Frontiers of Chemical Science and Engineering >
Nickel-carbonate nanowire array: An efficient and durable electrocatalyst for water oxidation under nearly neutral conditions
Received date: 17 Dec 2017
Accepted date: 28 Feb 2018
Published date: 18 Sep 2018
Copyright
It is highly attractive but still remains a great challenge to develop an efficient electrocatalyst for oxygen evolution reaction under nearly neutral conditions. In this work, we report the transformation of Ni3S2 nanowire array on nickel foam into the amorphous nickel carbonate nanowire array on nickel foam (NiCO3/NF). The resulting NiCO3/NF shows high electrocatalytic activity towards water oxidation and affords current density of 50 mA·cm−2 at overpotential of 395 mV in 1.0 mol·L−1 KHCO3. Moreover, this NiCO3/NF is also durable with a long-term electrochemical durability of 60 h. This catalyst electrode achieves a high turnover frequency of 0.21 mol O2·s−1 at the overpotential of 500 mV.
Yuyao Ji , Min Ma , Xuqiang Ji , Xiaoli Xiong , Xuping Sun . Nickel-carbonate nanowire array: An efficient and durable electrocatalyst for water oxidation under nearly neutral conditions[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(3) : 467 -472 . DOI: 10.1007/s11705-018-1717-8
1 |
Cook T R, Dogutan D K, Reece S Y, Surendranath Y, Teets T S, Nocera D G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chemical Reviews, 2010, 110(11): 6474–6502
|
2 |
Service R F. Hydrogen cars: Fad or the future? Science, 2009, 324(5932): 1257–1259
|
3 |
Lin F, Boettcher S W. Adaptive semiconductor/eElectrocatalyst junctions in water-splitting photoanodes. Nature Materials, 2014, 13(1): 81–86
|
4 |
Walter M G, Warren E L, Mckone J R, Boettcher S W, Mi Q, Santori E S, Lewis N S. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473
|
5 |
Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015, 44(15): 5148–5180
|
6 |
Lu X, Gu L, Wang J, Wu J, Liao P, Li G. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Advanced Materials, 2017, 29(3): 1604437
|
7 |
Feng J, Ye S, Xu H, Tong Y, Li G. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Advanced Materials, 2016, 28(23): 4698–4703
|
8 |
Feng J, Xu H, Dong Y, Ye S, Tong Y, Li G. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition, 2016, 55(11): 3694–3698
|
9 |
Hong W, Risch M, Stoerzinger K A, Grimaud A, Suntivich J, Shao-Horn Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy & Environmental Science, 2015, 8(5): 1404–1427
|
10 |
Yin Q, Tan J M, Besson C, Geletii Y V, Musaev D G, Kuznetsov A E, Luo Z, Hardcastle K I, Hill C L. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science, 2010, 328(5976): 342–345
|
11 |
Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science, 2011, 334(6061): 1383–1385
|
12 |
Han L, Dong S, Wang E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Advanced Materials, 2016, 28(42): 9266–9291
|
13 |
Zhong H, Wang J, Meng F, Zhang X. In situ activating ubiquitous rust towards low-cost, efficient, free-standing, and recoverable oxygen evolution electrodes. Angewandte Chemie, 2016, 128(20): 10091–10095
|
14 |
Zhong H, Li K, Zhang Q, Wang J, Meng F, Wu Z, Yan J, Zhang X. In situ anchoring of Co9S8 nanoparticles on N and S co-doped porous carbon tube as bifunctional oxygen electrocatalysts. NPG Asia Materials, 2016, 8(132): e308
|
15 |
Le Goff A, Artero V, Jousselme B, Tran P D, Guillet N, Métayé R, Fihri A, Palacin S, Fontecave M. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science, 2009, 326(5958): 1384–1387
|
16 |
Leroy R L. Industrial water electrolysis: Present and future. International Journal of Hydrogen Energy, 1983, 8(83): 401417
|
17 |
Liang H, Meng F, Cabán-Acevedo M, Li L, Forticaux A, Xiu L, Wang Z, Jin S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Letters, 2015, 15(2): 1421–1427
|
18 |
Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science, 2008, 321(5892): 1072–1075
|
19 |
McAlpin J G, Surendranath Y, Dinca M, Stich T A, Stoian S A, Casey W H, Nocera D G, Britt R D. EPR evidence for Co(IV) species produced during water oxidation at neutral pH. Journal of the American Chemical Society, 2010, 132(20): 6882–6883
|
20 |
Esswein A J, Surendranath Y, Reece S Y, Nocera D G. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutrual and natural waters. Energy & Environmental Science, 2011, 4(2): 499–504
