RESEARCH ARTICLE

3D Network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygen evolution reactions

  • Miaomiao Tong ,
  • Lei Wang ,
  • Peng Yu ,
  • Xu Liu ,
  • Honggang Fu
Expand
  • Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China

Received date: 30 Dec 2017

Accepted date: 04 Feb 2018

Published date: 18 Sep 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

A highly active bi-functional electrocatalyst towards both hydrogen and oxygen evolution reactions is critical for the water splitting. Herein, a self-supported electrode composed of 3D network nanostructured NiCoP nanosheets grown on N-doped carbon coated Ni foam (NiCoP/NF@NC) has been synthesized by a hydrothermal route and a subsequent phosphorization process. As a bifunctional electrocatalyst, the NiCoP/NF@NC electrode needs overpotentials of 31.8 mV for hydrogen evolution reaction and 308.2 mV for oxygen evolution reaction to achieve the current density of 10 mA·cm2 in 1 mol·L1 KOH electrolyte. This is much better than the corresponding monometal catalysts of CoP/NF@NC and NiP/NF@NC owing to the synergistic effect. NiCoP/NF@NC also exhibits low Tafel slope, and excellent long-term stability, which are comparable to the commercial noble catalysts of Pt/C and RuO2.

Cite this article

Miaomiao Tong , Lei Wang , Peng Yu , Xu Liu , Honggang Fu . 3D Network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygen evolution reactions[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(3) : 417 -424 . DOI: 10.1007/s11705-018-1711-1

Acknowledgements

We gratefully acknowledge the support of this research by the National Natural Science Foundation of China (Grant Nos. 21631004 and 21771059), the Natural Science Foundation of Heilongjiang Province (No. B2017008), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. UNPYSCT-2016016), the Harbin science and technology innovation talents research Foundation (No. 2015RAQXJ057).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-018-1711-1 and is accessible for authorized users.
1
Dresselhaus M S, Thomas I L. Alternative energy technologies. Nature, 2001, 414(6861): 332–337

DOI

2
Liu W, Hu E, Jiang H, Xiang Y, Weng Z, Li M, Fan Q, Yu X, Altman E I, Wang H. A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nature Communications, 2016, 7: 10771

DOI

3
Jiao Y, Zheng Y, Davey K, Qiao S Z. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nature Energy, 2016, 1(10): 16130

DOI

4
Nφrskov J K, Bligaard T, Rossmeisl J, Christensen C H. Towards the computational design of solid catalysts. Nature Chemistry, 2009, 1(1): 37–46

DOI

5
Alapati S V, Johnson J K, Sholl D S. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage. Physical Chemistry Chemical Physics, 2007, 9(12): 1438–1452

DOI

6
Zou X X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015, 44(15): 5148–5180

DOI

7
Zhang B, Zheng X L, Voznyy O, Comin R, Bajdich M, García-Melchor M, Han L L, Xu J X, Liu M, Zheng L R, et al. Homogeneously dispersed, multimetal oxygen-evolving catalysts. Science, 2016, 352(6283): 333–337

DOI

8
Wang J H, Cui W, Liu Q, Xing Z C, Asiri A M, Sun X P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Advanced Materials, 2016, 28(2): 215–230

DOI

9
Jin Y, Wang H, Li J, Yue X, Han Y, Shen P K, Cui Y, Jin Y S, Wang H T, Li J J, et al. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Advanced Materials, 2016, 28(19): 3785–3790

DOI

10
Feng L L, Yu G T, Wu Y Y, Li G D, Li H, Sun Y H, Asefa T, Chen W, Zou X X. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. Journal of the American Chemical Society, 2015, 137(44): 14023–14026

DOI

11
Chen Y Y, Zhang Y, Zhang X, Tang T, Luo H, Shuai N, Dai Z H, Wan L J, Hu J S. Self-templated fabrication of MoNi4/MoO3−x nanorod arrays with dual active components for highly efficient hydrogen evolution. Advanced Materials, 2017, 29(39): 1703311

