REVIEW ARTICLE

Recent development and application of thin-film thermoelectric cooler

  • Yuedong Yu 1 ,
  • Wei Zhu , 1,2 ,
  • Xixia Kong 1 ,
  • Yaling Wang 1 ,
  • Pengcheng Zhu 1 ,
  • Yuan Deng , 1,2
Expand
  • 1. School of Materials Science and Engineering, Beihang University, Beijing 100083, China
  • 2. Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China

Received date: 05 Nov 2018

Accepted date: 17 Feb 2019

Published date: 15 Aug 2020

Copyright

2020 Higher Education Press

Abstract

Recently, the performance and fabrication of thin-film thermoelectric materials have been largely enhanced. Based on this enhancement, the thin-film thermoelectric cooler (TEC) is becoming a research hot topic, due to its high cooling flux and microchip level size. To fulfill a thin-film TEC, interfacial problems are unavoidable, as they may largely reduce the properties of a thin-film TEC. Moreover, the architecture of a thin-film TEC should also be properly designed. In this review, we introduced the enhancement of thermoelectric properties of (Bi,Sb)2(Te,Se)3 solid solution materials by chemical vapor deposition, physical vapor deposition and electrodeposition. Then, the interfacial problems, including contact resistance, interfacial diffusion and thermal contact resistance, were discussed. Furthermore, the design, fabrication, as well as the performance of thin-film TECs were summarized.

Cite this article

Yuedong Yu , Wei Zhu , Xixia Kong , Yaling Wang , Pengcheng Zhu , Yuan Deng . Recent development and application of thin-film thermoelectric cooler[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(4) : 492 -503 . DOI: 10.1007/s11705-019-1829-9

Acknowledgements

The work was supported by the State Key Program of National Natural Science Foundation of China (Grant No. 61534001), the Joint Funds of the National Natural Science Foundation of China (Grant No. U1601213), the National Natural Science Foundation of China (Grant Nos. 51601005 and 61704006), the Beijing Natural Science Foundation (Grant No. 2182032) and the Fundamental Research Funds for the Central Universities.
1
He J, Tritt T M. Advances in thermoelectric materials research: Looking back and moving forward. Science, 2017, 357(6358): eaak9997

2
Bulman G, Barletta P, Lewis J, Baldasaro N, Manno M, Bar-Cohen A, Yang B. Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nature Communications, 2016, 7: 10302

3
Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R, Venkatasubramanian R. On-chip cooling by superlattice-based thin-film thermoelectrics. Nature Nanotechnology, 2009, 4(4): 235–238

4
He W, Zhang G, Zhang X, Ji J, Li G, Zhao X. Recent development and application of thermoelectric generator and cooler. Applied Energy, 2015, 143: 1–25

5
Zhao D, Tan G. A review of thermoelectric cooling: Materials, modeling and applications. Applied Thermal Engineering, 2014, 66(1–2): 15–24

6
Kim S J, Lee H E, Choi H, Kim Y, We J H, Shin J S, Lee K J, Cho B J. High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano, 2016, 10(12): 10851–10857

7
Rowe D M. Thermoelectrics Handbook: Macro to Nano. Florida: CRC Press, 2006, 21–38

8
Zhu W, Deng Y, Wang Y, Wang A. Finite element analysis of miniature thermoelectric coolers with high cooling performance and short response time. Microelectronics Journal, 2013, 44(9): 860–868

9
Owoyele O, Ferguson S, O’Connor B T. Performance analysis of a thermoelectric cooler with a corrugated architecture. Applied Energy, 2015, 147: 184–191

10
Yin S, Zhu W, Deng Y, Tu Y, Shen S, Peng Y. Enhanced electrical conductivity and reliability for fiexible copper thin-film electrode by introducing aluminum buffer layer. Materials & Design, 2017, 116: 524–530

11
Tan M, Deng Y, Hao Y. Enhancement of thermoelectric properties induced by oriented nanolayer in Bi2Te27Se3 columnar films. Materials Chemistry and Physics, 2014, 146(1–2): 153–158

