57(30): 9224–9237

DOI

2
Chen Z, Wang Z, Ren J, Qu X. Enzyme mimicry for combating bacteria and biofilms. Accounts of Chemical Research, 2018, 51(3): 789–799

DOI

3
Jiang D, Ni D, Rosenkrans Z T, Huang P, Yan X, Cai W. Nanozyme: new horizons for responsive biomedical applications. Chemical Society Reviews, 2019, 48(14): 3683–3704

DOI

4
Huang Y, Zhao M, Han S, Lai Z, Yang J, Tan C, Ma Q, Lu Q, Chen J, Zhang X, Zhang Z, Li B, Chen B, Zong Y, Zhang H. Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Advanced Materials, 2017, 29(32): 1–5

DOI

5
Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chemical Reviews, 2019, 119(6): 4357–4412

DOI

6
Tian L, Qi J, Oderinde O, Yao C, Song W, Wang Y. Planar intercalated copper (II) complex molecule as small molecule enzyme mimic combined with Fe3O4 nanozyme for bienzyme synergistic catalysis applied to the microrna biosensor. Biosensors & Bioelectronics, 2018, 110: 110–117

DOI

7
Han L, Zhang H, Chen D, Li F. Protein-directed metal oxide nanoflakes with tandem enzyme-like characteristics: colorimetric glucose sensing based on one-pot enzyme-free cascade catalysis. Advanced Functional Materials, 2018, 28(17): 1800018

DOI

8
Wright A M, Wu Z, Zhang G, Mancuso J L, Comito R J, Day R W, Hendon C H, Miller J T, Dincă M. A structural mimic of carbonic anhydrase in a metal-organic framework. Chem, 2018, 4(12): 2894–2901

DOI

9
Zozulia O, Dolan M A, Korendovych I V. Catalytic peptide assemblies. Chemical Society Reviews, 2018, 47(10): 3621–3639

DOI

10
Lewis J C. Metallopeptide catalysts and artificial metalloenzymes containing unnatural amino acids. Current Opinion in Chemical Biology, 2015, 25: 27–35

DOI

11
Duncan K L, Ulijn R V. Short peptides in minimalistic biocatalyst design. Biocatalysis, 2015, 1(1): 67–81

DOI

12
Liang K, Wang R, Boutter M, Doherty C M, Mulet X, Richardson J J. Biomimetic mineralization of metal-organic frameworks around polysaccharides. Chemical Communications, 2017, 53(7): 1249–1252

DOI

13
Yao S, Jin B, Liu Z, Shao C, Zhao R, Wang X, Tang R. Biomineralization: from material tactics to biological strategy. Advanced Materials, 2017, 29(14): 1605903

DOI

14
Wang Z, Huang P, Jacobson O, Wang Z, Liu Y, Lin L, Lin J, Lu N, Zhang H, Tian R, Niu G, Liu G, Chen X. Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics. ACS Nano, 2016, 10(3): 3453–3460

DOI

15
Habraken W, Habibovic P, Epple M, Bohner M. Calcium phosphates in biomedical applications: materials for the future? Materials Today, 2016, 19(2): 69–87

DOI

16
Xu P, Wang X, Li T, Wu H, Li L, Chen Z, Zhang L, Guo Z, Chen Q. Biomineralization-inspired nanozyme for single-wavelength laser activated photothermal-photodynamic synergistic treatment against hypoxic tumors. Nanoscale, 2020, 12(6): 4051–4060

DOI

17
Ejgenberg M, Mastai Y. Biomimetic crystallization of L-cystine hierarchical structures. Crystal Growth & Design, 2012, 12(10): 4995–5001

DOI

18
Moe O W. Kidney stones: pathophysiology and medical management. Lancet, 2006, 367(9507): 333–344

DOI

19
Zhang R, Wang L, Han J, Wu J, Li C, Ni L, Wang Y. Improving laccase activity and stability by HKUST-1 with cofactor via one-pot encapsulation and its application for degradation of bisphenol A. Journal of Hazardous Materials, 2020, 383: 121130

