RESEARCH ARTICLE

Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition

  • Ana Mora-Boza 1 ,
  • Francisco J. Aparicio , 1 ,
  • María Alcaire 1 ,
  • Carmen López-Santos 1 ,
  • Juan P. Espinós 1 ,
  • Daniel Torres-Lagares 2 ,
  • Ana Borrás 1 ,
  • Angel Barranco , 1
Expand
  • 1. Consejo Superior de Investigaciones Científicas. Instituto de Ciencia de Materiales de Sevilla (CSIC-Universidad de Sevilla) c/Américo Vespucio 49, 41092 Sevilla, Spain
  • 2. Facultad de Odontología, Universidad de Sevilla (USE) c/Avicena, 41009 Sevilla, Spain

Received date: 01 Sep 2018

Accepted date: 02 Dec 2018

Published date: 15 Jun 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Novel antibacterial materials for implants and medical instruments are essential to develop practical strategies to stop the spread of healthcare associated infections. This study presents the synthesis of multifunctional antibacterial nanocoatings on polydimethylsiloxane (PDMS) by remote plasma assisted deposition of sublimated chlorhexidine powders at low pressure and room temperature. The obtained materials present effective antibacterial activity against Escherichia coli K12, either by contact killing and antibacterial adhesion or by biocide agents release depending on the synthetic parameters. In addition, these multifunctional coatings allow the endure hydrophilization of the hydrophobic PDMS surface, thereby improving their biocompatibility. Importantly, cell-viability tests conducted on these materials also prove their non-cytotoxicity, opening a way for the integration of this type of functional plasma films in biomedical devices.

Cite this article

Ana Mora-Boza , Francisco J. Aparicio , María Alcaire , Carmen López-Santos , Juan P. Espinós , Daniel Torres-Lagares , Ana Borrás , Angel Barranco . Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(2) : 330 -339 . DOI: 10.1007/s11705-019-1803-6

Acknowledgements

We thank Ministerio de Economía y Competitividad of Spain, the Agencia Estatal de Investigación (AEI) and EU (FEDER program) under grant MAT2016-79866-R.
1
Cavallaro A A, Macgregor-Ramiasa M N, Vasilev K. Antibiofouling properties of plasma-deposited oxazoline-based thin films. ACS Applied Materials & Interfaces, 2016, 8(10): 6354–6362

DOI

2
Vähä-Nissi M, Pitkänen M, Salo E, Kenttä E, Tanskanen A, Sajavaara T, Putkonen M, Sievänen J, Sneck A, Rättö M, Karppinen M, Harlin A. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures. Thin Solid Films, 2014, 562: 331–337

DOI

3
Zhang B, Myers D, Wallace G, Brandt M, Choong P. Bioactive coatings for orthopaedic implants—recent trends in development of implant coatings. International Journal of Molecular Sciences, 2014, 15(7): 11878–11921

DOI

4
Banerjee I, Pangule R C, Kane R S. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 2011, 23(6): 690–718

DOI

5
Gilabert-Porres J, Martí S, Calatayud L, Ramos V, Rosell A, Borrós S. Design of a nanostructured active surface against gram-positive and gram-negative bacteria through plasma activation and in situ silver reduction. ACS Applied Materials & Interfaces, 2016, 8(1): 64–73

DOI

6
Jiang F, Yeh C K, Wen J, Sun Y. N-Trimethylchitosan/alginate layer-by-layer self assembly coatings act as ‘fungal repellents’ to prevent biofilm formation on healthcare materials. Advanced Healthcare Materials, 2015, 4(3): 469–475

DOI

7
Li L, Pu T, Zhanel G, Zhao N, Ens W, Liu S. New biocide with both n-chloramine and quaternary ammonium moieties exerts enhanced bactericidal activity. Advanced Healthcare Materials, 2012, 1(5): 609–620

DOI

8
Wu M, He J, Ren X, Cai W S, Fang Y C, Feng X Z. Development of functional biointerfaces by surface modification of polydimethylsiloxane with bioactive chlorogenic acid. Colloids and Surfaces. B, Biointerfaces, 2014, 116: 700–706

DOI

9
Yu Q, Wu Z, Chen H. Dual-function antibacterial surfaces for biomedical applications. Acta Biomaterialia, 2015, 16: 1–13

DOI

10
Agarwal A, Nelson T B, Kierski P R, Schurr M J, Murphy C J, Czuprynski C J, McAnulty J F, Abbott N L. Polymeric multilayers that localize the release of chlorhexidine from biologic wound dressings. Biomaterials, 2012, 33(28): 6783–6792

DOI

11
He T, Zhang Y, Lai A C K, Chan V. Engineering bio-adhesive functions in an antimicrobial polymer multilayer. Biomedical Materials (Bristol, England), 2015, 10(1): 15015