12
Zhu W, Deng Y, Cao L. Light-concentrated solar generator and sensor based on flexible thin-film thermoelectric device. Nano Energy, 2017, 34(January): 463–471

13
Fitriani O R, Long B D, Barma M C, Riaz M. Sabri M F M, Said S M, Saidur R. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renewable & Sustainable Energy Reviews, 2016, 64: 635–659

14
Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nature Materials, 2007, 6(2): 129–134

15
Lv H, Wang X D, Meng J H, Wang T H, Yan W M. Enhancement of maximum temperature drop across thermoelectric cooler through two-stage design and transient supercooling effect. Applied Energy, 2016, 175: 285–292

16
Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermomagnetic figure of merit. Physical Review. B, 1993, 47(19): 12727–12731

17
Ohta H. Two-dimensional thermoelectric Seebeck coefficient of SrTiO3-based superlattices. Physica Status Solidi (B). Basin Research, 2008, 245(11): 2363–2368

18
Szczech J R, Higgins J M, Jin S. Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. Journal of Materials Chemistry, 2011, 21(12): 4037–4055

19
Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634–638

20
Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597–602

21
Feng J, Zhu W, Deng Y, Huang L, Liu L, Wang R, Hu L, Li Y, Song X, Yang Z, An overview of thermoelectric films: Fabrication techniques, classification, and regulation methods. Chinese Physics B, 2018, 27(4): 047210

22
Hicks L D, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review. B, 1993, 47(24): 16631–16634

23
Mahmood K, Ali A, Arshad M, Nabi M, Amin N, Murtaza S, Ejaz S, Khan M. Investigation of the optimal annealing temperature for the enhanced thermoelectric properties of MOCVD-grown ZnO films. Journal of Experimental and Theoretical Physics, 2017, 124(4): 580–583

24
Deng Y, Xiang Y, Song Y. Template-free synthesis and transport properties of Bi2Te3 ordered nanowire arrays via a physical vapor process. Crystal Growth & Design, 2009, 9(7): 3079–3082

25
Tan M, Deng Y, Wang Y. Ordered structure and high thermoelectric properties of Bi2(Te,Se)3 nanowire array. Nano Energy, 2014, 3: 144–151

26
Chen T, Lin P, Chang H, Chen C. Enhanced thermoelectricity of three dimensionally mesostructured BixSb2−xTe3 nanoassemblies: From micro-scaled open gaps to isolated sealed mesopores. Nanoscale, 2017, 9: 40–47

27
Xiao Z, Kisslinger K, Dimasi E, Kimbrough J. The fabrication of nanoscale Bi2Te3/Sb2Te3 multilayer thin film-based thermoelectric power chips. Microelectronic Engineering, 2018, 197: 8–14

28
Shen S, Zhu W, Deng Y, Zhao H, Peng Y, Wang C. Enhancing thermoelectric properties of Sb2Te3 flexible thin film through microstructure control and crystal preferential orientation engineering. Applied Surface Science, 2017, 414: 197–204

29
Cao L, Deng Y, Gao H, Wang Y, Chen X, Zhu Z. Towards high refrigeration capability: The controllable structure of hierarchical Bi5Sb15Te3 flakes on a metal electrode. Physical Chemistry Chemical Physics, 2015, 17(10): 6809–6818

30
Zhang Z, Wang Y, Deng Y, Xu Y. The effect of (00l) crystal plane orientation on the thermoelectric properties of Bi2Te3 thin film. Solid State Communications, 2011, 151(21): 1520–1523

31
Jung H, Myung N V. Electrodeposition of antimony telluride thin films from acidic nitrate-tartrate baths. Electrochimica Acta, 2011, 56(16): 5611–5615

32
Kim M Y, Oh T S. Processing and thermoelectric performance characterization of thin-film devices consisting of electrodeposited bismuth telluride and antimony telluride thin-film legs. Journal of Electronic Materials, 2011, 40(5): 759–764

