RESEARCH ARTICLE

Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system

  • Chenggang Qiu 1 ,
  • Alei Zhang 1,2 ,
  • Sha Tao 1 ,
  • Kang Li 1 ,
  • Kequan Chen , 1,2 ,
  • Pingkai Ouyang 1,2
Expand
  • 1. College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
  • 2. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China

Received date: 17 Feb 2019

Accepted date: 04 Jun 2019

Published date: 15 Oct 2020

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Strain QCG of the aerobic bacteria Bacillus cereus is capable of producing 1-naphthol from naphthalene, this strain was first isolated and characterized in this study. Strain QCG was mutagenized to enhance 1-naphthol production, using atmospheric and room temperature plasma (ARTP) technology. Then, a microbial clone screening system was used to accelerate the operation. Meanwhile, a novel color-mediated high-throughput screening using 4-aminoantipyrine was performed to screen mutants. The optimal mutant strain QCG4 produced 19.58±0.34 mg∙L1 1-naphthol from naphthalene that was 47.32% higher than that of the original strain (13.29±0.28 mg∙L1). In addition, the optimal conditions for 1-naphthol production via whole-cell catalysis of strain QCG4 were determined to be an OD600 of 40, 150 mg∙L1 naphthalene, and 7.5% dimethyl formamide as a co-solvent at pH 7.5 and 26°C for 3 h, resulting in 41.18±0.12 mg∙L1 1-naphthol, i.e., the mutant strain produces a 2.1-fold higher yield compared to the original strain.

Cite this article

Chenggang Qiu , Alei Zhang , Sha Tao , Kang Li , Kequan Chen , Pingkai Ouyang . Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(5) : 793 -801 . DOI: 10.1007/s11705-019-1876-2

Acknowledgments

This work was supported by COVESTRO, the National Key Research and Development Program (Grant No. 2016YFA0204300), the Jiangsu Province Natural Science Foundation for Youths (No. BK20170997), and China Postdoctoral Science Foundation (Nos. 2018M642237 and 2017T100359).
1
Back R C. Carbamate insecticides, significant developments in eight years with sevin insecticides. Journal of Agricultural and Food Chemistry, 1965, 13(3): 198–199

DOI

2
Canada K A, Sachiyo I, Shim H, Wood T K. Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. Journal of Bacteriology, 2002, 184(2): 344–349

DOI

3
Molina-Espeja P, Cañellas M, Plou F J, Hofrichter M, Lucas F, Guallar V, Alcalde M. Synthesis of 1-naphthol by a natural peroxygenase engineered by directed evolution. ChemBioChem, 2016, 17(4): 341–349

DOI

4
Zhang T Y, Yang Q S, Lu Z, Liu X, Wang Z, Li X X. Progress of catalytic synthesis of naphthol. Chemical Industry & Engineering Progress, 2009, 28(1): 55–61

5
Martínez A T, Ruiz-Duenas F J, Camarero S, Serrano A, Linde D, Lund H, Vind J, Tovborg M, Herold-Majumdar O M, Hofrichter M, Oxidoreductases on their way to industrial biotransformations. Biotechnology Advances, 2017, 35(4): 1322–1332

DOI

6
Zhang A L, Wei G G, Mo X F, Zhou N, Chen K Q, Ouyang P K. Enzymatic hydrolysis of chitin pretreated by bacterial fermentation to obtain pure N-acetyl-D-glucosamine. Green Chemistry, 2018, 20(10): 2320–2327

DOI

7
Tomás-Gallardo L, Gomezalvarez H, Santero E, Floriano B. Combination of degradation pathways for naphthalene utilization in Rhodococcus sp. strain TFB. Microbial Biotechnology, 2014, 7(2): 100–113

DOI

8
Zeinali M, Vossoughi M, Ardestani S K. Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic microorganism. Chemosphere, 2008, 72(6): 905–909

DOI

9
Das M, Bhattacharya A, Banu S, Kotoky J. Enhanced biodegradation of anthracene by Bacillus cereus strain JMG-01 isolated from hydrocarbon contaminated soils. Soil & Sediment Contamination, 2017, 26(5): 510–525

DOI

10
Liu L, Schmid R D, Urlacher V B. Cloning, expression, and characterization of a self-sufficient cytochrome P450 monooxygenase from Rhodococcus ruber DSM 44319. Applied Microbiology and Biotechnology, 2006, 72(5): 876–882

DOI

11
Rui L Y, Kwon Y M, Fishman A, Reardon K F, Wood T K. Saturation mutagenesis of toluene ortho-monooxygenase of Burkholderia cepacia G4 for Enhanced 1-naphthol synthesis and chloroform degradation. Applied and Environmental Microbiology, 2004, 70(6): 3246–3252

DOI

12
Garikipati S V B J, Mciver A M, Peeples T L. Whole-cell biocatalysis for 1-naphthol production in liquid-liquid biphasic systems. Applied and Environmental Microbiology, 2009, 75(20): 6545–6552

DOI

13
Garikipati S V B J, Peeples T L. Solvent resistance pumps of Pseudomonas putida S12: Applications in 1-naphthol production and biocatalyst engineering. Journal of Biotechnology, 2015, 210(1): 91–99

DOI

14
Liu R M, Liang L Y, Cao W J, Wu M K, Chen K Q, Ma J F, Jiang M, Wei P, Ouyang P K. Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source. Bioresource Technology, 2013, 135(3): 574–577

DOI

15
Inoue M, Inoue T, Okami M, Sayama M, Hirai Y. ChemInform abstract: Bacterial oxidation of naphthalene to 1-naphthol. ChemInform, 2010, 26(1): 1315–1316