DOI

12
Verraedt E, Braem A, Chaudhari A, Thevissen K, Adams E, Van Mellaert L, Cammue B P A, Duyck J, Anné J, Vleugels J, Martens J A. Controlled release of chlorhexidine antiseptic from microporous amorphous silica applied in open porosity of an implant surface. International Journal of Pharmaceutics, 2011, 419(1-2): 28–32

DOI

13
Yu Q, Ge W, Atewologun A, Stiff-Roberts A D, López G P. Antimicrobial and bacteria-releasing multifunctional surfaces: Oligo (p-phenylene-ethynylene)/poly (N-isopropylacrylamide) films deposited by RIR-MAPLE. Colloids and Surfaces. B, Biointerfaces, 2015, 126: 328–334

DOI

14
Chang C H, Yeh S Y, Lee B H, Hsu C W, Chen Y C, Chen C J, Lin T J, Chen M H C, Huang C T, Chen H Y. Compatibility balanced antibacterial modification based on vapor-deposited parylene coatings for biomaterials. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(48): 8496–8503

DOI

15
Nikiforov A Y, Deng X, Onyshchenko I, Vujosevic D, Vuksanovic V, Cvelbar U, De Geyter N, Morent R, Leys C. Atmospheric pressure plasma deposition of antimicrobial coatings on non-woven textiles. European Physical Journal Applied Physics, 2016, 75(2): 24710

DOI

16
Ostrikov K, Levchenko I, Keidar M, Cvelbar U, Mariotti D, Mai-Prochnow A, Fang J. Novel biomaterials: Plasma-enabled nanostructures and functions. Journal of Physics. D, Applied Physics, 2016, 49(27): 273001

DOI

17
Barranco A, Groening P. Fluorescent plasma nanocomposite thin films containing nonaggregated rhodamine 6G laser dye molecules. Langmuir, 2006, 22(16): 6719–6722

DOI

18
Barranco A, Aparicio F, Yanguas-Gil A, Groening P, Cotrino J, González-Elipe A R. Optically active thin films deposited by plasma polymerization of dye molecules. Chemical Vapor Deposition, 2007, 13(6-7): 319–325

DOI

19
Aparicio F J, Holgado M, Borras A, Blaszczyk-Lezak I, Griol A, Barrios C A, Casquel R, Sanza F J, Sohlstrom H, Antelius M, González-Elipe A R, Barranco A. Transparent nanometric organic luminescent films as UV-active components in photonic structures. Advanced Materials, 2011, 23(6): 761–765

DOI

20
Aparicio F J, Alcaire M, González-Elipe A R, Barranco A, Holgado M, Casquel R, Sanza F J, Griol A, Bernier D, Dortu F, Cáceres S, Antelius M, Lapisa M, Sohlström H, Niklaus F. Dye-based photonic sensing systems. Sensors and Actuators. B, Chemical, 2016, 228: 649–657

DOI

21
Blaszczyk-Lezak I, Aparicio F J, Borrás A, Barranco A, Álvarez-Herrero A, Fernández-Rodríguez M, González-Elipe A R. Optically active luminescent perylene thin films deposited by plasma polymerization. Journal of Physical Chemistry C, 2009, 113(1): 431–438

DOI

22
Aparicio F J, Alcaire M, Borras A, Gonzalez J C, López-Arbeloa F, Blaszczyk-Lezak I, González-Elipe A R, Barranco A. Luminescent 3-hydroxyflavone nanocomposites with a tuneable refractive index for photonics and UV detection by plasma assisted vacuum deposition. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2014, 2(32): 6561–6573

DOI

23
Sangamesh K, Laurencin C, Deng M, eds. Natural and Synthetic Biomedical Polymers. San Diego: Elsevier, 2014, 301–308

24
Chen H, Brook M A, Sheardown H. Silicone elastomers for reduced protein adsorption. Biomaterials, 2004, 25(12): 2273–2282

DOI

25
Thevenot P, Hu W, Tang L. Surface chemistry influences implant biocompatibility. Current Topics in Medicinal Chemistry, 2008, 8(4): 270–280

DOI

26
Gilbert P, Allison D G, Brading M, Verran J, Walker J. Biofilm community interactions: Chance or necessity? Cardiff: Bioline, 2001, 11–22

27
Wilson C J, Clegg R E, Leavesley D I, Pearcy M J. Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Engineering, 2005, 11(1-2): 1–18

DOI

28
Zhang H, Chiao M. Anti-fouling Coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. Journal of Medical and Biological Engineering, 2014, 35(2): 143–155

DOI

29
Larson B J, Gillmor S D, Braun J M, Cruz-Barba L E, Savage D E, Denes F S, Lagally M G. Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments. Langmuir, 2013, 29(42): 12990–12996