33
Kim M Y, Oh T S. Preparation and characterization of Bi2Te3/Sb2Te3 thermoelectric thin-film devices for power generation. Journal of Electronic Materials, 2014, 43(6): 1933–1939

34
Kim J, Zhang M, Bosze W, Park S D, Lim J H, Myung N V. Maximizing thermoelectric properties by nanoinclusion of g-SbTe in Sb2Te3 film via solid-state phase transition from amorphous Sb-Te electrodeposits. Nano Energy, 2015, 13: 727–734

35
Jung H, Lim J H, Park H, Kim J, Choa Y H, Myung N V. Lithographically patterned p-type SbxTey nanoribbons with controlled morphologies and dimensions. Journal of Physical Chemistry C, 2013, 117(33): 17303–17308

36
Jeong G, Kim Y U, Kim H, Kim Y J, Sohn H J. Prospective materials and applications for Li secondary batteries. Energy & Environmental Science, 2011, 4(6): 1986–2002

37
Lee K H, Kim O J. Analysis on the cooling performance of the thermoelectric micro-cooler. International Journal of Heat and Mass Transfer, 2007, 50(9–10): 1982–1992

38
Wang S, Xie W, Li H, Tang X. Enhanced performances of melt spun Bi2(Te,Se)3 for n-type thermoelectric legs. Intermetallics, 2011, 19(7): 1024–1031

39
Mu X, Zhou H, He D, Zhao W, Wei P, Zhu W, Nie X, Liu H, Zhang Q. Enhanced electrical properties of stoichiometric Bi5Sb15Te3 film with high-crystallinity via layer-by-layer in-situ growth. Nano Energy, 2017, 33: 55–64

40
Vizel R, Bargig T, Beeri O, Gelbstein Y. Bonding of Bi2Te3-based thermoelectric legs to metallic contacts using Bi82Sb18 alloy. Journal of Electronic Materials, 2016, 45(3): 1296–1300

41
Kim S H, Kim S W, Kim G S, Kim J, Park J H, Yu H Y. Ar plasma treatment for III–V semiconductor-based transistor source/drain contact resistance reduction. Journal of Nanoscience and Nanotechnology, 2016, 16(10): 10389–10392

42
Taylor P J, Maddux J R, Meissner G, Venkatasubramanian R, Bulman G, Pierce J, Gupta R, Bierschenk J, Caylor C, D’Angelo J, Controlled improvement in specific contact resistivity for thermoelectric materials by ion implantation. Applied Physics Letters, 2013, 103(4): 3–7

43
Kong X, Zhu W, Cao L, Peng Y, Shen S, Deng Y. Controllable electrical contact resistance between Cu and oriented-Bi2Te3 film via interface tuning. ACS Applied Materials & Interfaces, 2017, 9(30): 25606–25614

44
Yong H, Na S, Gang J-G, Shin H, Jeon S-J, Hyun S, Lee H-J. Study on the contact resistance of various metals (Au, Ti, and Sb) on Bi-Te and Sb-Te thermoelectric films. Japanese Journal of Applied Physics, 2016, 55(6S3): 06JE03

45
Song S M, Park J K, Sul O J, Cho B J. Determination of work function of graphene under a metal electrode and its role in contact resistance. Nano Letters, 2012, 12(8): 3887–3892

46
Gupta R P, Xiong K, White J B, Cho K, Alshareef H N, Gnade B E. Low resistance ohmic contacts to Bi2Te3 using Ni and Co metallization. Journal of the Electrochemical Society, 2010, 157(6): H666

47
Byun K, Chung H, Lee J, Yang H, Song H J, Heo J, Seo D H, Park S, Hwang S W, Yoo I, Graphene for true ohmic contact at metal-semiconductor junctions. Nano Letters, 2013, 13: 4001–4005