DOI

16
Inoue T, Yasuyoshi T, Morishita N, Sayama M, Inoue M. Oxydation of polycyclic aromatic hydrocarbons in the presence of bacteria. Nippon Kagaku Kaishi, 1998, (3): 196–200

DOI

17
Wang M Z, Yang Y, Chen Z H, Chen Y Z, Wen Y M, Chen B L. Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae. Bioresource Technology, 2016, 222: 130–138

DOI

18
Zhang Y, He M L, Zou S M, Fei C, Yan Y Q, Zheng S Y, Rajper A A, Wang C H. Breeding of high biomass and lipid producing Desmodesmus sp. by Ethylmethane sulfonate-induced mutation. Bioresource Technology, 2016, 207: 268–275

DOI

19
Zhang X, Zhang X M, Xu G Q, Zhang X J, Shi J S, Xu Z H. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2018, 102(4): 1–13

DOI

20
Laroussi M, Leipold F. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. International Journal of Mass Spectrometry, 2004, 233(1): 81–86

DOI

21
Li G, Li H P, Wang L Y, Wang S, Zhao H X, Xin W T. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium. Applied Physics Letters, 2008, 92(22): 221504

22
Dong W L, Wang F, Huang F, Wang Y, Zhou J, Ye X, Li Z K, Hou Y, Huang Y, Ma J, Jiang M, Cui Z. Metabolic pathway involved in 6-chloro-2-benzoxazolinone degradation by Pigmentiphaga sp. strain DL-8 and identification of the novel metal-dependent hydrolase CbaA. Applied and Environmental Microbiology, 2016, 82(14): 4169–4179

DOI

23
Binder S, Schendzielorz G, Stäbler N, Krumbach K, Hoffmann K, Bott M, Eggeling L. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biology, 2012, 13(5): R40

DOI

24
Liu Y N, Li Q G, Zheng P, Zhang Z D, Liu Y F, Sun C M, Cao G Q, Zhou W J, Wang X W, Zhang D W, et al. Developing a high-throughput screening method for threonine overproduction based on an artificial promoter. Microbial Cell Factories, 2015, 14(1): 121

DOI

25
Brosius J, Dull T J, Sleeter D D, Noller H F. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. Journal of Molecular Biology, 1981, 148(2): 107–127

DOI

26
Hao Z K, Cai Y J, Liao X R, Liang X H, Liu J Y, Fang Z Y, Hu M M, Zhang D B. Chitinolyticbacter meiyuanensis SYBC-H1T, Gen. Nov., sp. Nov., a chitin-degrading bacterium isolated from soil. Current Microbiology, 2011, 62(6): 1732–1738

DOI

27
Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25(25): 4876–4882

DOI

28
Vralstad T, Myhre E, Schumacher T. Molecular diversity and phylogenetic affinities of symbiotic root-associated ascomycetes of the helotiales in burnt and metal polluted habitats. New Phytologist, 2002, 105(1): 131–148

DOI

29
Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M, Neumaier J, Bachleitner M, Schleifer K H. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis, 2010, 19(4): 554–568

DOI

30
Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 1980, 16(2): 111–120

DOI

31
Norwitz G, Keliher P N. Effect of acidity and alkalinity on the distillation of phenol: Interferences of aromatic amines and formaldehyde with the 4-aminoantipyrine spectro-photometric method for phenol. Analytica Chimica Acta, 1980, 119(1): 99–111

DOI

32
Lu Y, Wang L Y, Ma K, Li G, Zhang C, Zhao H X, Lai Q H, Li H P, Xing X H. Characteristics of hydrogen production of an Enterobacter aerogenes mutant generated by a new atmospheric and room temperature plasma (ARTP). Biochemical Engineering Journal, 2011, 55(1): 17–22

DOI

33
Cao S, Zhou X, Jin W B, Wang F, Tu R J, Han S F, Chen H Y, Chen C, Xie G J, Ma F. Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma (ARTP). Bioresource Technology, 2017, 244(2): 1400–1406

DOI

34
Gu C K, Wang G Y, Mai S, Wu P F, Wu J R, Wang G H, Liu H J, Zhang J A. ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production. Applied Microbiology and Biotechnology, 2017, 101(5): 2189–2199

DOI

35
Cao X M, Luo Z S, Zeng W Z, Xu S, Zhao L Q, Zhou J W. Enhanced avermectin production by Streptomyces avermitilis ATCC 31267 using high-throughput screening aided by fluorescence-activated cell sorting. Applied Microbiology and Biotechnology, 2018, 102(2): 703–712

DOI

36
Li H Y, Zeng W Z, Zhou J W. High-throughput screening of Methylobacterium extorquens for high production of pyrroloquinoline quinone. Chinese Journal of Biotechnology, 2018, 34(5): 794–802

37
Zhang X, Zhang X M, Xu G Q, Zhang X, Shi J, Xu Z. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2018, 102(14): 5939–5951

DOI

38
Wang L Y, Huang Z L, Li G, Zhao H X, Xing X H, Sun W T, Li H P, Gou Z X, Bao C Y. Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. Journal of Applied Microbiology, 2010, 108(3): 851–858

DOI

39
Hassanshahian M, Boroujeni N A. Enrichment and identification of naphthalene degrading bacteria from the Persian Gulf. Marine Pollution Bulletin, 2016, 107(1): 59–65

DOI

40
Tao Y, Bentley W E, Wood T K. Phenol and 2-naphthol production by toluene 4-monooxygenases using an aqueous/dioctyl phthalate system. Applied Microbiology and Biotechnology, 2005, 68(5): 614–621

DOI

Outlines

/