DOI

30
Forster S, McArthur S L. Stable low-fouling plasma polymer coatings on polydimethylsiloxane. Biomicrofluidics, 2012, 6(3): 036504

DOI

31
Lee D, Yang S. Surface modification of PDMS by atmospheric-pressure plasma-enhanced chemical vapor deposition and analysis of long-lasting surface hydrophilicity. Sensors and Actuators. B, Chemical, 2012, 162(1): 425–434

DOI

32
Kaelble D H. Dispersion-polar surface tension properties of organic solids. Journal of Adhesion, 1970, 2(2): 66–81

DOI

33
Owens D K, Wendt R C. Estimation of the surface free energy or polymers. Journal of Applied Polymer Science, 1969, 13(8): 1741–1747

DOI

34
Balouiri M, Sadiki M, Ibnsouda S K. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 2016, 6(2): 71–79

DOI

35
Mestieri L B, Gomes-Cornélio A L, Rodrigues E M, Faria G, Guerreiro-Tanomaru J M, Tanomaru-Filho M. Cytotoxicity and bioactivity of calcium silicate cements combined with niobium oxide in different cell lines. Brazilian Dental Journal, 2017, 28(1): 65–71

DOI

36
Aparicio F J, Borras A, Blaszczyk-Lezak I, Gröning P, Álvarez-Herrero A, Fernández-Rodríguez M, González-Elipe A R, Barranco A. Luminescent and optical properties of nanocomposite thin films deposited by remote plasma polymerization of Rhodamine 6G. Plasma Processes and Polymers, 2009, 6(1): 17–26

DOI

37
Aparicio F J, Blaszczyk-Lezak I, Sánchez-Valencia J R, Alcaire M, González J C, Serra C, González-Elipe A R, Barranco A. Plasma deposition of perylene-adamantane nanocomposite thin films for NO2 room-temperature optical sensing. Journal of Physical Chemistry C, 2012, 116(15): 8731–8740

DOI

38
Beamson G, Briggs D. High Resolution XPS of Organic Polymers. New York: John Wiley & Sons Ltd., 1990, 277–287

39
Yim J H, Fleischman M S, Rodriguez-Santiago V, Piehler L T, Williams A A, Leadore J L, Pappas D D. Development of antimicrobial coatings by atmospheric pressure plasma using a guanidine-based precursor. ACS Applied Materials & Interfaces, 2013, 5(22): 11836–11843

DOI

40
Yook J Y, Lee M, Song K H, Jun J, Kwak S. Surface modification of poly(ethylene-2,6-naphthalate) using NH3 plasma. Macromolecular Research, 2014, 22(5): 534–540

DOI

41
Aparicio F J, Thiry D, Laha P, Snyders R. Wide range control of the chemical composition and optical properties of propanethiol plasma polymer films by regulating the deposition temperature. Plasma Processes and Polymers, 2016, 13(8): 814–822

DOI

42
Jiang H, Grant J T, Enlow J, Su W, Bunning T J. Surface oxygen in plasma polymerized films. Journal of Materials Chemistry, 2009, 19(15): 2234–2239

DOI

43
Sokrates G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts. New York: Wiley-Interscience, 2001, 191–198

44
Kovtun A, Kozlova D, Ganesan K, Biewald C, Seipold N, Gaengler P, Arnold W H, Epple M. Chlorhexidine-loaded calcium phosphatenanoparticles for dental maintenance treatment: Combination of mineralising and antibacterial effects. RSC Advances, 2012, 2(3): 870–875

DOI

45
Badea M, Olar R, Iliş M, Georgescu R, Călinescu M. Synthesis, characterization, and thermal decomposition of new copper (II) complex compounds with chlorhexidine. Journal of Thermal Analysis and Calorimetry, 2012, 111(3): 1763–1770

DOI

46
Pal S, Tak Y K, Han E, Rangasamy S, Song J M. A multifunctional composite of an antibacterial higher-valent silver metallopharmaceutical and a potent wound healing polypeptide: A combined killing and healing approach to wound care. New Journal of Chemistry, 2014, 38(8): 3889–3898

DOI

47
Holešová S, Valášková M, Hlaváč D, Madejová J, Samlíková M, Tokarský J, Pazdziora E. Antibacterial kaolinite/urea/chlorhexidine nanocomposites: Experiment and molecular modelling. Applied Surface Science, 2014, 305: 783–791

DOI

48
Biederman H, ed. Plasma Polymer Films. London: Imperial College Press, 2004, 227–231

49
Labay C, Canal J M, Modic M, Cvelbar U, Quiles M, Armengol M, Arbos M A, Gil F J, Canal C. Antibiotic-loaded polypropylene surgical meshes with suitable biological behaviour by plasma functionalization and polymerization. Biomaterials, 2015, 71: 132–144

DOI

Outlines

/