48
Liu W, Jie Q, Kim H S, Ren Z. Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Materialia, 2015, 87(155): 357–376

49
Choi K, Kim J, Lee Y, Kim H. ITO/Ag/ITO multilayer films for the application of a very low resistance transparent electrode. Thin Solid Films, 1999, 341(1–2): 152–155

50
Kim M, Choi K C. Transparent and flexible resistive random access memory based on Al2O3 film with multilayer electrodes. IEEE Transactions on Electron Devices, 2017, 64(8): 3508–3510

51
Zhou H, Mu X, Zhao W, Tang D, Wei P, Zhu W, Nie X, Zhang Q. Low interface resistance and excellent anti-oxidation of Al/Cu/Ni multilayer thin-film electrodes for Bi2Te3-based modules. Nano Energy, 2017, 40(August): 274–281

52
Peres L, Bou A, Barakel D, Torchio P. ZnS|Ag|TiO2 multilayer electrodes with broadband transparency for thin film solar cells. RSC Advances, 2016, 6(66): 61057–61063

53
Liu W, Wang H, Wang L, Wang X, Joshi G, Chen G, Ren Z. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te27Se3 legs for power generation applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(42): 13093–13100

54
Jiang C, Fan X, Rong Z, Zhang C, Li G, Feng B, Hu J, Xiang Q. Elemental diffusion and service performance of Bi2Te3-based thermoelectric generation modules with flexible connection electrodes. Journal of Electronic Materials, 2017, 46(2): 1363–1370

55
Hsu H H, Cheng C H, Lin Y L, Chiou S H, Huang C H, Cheng C P. Structural stability of thermoelectric diffusion barriers: Experimental results and first principles calculations. Applied Physics Letters, 2013, 103: 053902

56
Cardinal T, Kwan M, Borca-Tasciuc T, Ramanath G. Multifold electrical conductance enhancements at metal-bismuth telluride interfaces modified using an organosilane monolayer. ACS Applied Materials & Interfaces, 2017, 9(3): 2001–2005

57
Feng S P, Chang Y H, Yang J, Poudel B, Yu B, Ren Z, Chen G. Reliable contact fabrication on nanostructured Bi2Te3-based thermoelectric materials. Physical Chemistry Chemical Physics, 2013, 15(18): 6757–6762

58
Aswal D K, Basu R, Singh A. Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Conversion and Management, 2016, 114: 50–67

59
Ferreres X R, Aminorroaya Yamini S, Nancarrow M, Zhang C. One-step bonding of Ni electrode to n-type PbTe: A step towards fabrication of thermoelectric generators. Materials & Design, 2016, 107: 90–97

60
Zhu X, Cao L, Zhu W, Deng Y. Enhanced interfacial adhesion and thermal stability in bismuth telluride/nickel/copper multilayer films with low electrical contact resistance. Advanced Materials Interfaces, 2018, 1801279: 1801279

61
Zhao D, Geng H, Teng X. Fabrication and reliability evaluation of CoSb3/W-Cu thermoelectric element. Journal of Alloys and Compounds, 2012, 517: 198–203

62
Venugopal V A, Ottaviani G, Bresolin C, Erbetta D, Modelli A, Varesi E. Thermal stability of Ge2Sb2Te5 in contact with Ti and TiN. Journal of Electronic Materials, 2009, 38(10): 2063–2068

63
Cardinal T, Kwan M, Borca-Tasciuc T, Ramanath G. Effect of molecular length on the electrical conductance across metal-alkanedithiol-Bi2Te3 interfaces. Applied Physics Letters, 2016, 109(17): 173904

64
Cardinal T, Devender, Borca-Tasciuc T, Ramanath G. Tailoring electrical transport across metal-thermoelectric interfaces using a nanomolecular monolayer. ACS Applied Materials & Interfaces, 2016, 8(7): 4275–4279

65
Hong Y, Li L, Zeng X C, Zhang J. Tuning thermal contact conductance at graphene-copper interface via surface nanoengineering. Nanoscale, 2015, 7(14): 6286–6294