DOI

12
Guo X X, Kong R M, Zhang X P, Du H T, Qu F L. Ni(OH)2 nanoparticles embedded in conductive microrod array: An efficient and durable electrocatalyst for alkaline oxygen evolution reaction. ACS Catalysis, 2017, 7(7): 4381–4385

13
Xu X J, Du P Y, Chen Z K, Huang M H. An electrodeposited cobalt-selenide-based film as an efficient bifunctional electrocatalyst for full water splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(28): 10933–10939

DOI

14
Lee J E, Jang Y J, Xu W Q, Feng Z X, Park H Y, Kim J Y, Kim D H. PtFe nanoparticles supported on electroactive Au–PANI core@shell nanoparticles for high performance bifunctional electrocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(26): 13692–13699

DOI

15
Feng J X, Wu J Q, Tong Y X, Li G R. Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. Journal of the American Chemical Society, 2018, 140(2): 610–617

DOI

16
Feng J X, Xu H, Ye S H, Ouyang G F, Tong Y X, Li G R. Silica-polypyrrole hybrids as high-performance metal-free electrocatalysts for the hydrogen evolution reaction in neutral media. Angewandte Chemie-Internatioanal Edition, 2017, 56(28): 8120–8124

17
Feng J X, Xu H, Dong Y T, Lu X F, Tong Y X, Li G R. Efficient hydrogen evolution electrocatalysis using cobalt nanotubes decorated with titanium dioxide nanodots. Angewandte Chemie-Internatioanal Edition, 2017, 56(11): 2960–2964

18
Li J S, Wang Y, Liu C H, Li S L, Wang Y G, Dong L Z, Dai Z H, LiY F, Lan Y Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nature Communications, 2016, 7: 11204

19
Qin J S, Du D Y, Guan W, Bo X J, Li Y F, Guo L P, Su Z M, Wang Y Y, Lan Y Q, Zhou H C. Ultrastable polymolybdate-based metal organic frameworks as highly active electrocatalysts for hydrogen generation from water. Journal of the American Chemical Society, 2015, 137(22): 7169–7177

DOI

20
Tang Y J, Gao M R, Liu C H, Li S L, Jiang H L, Lan Y Q, Han M, Yu S H. Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angewandte Chemie-Internatioanal Edition, 2015, 54(44): 12928–12932

21
Li Z M, Han M, Xu D D, Yang J, Lin Y, Shi N E, Lu Y A, Yang R, Liu B T, Dai Z H, et al. Defect-rich Ni3FeN nanocrystals anchored on N-doped graphene for enhanced electrocatalytic oxygen evolutionshulin. Advanced Functional Materials, 2018, doi: 10.1002/adfm.201706018

22
Deng D R, Xue F, Jia Y J, Ye J C, Bai C D, Zheng M S, Dong Q F. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries. ACS Nano, 2017, 11(6): 6031–6039

DOI

23
Chen P Z, Xu K, Fang Z W, Tong Y, Wu J C, Lu X L, Peng X, Ding H, Wu C Z, Xie Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition, 2015, 54(49): 14710–14714

DOI

24
Wan J, Wu J B, Gao X, Li T Q, Hu Z M, Yu H M, Huang L. Structure confined porous Mo2C for efficient hydrogen evolution. Advanced Functional Materials, 2017, 27(45): 1703933

DOI

25
Zhou X F, Yang X L, Li H, Hedhili M N, Huang K W, Li L J, Zhang W J. Symmetric synergy of hybrid CoS2-WS2 electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(30): 15552–15558

DOI

26
Yu L, Yang J F, Lou X W. Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage. Angewandte Chemie International Edition, 2016, 55: 13422–13426

27
Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F. Emerging photoluminescence in monolayer MoS2. Nano Letters, 2010, 10(4): 1271–1275

DOI

28
Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 2011, 133(19): 7296–7299

DOI

29
Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Letters, 2012, 12(7): 3788–3792

DOI

30
Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W, Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nature Nanotechnology, 2014, 9(4): 268–272

DOI

31
Kong D, Wang H, Cha J J, Pasta M, Koski K J, Yao J, Cui Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Letters, 2013, 13(3): 1341–1347

DOI

32
Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z K, Schmitt F, Lee J, Moore R, Chen Y L. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nature Nanotechnology, 2014, 9(2): 111–115