DOI

20
Ramachandran E, Natarajan S. Crystal growth of some urinary stone constituents: III. In-vitro crystallization of L-cystine and its characterization. Crystal Research and Technology, 2004, 39(4): 308–312

DOI

21
Wang X, Duan P, Liu M. Universal chiral twist via metal ion induction in the organogel of terephthalic acid substituted amphiphilic l-glutamide. Chemical Communications, 2012, 48(60): 7501–7503

DOI

22
Mamun M A, Ahmed O, Bakshi P K, Yamauchi S, Ehsan M Q. Synthesis and characterization of some metal complexes of cystine: [Mn(C6H10N2O4S2)]; where MII= Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and Pb(II). Russian Journal of Inorganic Chemistry, 2011, 56(12): 1972–1980

DOI

23
Kathalikkattil A C, Bisht K K, Aliaga-Alcalde N, Suresh E. Synthesis, magnetic properties, and structural investigation of mixed-ligand Cu(II) helical coordination polymers with an amino acid backbone and N-donor propping: 1-D helical, 2-D hexagonal net (hcb), and 3-D ins topologies. Crystal Growth & Design, 2011, 11(5): 1631–1641

DOI

24
Li A, Mu X, Li T, Wen H, Li W, Li Y, Wang B. Formation of porous cu hydroxy double salt nanoflowers derived from metal-organic frameworks with efficient peroxidase-like activity for label-free detection of glucose. Nanoscale, 2018, 10(25): 11948–11954

DOI

25
Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, Li L. Self-assembled copper-amino acid nanoparticles for in situ glutathione “and” H2O2 sequentially triggered chemodynamic therapy. Journal of the American Chemical Society, 2019, 141(2): 849–857

DOI

26
Leng M, Liu M Z, Zhang Y B, Wang Z Q, Yu C, Yang X G, Zhang H J, Wang C. Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes: synthesis and enhanced catalytic co oxidation activity. Journal of the American Chemical Society, 2010, 132(48): 17084–17087

DOI

27
Liu K, Yuan C, Zou Q, Xie Z, Yan X. Self-assembled zinc/cystine-based chloroplast mimics capable of photoenzymatic reactions for sustainable fuel synthesis. Angewandte Chemie International Edition in English, 2017, 56(27): 7876–7880

DOI

28
Guan Z B, Luo Q, Wang H R, Chen Y, Liao X R. Bacterial laccases: promising biological green tools for industrial applications. Cellular and Molecular Life Sciences, 2018, 75(19): 3569–3592

DOI

29
Tian Q, Dou X, Huang L, Wang L, Meng D, Zhai L, Shen Y, You C, Guan Z, Liao X. Characterization of a robust cold-adapted and thermostable laccase from Pycnoporus sp. SYBC-l10 with a strong ability for the degradation of tetracycline and oxytetracycline by laccase-mediated oxidation. Journal of Hazardous Materials, 2020, 382: 121084

DOI

30
Mate D M, Alcalde M. Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microbial Biotechnology, 2017, 10(6): 1457–1467

DOI

31
Liang H, Lin F, Zhang Z, Liu B, Jiang S, Yuan Q, Liu J. Multicopper laccase mimicking nanozymes with nucleotides as ligands. ACS Applied Materials & Interfaces, 2017, 9(2): 1352–1360

DOI

32
Bulatov A V, Petrova A V, Vishnikin A B, Moskvin A L, Moskvin L N. Stepwise injection spectrophotometric determination of epinephrine. Talanta, 2012, 96: 62–67

DOI

33
Shankar S S, Shereema R M, Rakhi R B. Electrochemical determination of adrenaline using mxene/graphite composite paste electrodes. ACS Applied Materials & Interfaces, 2018, 10(50): 43343–43351

DOI

Outlines

/