|
21 |
Wang W, Liu D, Hao S, Qu F, Ma Y, Du G, Asiri A M, Yao Y, Sun X. High-efficiency and durable water oxidation under mild pH conditions: An iron phosphate-borate nanosheet array as a non-noble-metal catalyst electrode. Inorganic Chemistry, 2017, 56(6): 3131–3135
|
22 |
Surendranath Y, Kanan M W, Nocera D G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. Journal of the American Chemical Society, 2010, 132(46): 16501–16509
|
23 |
Kanan M W, Yano J, Surendranath Y, Dincă M, Yachandra V K, Nocera D G. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-Ray spectroscopy. Journal of the American Chemical Society, 2010, 132(46): 13692–13701
|
24 |
Smith A M, Trotochaud L, Burke M S, Boettcher S W. Trotochaud Lena, Burke M S, Boettcher S W. Contributions to activity enhancement via Fe incorporation in Ni-(oxy)hydroxide/borate catalysts for near-neutral pH oxygen evolution. Chemical Communications (Cambridge), 2015, 51(25): 5261–5263
|
25 |
Dincă M, Surendranath Y, Nocera D G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(23): 10337–10341
|
26 |
Bediako D K, Costentin C, Jones E C, Nocera D G, Savéant J M. Proton-electron transport and transfer in electrocatalytic films. Application to a cobalt-based O2-evolution catalyst. Journal of the American Chemical Society, 2013, 135(28): 10492–10502
|
27 |
Bediako D K, Surendranath Y, Nocera D G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. Journal of the American Chemical Society, 2013, 135(9): 3662–3674
|
28 |
Yang L, Xie L, Ge R, Kong R, Liu Z, Asiri A M. Core-shell NiFe-LDH@NiFe-Bi nanoarray: In situ electrochemical surface derivation preparation toward efficient water oxidation electrocatalysis in near-neutral media. ACS Applied Materials & Interfaces, 2017, 9(23): 19502–19506
|
29 |
Kurosu H, Yoshida M, Mastectomy Y, Onishi S, Abe H, Kondoh H.In situ observations of oxygen evolution cocatalysts on photoelectrodes by X-ray absorption spectroscopy: Comparison between cobalt-phosphate and cobalt-borate. Electrochemistry, 2016, 10(84): 779–783
|
30 |
Joya K S, de Takanabe K, Groot H J M. Surface generation of a cobalt-derived water oxidation electrocatalyst developed in a neutral HCO3-/CO2 system. Advanced Energy Materials, 2014, 4(16): 1400252
|
31 |
Xie F, Wu H, Mou J, Lin D, Xu C, Wu C, Sun X. Ni3N@Ni-Ci nanoarray as a highly active and durable non-noble-metal electrocatalyst for water oxidation at near-neutral pH. Journal of Catalysis, 2017, 356: 165–172
|
32 |
Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science, 2008, 321(5892): 1072–1075
|
33 |
Chen W, Wang H, Li Y, Lee J S, Cui Y. In situ electrochemical oxidation tuning of transition metal disulfides to oxides for enhanced water oxidation. American Chemical Society Central Science, 2015, 1(5): 244–251
|
34 |
Ren Z, Botu V, Wang S, Meng Y, Song W, Guo Y, Ramprasad S, Gao P, Suib S L. Monolithically integrated spinel MxCo3XO4 (M= Co, Ni, Zn) nanoarray catalysts: Scalable synthesis and cation manipulation for tunable low-temperature CH4 and CO oxidation? Angewandte Chemie International Edition, 2014, 53(160): 7223–7227
|
35 |
Kibsgaard J, Chen Z, Reinecke B N, Jaramilo T F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature Materials, 2012, 11(11): 963–969
|
36 |
Wang J, Ma M, Qu F, Asiri A M, Sun X. Fe-doped Ni2P nanosheet array for high-efficiency electrochemical water oxidation. Inorganic Chemistry, 2017, 56(3): 1041–1044
|
37 |
He C, Wu X, He Z. Amorphous nickel-based thin film as a janus electrocatalyst for water splitting. Journal of Physical Chemistry C, 2014, 118(9): 4578–4584
|
38 |
Zhu Y, Liu Y, Ren T, Yuan Z. Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Advanced Functional Materials, 2015, 25(47): 7337–7347
|
39 |
Meng F, Wang Z, Zhong H, Wang J, Yan J, Zhang B. Reactive multifunctional template-induced preparation of Fe-N-doped mesoporous carbon microspheres towards highly efficient electrocatalysts for oxygen reduction. Advanced Materials, 2016, 28(36): 7948–7955
|
40 |
Xie M, Yang L, Ji Y, Wang Z, Ren X, Liu Z, Asiri A M, Xiong X, Sun X. An amorphous Co-carbonate-hydroxide nanowire array for efficient and durable oxygen evolution reaction in carbonate electrolyte. Nanoscale, 2017, 9(43): 16612–16615
|
/
〈 | 〉 |