33
Park H, Zhang Y, Scheifers J P, Jothi P R, Encinas A, Fokwa B P T. Graphene- and phosphorene-like boron layers with contrasting activities in highly active Mo2B4 for hydrogen evolution. Journal of the American Chemical Society, 2017, 139(37): 12915–12918

DOI

34
Liang H, Gandi A N, Anjum D H, Wang X, Schwingenschllögl U, Alshareef H N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Letters, 2016, 16(12): 7718–7725

DOI

35
Li Y, Zhang H, Jiang M, Kuang Y, Sun X, Duan X. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Research, 2016, 9(8): 2251–2259

DOI

36
He P, Yu X Y, Lou X W D. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angewandte Chemie International Edition, 2017, 56(14): 3897–3900

DOI

37
Li J, Yan M, Zhou X, Huang Z Q, Xia Z, Chang C R, Ma Y, Qu Y. Mechanistic insights on ternary Ni2−xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Advanced Functional Materials, 2016, 26(37): 6785–679

DOI

38
Wang Z, Cao X, Liu D, Hao S, Du G, Asiri A M, Sun X. Ternary NiCoP nanosheet array on a Ti mesh: A high-performance electrochemical sensor for glucose detection. Chemical Communications, 2016, 52(100): 14438–14441

DOI

39
Wang C, Jiang J, Ding T, Chen G, Xu W, Yang Q. Monodisperse ternary NiCoP nanostructures as a bifunctional electrocatalyst for both hydrogen and oxygen evolution reactions with excellent performance. Advanced Materials Interfaces, 2016, 3(4): 1500454–1500458

DOI

40
Li J, Yan M, Zhou X, Huang Z Q, Xia Z, Chang C R, Ma Y, Qu Y. Mechanistic insights on ternary Ni2−xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Advanced Functional Materials, 2016, 26(37): 6785–6796

DOI

41
Liu Q, Tian J, Cui W, Jiang P, Cheng N, Asiri A M, Sun X. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angewandte Chemie International Edition, 2014, 53(26): 6710–6714

DOI

42
Yuan C, Li J, Hou L, Zhang X, Shen L, Lou X W D. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Advanced Functional Materials, 2012, 22(21): 4592–4597

DOI

43
Yuan C Z, Yang L, Hou L R, Shen L F, Zhang X G, Lou X W. Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy & Environmental Science, 2012, 5(7): 7883–7887

DOI

44
Yu L, Zhang G, Yuan C, Lou X W D. Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chemical Communications, 2013, 49(2): 137–139

DOI

45
Du C, Yang L, Yang F L, Cheng G Z, Luo W. Nest-like NiCoP for highly efficient overall water splitting. ACS Catalysis, 2017, 7(6): 4131–4137

DOI

46
Du D H, Li P C, Ouyang J Y. Nitrogen-doped reduced graphene oxide prepared by simultaneous thermal reduction and nitrogen doping of graphene oxide in air and its application as an electrocatalyst. ACS Applied Materials & Interfaces, 2015, 7(48): 26952–26958

DOI

47
Zheng J, Chen X L, Zhong X, Li S Q, Liu T Z, Zhuang G L, Li X N, Deng S W, Mei D H, Wang J G. Hierarchical porous NC@CuCo nitride nanosheet networks: Highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol. Advanced Functional Materials, 2017, 27(46): 1704169

DOI

48
Liang X, Zheng B, Chen L, Zhang J, Zhuang Z, Chen B. MOF-derived formation of Ni2P-CoP bimetallic phosphides with strong interfacial effect toward electrocatalytic water splitting. ACS Applied Materials & Interfaces, 2017, 9(27): 23222–23229

DOI

49
Liang H, Gandi A N, Anjum D H, Wang X, Schwingenschlögl U, Alshareef H N, Ngenschlögl U S, Alshareef H N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Letters, 2016, 16(12): 7718–7725

DOI

50
Wang X, Li W, Xiong D, Petrovykh D Y, Liu L. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Advanced Functional Materials, 2016, 26(23): 4067–4077

DOI

Outlines

/