66
Liebert C H, Gaugler R E. The significance of thermal contact resistance in two-layer thermal-barrier-coated turbine vanes. Thin Solid Films, 1980, 73(2): 471–475

67
Su Y, Lu J, Huang B. Free-standing planar thin-film thermoelectric microrefrigerators and the effects of thermal and electrical contact resistances. International Journal of Heat and Mass Transfer, 2018, 117: 436–446

68
He R, Schierning G, Nielsch K. Thermoelectric devices: A review of devices, architectures, and contact optimization. Advanced Materials Technologies, 2017, 1700256: 1700256

69
Zhu W, Deng Y, Gao M, Wang Y. Hierarchical Bi-Te based flexible thin-film solar thermoelectric generator with light sensing feature. Energy Conversion and Management, 2015, 106: 1192–1200

70
Huang M J, Yen R H, Wang A B. The influence of the Thomson effect on the performance of a thermoelectric cooler. International Journal of Heat and Mass Transfer, 2005, 48(2): 413–418

71
Cheng C H, Huang S Y, Cheng T C. A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers. International Journal of Heat and Mass Transfer, 2010, 53(9–10): 2001–2011

72
Ju Y S. Impact of interface resistance on pulsed thermoelectric cooling. Journal of Heat Transfer, 2008, 130(1): 14502

73
Antonova E E, Looman D C. Finite elements for thermoelectric device analysis in ANSYS. International Conference on Thermoelectrics, ICT. Proceedings, 2005, 2005: 200–203

74
Ebling D, Jaegle M, Bartel M, Jacquot A, Böttner H. Multiphysics simulation of thermoelectric systems for comparison with experimental device performance. Journal of Electronic Materials, 2009, 38(7): 1456–1461

75
Bulman G E, Siivola E, Wiitala R, Venkatasubramanian R, Acree M, Ritz N. Three-stage thin-film superlattice thermoelectric multistage microcoolers with a DTmax of 102 K. Journal of Electronic Materials, 2009, 38(7): 1510–1515

76
Garcia J, Ramos D A L, Mohn M, Schlörb H, Rodriguez N P, Akinsinde L, Nielsch K, Schierning G, Reith H. Fabrication and modeling of integrated micro-thermoelectric cooler by template-assisted electrochemical deposition. ECS Journal of Solid State Science and Technology: JSS, 2017, 6(3): N3022–N3028

77
Mahajan R, Chiu C P, Chrysler G. Cooling a microprocessor chip. Proceedings of the IEEE, 2006, 94(8): 1476–1485

78
Enescu D, Virjoghe E O. A review on thermoelectric cooling parameters and performance. Renewable & Sustainable Energy Reviews, 2014, 38: 903–916

79
Habbe B, Nurnus J. Thin film thermoelectrics today and tomorrow. Electronics Cooling, 2011, 17: 24–31

80
Wang P, Yang B, Bar-Cohen A. Mini-contact enhanced thermoelectric coolers for on-chip hot spot cooling. Heat Transfer Engineering, 2009, 30(9): 736–743

81
Li G, Garcia Fernandez J, Lara Ramos D A, Barati V, Pérez N, Soldatov I, Reith H, Schierning G, Nielsch K. Integrated microthermoelectric coolers with rapid response time and high device reliability. Nature Electronics, 2018, 1(10): 555–561

82
Buist R J. A new method for testing thermoelectric materials and devices. 11th International Conference on Thermoelectrics, Arlington, Texas, 1992: 15

83
Gorodetskiy S M, Buist R J, Lau P G. Quality testing of two-stage thermoelectric cascades. XVI ICT ’97 Proceedings ICT’97 16th International Conference on Thermoelectrics (Cat No97TH8291), 1997: 668–671

84
Manno M, Yang B, Bar-cohen A. Non-contact method for characterization of small size thermoelectric modules. Review of Scientific Instruments, 2015, 86(8): 084701–084708

Outlines

/